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Abstract

In this article, we address the problem of computing the distribution functions that can be
expressed as discrete mixtures of continuous distributions. Examples include noncentral chisquare,
noncentral beta, noncentral F , noncentral t, and the distribution of squared sample multiple
correlation. We illustrate the need for improved algorithms by pointing out situations where
existing algorithms fail to compute meaningful values of the cumulative distribution functions
(cdf) under study. To address this problem we recommend an approach that can be easily
incorporated to improve the existing algorithms. For the distributions of the squared sample
multiple correlation coe+cient, noncentral t, and noncentral chisquare, we apply the approach
and give a detailed explanation of computing the cdf values. We present results of comparison
studies carried out to validate the calculated values and computational times of our suggested
approach. Finally, we give the algorithms for computing the distributions of the squared sample
multiple correlation coe+cient, noncentral t, and noncentral chisquare so that they can be coded
in any desired computer language.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

This article deals with di:erent approaches of computing the cumulative distribution
functions (cdfs) that can be written as discrete mixtures of continuous distributions as
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in the following form:

P(X 6 x) =
∞∑
i=0

P(Y = i|�)FZi(x; 
); (1.1)

where X is the continuous random variable of interest, Y is a discrete random variable,
� is a parameter associated with Y; FZi is the cdf of a continuous random variable Zi.
For example, distributions of the square of the sample multiple correlation (see Section
2), noncentral t (Section 3), noncentral chisquare (Section 4), and noncentral beta can
be written in the form of (1.1). The following articles, among others, provide algorithms
to compute the cdfs which are mentioned above: Lenth (1987) for the noncentral
beta; Ding (1992) for the noncentral chisquare; Lenth (1989) for the noncentral t; and
Ding and Bargmann (1991) for the distribution of the square of the sample multiple
correlation. These algorithms are based on the method which we brieDy outline as
follows:
Method 1:

1. Evaluate P(Y = 0|�) and FZ0 (x; 
) in (1.1).
2. Compute P(Y = i|�); i = 1; 2; : : : ; recursively using the initial value P(Y = 0|�);

compute FZi(x; 
); i = 1; 2; : : : recursively using the initial value FZ0 (x; 
).
3. Terminate the series in (1.1) when the sum of the probabilities P(Y=i|�) is near 1 or

if FZi(x; 
) is a decreasing function of i, terminate the series when [1−∑m
i=0 P(Y =

i|�)]FZm+1(x; 
) is less than a speciGed fraction (error tolerance).

Method 1 can be easily adopted, because the recursion relations needed in step 2 are
available for many commonly used cdfs; however, the algorithms based on Method 1
pose serious problems in the following situations. (i) When the mean of the discrete
random variable Y is large, P(Y = 0|�) will be very small and hence these algorithms
can su:er from under Dow error; that is, P(Y =0|�) will be so small that the computer
will treat it as zero (see, for example, Helstrom and Ritcey, 1985; Posten, 1993; Frick,
1990). As a consequence, the programs based on Method 1 may return zero (see step 2
of Method 1) even when the actual value of the cdf is quite large. (ii) Computation time
of the algorithms based on Method 1 increases drastically as the mean of Y increases.
(iii) These algorithms may be ine:ective if they are used as auxiliary algorithms to
compute values such as percentiles or conGdence intervals. For example, the cdf of the
square of the sample multiple correlation coe+cient R2 can be used to Gnd conGdence
limits for the population multiple correlation square, �2 (see Kramer, 1963). In this
problem, an algorithm based on Method 1 along with a root searching method will be
ine:ective to compute conGdence limits for �2 when the sample size and �2 are large
(see Eq. (2.5)). Another example involves computation of the noncentrality parameter
of a noncentral F distribution for a given power of an F test (Tiwari and Yang, 1997).
Again, for similar reasons given above, an algorithm based on Method 1 to compute
the cdf of noncentral F could be ine:ective in computing the noncentrality parameter.

All the above problems can be easily overcome if the initial computation of (1.1) is
started at k = [mean of Y ], where [x] denotes the integer closest to x. This is mainly
because, in general, the dominant series in (1.1) is the discrete probability P(Y = i|�),
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which attains its maximum around the mean of Y . This alternate approach has been sug-
gested by many authors, among others, Helstrom and Ritcey (1985) and Posten (1993).
However, only recently Frick (1990) and Chattamvelli and Shanmugam (1997) have
given algorithms based on the alternate approach to compute the cdf of the noncentral
beta. Chattamvelli and Shanmugam’s comparison study for the noncentral beta clearly
indicates that the algorithm based on the alternate approach is more e+cient, in terms
of accuracy and computation time, than the one based on Method 1. Therefore, we
recommend the following method to compute the cdfs of the form (1.1).
Method 2:
Let k be the integer closest to the mean of the discrete random variable Y in (1.1).

1. Evaluate P(Y = k|�) and FZk (x; 
) in (1.1).
2. Compute P(Y=k− i|�) and P(Y=k+ i|�), i=1; 2; : : : ; k, recursively using the initial

value P(Y=k|�); compute FZk−i(x; 
) and FZk+i(x; 
); i=1; 2; : : : ; k recursively using
the initial value FZk (x; 
).

3. When k is large, the series in (1.1) may converge within k iterations in step 2. In
such cases, terminate the series in (1.1) when the sum of the discrete probabilities
is close to 1.

4. If convergence did not take place in step 2, compute P(Y =2k+ i|�) and FZ2k+i(x; 
)
recursively for i = 1; 2; : : : ; until [1 −∑2k+i

j=0 P(Y = j|�)]FZ2k+i+1(x; 
) becomes less
than a speciGed error tolerance.

It is clear that Methods 1 and 2 are essentially the same, except for step 1 and
the “stopping rule” when the mean of Y is large, and hence Method 2 can also be
easily adopted as Method 1 to develop algorithms to evaluate the cdfs of form (1.1).
Furthermore, the algorithms based on Method 2 give correct values for a wide range of
parameter conGgurations whereas the ones based on Method 1 have some limitations. It
should be noted that interval analysis methods suggested by Wang and Kennedy (1994,
1995) can be used to get highly accurate results. But these methods also have some
limitations; as pointed out by Wang and Kennedy, they require more computational time
and software for extended precision arithmetic. Interval analysis methods, however, are
certainly useful to evaluate the accuracy of a scalar computation algorithm. As shown
in the following sections, the results of algorithms presented in this paper compare well
with existing algorithms but perform better in situations where these existing algorithms
fail. Our numerical comparisons in Section 4, for the case of noncentral chisquare
distribution, show that the results based on our algorithm are in good agreement with
the ones based on the interval computation method given by Wang and Kennedy (1994)
whereas the results of the Applied Statistics algorithm AS 275 due to Ding (1992)
are not.

Although many authors have suggested Method 2, algorithms based on this method
are not available for the distributions considered in this paper. The main purpose of
this article is to provide easy reference to computational algorithms for computing
the distribution functions of the noncentral t, noncentral chisquare, and square of the
sample multiple correlation coe+cient. In the following sections we give necessary
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formulas, recursion relations, and stopping rules to compute the cdfs of the square
of the sample multiple correlation coe+cient (Section 2), noncentral t (Section 3),
and noncentral chisquare (Section 4). In Section 5, we compare the new algorithms
and the AS algorithms for speed. In Section 6, we give some concluding remarks and
references to the auxiliary algorithms needed by the algorithms presented in this article.
The algorithms based on Method 2 for computing these cdfs are given in Section 7;
they are presented in such a way that they can be coded in any computer language
such as Fortran or C.

2. Distribution of the square of the sample multiple correlation coe�cient

For a set of variables from a multivariate normal population, the multiple correlation
coe+cient can be deGned as the maximum correlation that is attainable between one
variate and a linear combination of the remaining variables in the set. The distribution
of the square of the sample multiple correlation coe+cient R2 is useful in testing
hypotheses about the population multiple correlation coe+cient �2 when the null value
is nonzero. For example, in selecting explanatory variables to be included in a multiple
regression model, one may test whether the observed value of R2 for a model with
explanatory variables is signiGcantly greater than the observed R2 for a model with
fewer explanatory variables. Also, this distribution can be used to compute the power
of the test H0 : �2 =0, when the sample is taken from a multivariate normal distribution
(Muirhead, 1982, p. 171).

Let X1; : : : ; XN be a sample of independent vector observations from a p-variate
normal population with mean � and covariance matrix �. DeGne

OX =
1
N

N∑
i=1

Xi and A =
N∑
i=1

(Xi − OX )(Xi − OX )′: (2.1)

Partition A as

A =

(
a11 a12

a21 A22

)
;

so that a11 is 1× 1; a12 is 1× (p− 1), and A22 is (p− 1)× (p− 1) matrix. In terms
of these submatrices, the squared sample multiple correlation coe+cient is given by

R2 =
a12A−1

22 a21

a11
: (2.2)

The sample multiple correlation coe+cient is the positive square root of R2. The pop-
ulation multiple correlation square, �2, is deGned similarly in terms of the submatrices
of �.

The distribution function of R2 can be written as

P(R26 x) =
∞∑
i=0

P(Y = i)Ix

(
p− 1

2
+ i;

n− p+ 1
2

)
; (2.3)
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where n= N − 1,

Ix(a; b) =
�(a+ b)
�(a)�(b)

∫ x

0
ta−1(1 − t)b−1 dt (2.4)

is the incomplete beta function, and

P(Y = i) =
�(n=2 + i)

�(i + 1)�(n=2)
(�2)i(1 − �2)n=2: (2.5)

The expression in (2.5), whether or not n=2 is an integer, can be regarded as the
negative binomial probability mass function with success probability (1 − �2), the
number of successes n=2, and the number of failures i (see Muirhead, 1982, p. 175).
Therefore, P(Y = i) attains its maximum around the mean n�2=(2(1 − �2)). Let

k = [n�2=(2(1 − �2))];

where [x] denotes the integer which is closest to x. To evaluate the distribution function
of R2, we Grst compute the kth term in (2.3) and then we compute other terms using
forward and backward recursive relations. The following recursive relations for P(Y=i)
in (2.5) can be easily obtained:

P(Y = i + 1) =
n=2 + i
i + 1

�2P(Y = i); i = 0; 1; 2 : : :

and

P(Y = i − 1) =
i

n=2 + i − 1
�−2P(Y = i); i = 1; 2; : : : :

Further, we have the following well-known recursion relations (see Abramovitz and
Stegun, 1964, 26.5.16) for the incomplete beta function in (2.4):

Ix(a+ 1; b) = Ix(a; b) − �(a+ b)
�(a+ 1)�(b)

xa(1 − x)b (2.6)

and

Ix(a− 1; b) = Ix(a; b) +
�(a+ b− 1)
�(a)�(b)

xa−1(1 − x)b: (2.7)

To compute the second term on the right-hand side of (2.6) or (2.7), we need to
evaluate g(x; a; b) = �(a+ b− 1)=[�(a)�(b)]xa−1(1 − x)b only once. Other terms can
be evaluated using the relation �(a+1)=a�(a). For example, the second term on the
right-hand side of (2.6) is x(a+ b− 1)g(x; a; b)=a.
Stopping rule: While computing the k ± i terms using forward and backward recur-

sions, stop when [1−∑k+i
j=k−i P(Y = j)] is smaller than the error tolerance or when the

number of iterations is greater than a speciGed number; else stop if [1−∑2k+i
j=0 P(Y =

j)]Ix((p− 1)=2 + 2k + i+ 1; (n−p− 1)=2) is less than or equal to the error tolerance
or the number of iterations is greater than a speciGed number.

The algorithm to compute the cdf of R2 is given in Section 7. We evaluated
P(R26 x|n; �2; p) using our Algorithm 7.1 and the Applied Statistics algorithm
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Table 1
Computed values of P(R26 x|n; �2; p) using Algorithm 7.1 and algorithm AS 260

x �2 p n Algorithm 7.1 AS 260

0.8 0.7 3 21 0:777091115207214 : : : 7575
0.1 0.3 5 12 1:257312679737902d-2 : : : 7896d-2
0.9 0.9 4 100 0:438225598051816 : : : 1845
0.9 0.9 12 1200 0:433940873305539 0
0.8 0.8 6 1000 0:466114882398756 0
0.8 0.8 6 600 0:456225414123004 : : : 22462
0.8 0.8 6 900 0:464277993696865 : : : 3535148
0.6 0.6 12 1500 0:429710147565932 : : : 66410
0.6 0.6 12 1600 0:431930627893402 : : : 613046914
0.6 0.6 12 1650 0:432964762618524 0

AS 260 (Ding and Bargmann, 1991) for some selected values of �2, n and p. These
probabilities are given in Table 1. As we have already mentioned, the results of AS
260 are not accurate when n is large and/or when �2 is large. We give three examples
in Table 1 where AS 260 returns 0 for the value of the cdf evaluated at x, but the
correct value is nonzero.

3. Noncentral t distribution

The need for the noncentral t distribution arises in several well-known problems,
most notably to determine the power of any test based on the Student’s t statistic.
The percentiles of noncentral t distributions are needed to compute the one-sided toler-
ance limits for a normal population and for random e:ects model (see Vangel, 1992).
Other uses of the noncentral t distribution include computing conGdence intervals and
hypothesis tests about the independent variable in a multivariate–univariate calibration
problem (Benton et al., 2002). The noncentral t distribution with noninteger degrees
of freedom is needed for constructing tolerance limits for X1 − X2 (Hall, 1984) and
for making inference about the reliability parameter P(X1¿X2), where X1 and X2 are
independent normal random variables (Reiser and Guttman, 1986).

Let X have a normal distribution with mean � and variance 1, and let nS2 have
a chisquare distribution with df =n. Assume that X and S2 are independent. The
distribution of tn(�)=X=S is called noncentral t distribution with df =n and noncentrality
parameter �. It follows from the deGnition of tn(�) that

P(−∞6 tn(�)6 0) =  (−�);
where  (:) is the standard normal distribution. Thus, for any t ¿ 0, using Guenther’s
(1978) series expansion for P(0¡tn(�)6 t), the distribution function of tn(�) can be
expressed as

P(tn(�)6 t) = (−�) + P(0¡tn(�)6 t)
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= (−�) +
1
2

∞∑
i=0

[
PiIx

(
i +

1
2
;
n
2

)
+

�√
2
QiIx

(
i + 1;

n
2

)]
; (3.1)

where Ix(a; b) denotes the incomplete beta function given in (2.4), x = t2=(n+ t2),

Pi = e−�
2=2(�2=2)i=i!

and

Qi = e−�
2=2(�2=2)i=�(i + 3=2):

For t ¡ 0, the distribution function can be computed using the relation

P(tn(�)6 t) = 1 − P(tn(−�)6− t): (3.2)

It is to be noted that Craig’s (1942, Eq. (4)) series expansion for

P(0¡tn(�)¡t) =
e−�

2=2

2

∞∑
i=0

(�2=2)i=2

�(i=2 + 1)
Ix((i + 1)=2; n=2) (3.3)

is valid only for nonnegative � whereas Guenther’s series given in (3.1) is valid for
any �. This is mainly because Craig used the relation �=

√
(�2) which is valid only

for �¿ 0. Although the expression for the cdf of noncentral t given in (3.1) is not
exactly of the form (1.1), the computational procedures to evaluate (3.1) are essentially
the same as those for computing (1.1) as shown below.

The following recursion relations for Pi and Qi can be easily obtained:

Pi+1 =
�2=2
i + 1

Pi; Pi−1 =
i

�2=2
Pi (3.4)

and

Qi+1 =
�2=2
i + 3=2

Qi; Qi−1 =
i + 1=2
�2=2

Qi: (3.5)

To obtain a bound for the truncation error, let Em denote the remainder of the inGnite
series (3.1) after the mth term. Using the facts that Pi¿Qi and Ix(a; b) is a decreasing
function of a, we get

|Em|6 1
2

(1 + |�|=2)Ix(m+ 3=2; n=2)
∞∑

i=m+1

Pi

=
1
2

(1 + |�|=2)Ix(m+ 3=2; n=2)

(
1 −

m∑
i=0

Pi

)
: (3.6)

The error bound in (3.6) is di:erent from the one given in Lenth (1989). Lenth’s
expression for the error bound appears to be inaccurate; he ignores the fact that his qj
involves �=2 and hence the relation pj ¿qj does not hold for all �.

Stopping rule: Forward computation of (3.1) may be stopped once the right-hand
side of (3.6) is less than or equal to a speciGed error tolerance or when the number
of iterations exceeds a speciGed number. Furthermore, forward and backward compu-
tations, that is, computation of the k± ith terms can be stopped when (1−∑k+i

j=k−i Pi)
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Table 2
Computed values of P(tn(�)6 x) using Algorithm 7.2 and algorithm AS 243

x n � Algorithm 7.2 AS 243

2.34 3 1 0:801888999613917 : : : 3844
−4:33 126 −2 1:252846196792878d-2 : : : 6846891d-2

23 20 23 0:460134400391924 : : : 1458
34 20 33 0:532008386378725 : : : 8130
39 12 38 0:495868184917805 : : : 4761038
39 12 39 0:446304024668836 0
39 200 38 0:666194209961795 : : : 9750795
40 200 42 0:179292265426085 0

is less than the error tolerance or when the number of iterations exceeds a speciGed
number.

Using the above stopping rule, and recursion relations (3.4) and (3.5) along with
those for the incomplete beta functions given in (2.6) and (2.7), we give the algorithm
to compute the noncentral t distribution function in Section 7.

For comparison purpose, we evaluated P(tn(�)6 x) using the Applied Statistics
algorithm AS 243 (Lenth, 1989) and our Algorithm 7.2 given in Section 7. The prob-
abilities are given in Table 2 for some selected values of n; � and x. From the table
values, we see that the results of AS 243 are not correct for larger values of �. In
particular, we note that when (x; n; �)=(39; 12; 38) the results are close; whereas when
(x; n; �) = (39; 12; 39), AS 243 returns 0, which is incorrect.

4. Noncentral chisquare distribution

The noncentral chisquare distribution is necessary for calculating the power of tests
involving a chisquare test statistic, such as chisquare tests of independence or Breusch–
Pagan tests for constancy of error variance in a linear regression problem (Neter et
al., 1996, p. 115). Percentile values from a noncentral chisquare distribution are useful
in computing tolerance limits for a normal population and also tolerance regions for a
multivariate normal population (see Krishnamoorthy and Mathew, 1999)

Let X1; : : : ; Xn be independent normal random variables with mean �i and common
variance 1 for i = 1; 2; : : : ; n. Then, the distribution of %2

n(&) =
∑n

i=1 X
2
i is called non-

central chisquare distribution with df = n and noncentrality parameter & =
∑n

i �
2
i .

Alternatively, a random variable is said to have noncentral chisquare distribution if its
probability density function is given by

∞∑
i=0

e−&=2(&=2)i

i!
e−x=2xn=2+i−1

2n=2+i�(n=2 + i)
; x¿ 0: (4.1)

Note that in the former deGnition the degrees of freedom n should be a positive integer
whereas in the alternate deGnition n could be any positive number. It follows from (4.1)
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that the cdf of %2
n(&) is

P(%2
n(&)6 x) =

∞∑
i=0

e−&=2(&=2)i

i!
P(%2

n+2i6 x)

=
∞∑
i=0

e−&=2(&=2)i

i!
Ix=2(n=2 + i); (4.2)

where

Iy(a) =
1

�(a)

∫ y

0
e−xxa−1 dx; a¿ 0; x¿ 0;

is the incomplete gamma function. To get the second step of (4.2), we used the rela-
tion that P(%2

a6 x) = P(Y 6 x=2), where Y is a gamma random variable with shape
parameter a=2.

To compute (4.2), we need the following recursion relations (Abramovitz and Stegun,
1964, 6.5.21) for the incomplete gamma function:

Ix(a+ 1) = Ix(a) − xae−x

�(a+ 1)
(4.3)

and

Ix(a− 1) = Ix(a) +
xa−1e−x

�(a)
: (4.4)

Further, it follows from (4.3) that

Ix(a) =
xae−x

�(a+ 1)

(
1 +

x
(a+ 1)

+
x2

(a+ 1)(a+ 2)
+ · · ·

)
; (4.5)

which can be used to evaluate Ix(a). To compute (4.2), Grst evaluate the kth term,
where k is the integral part of &=2, and then compute other terms recursively.
Stopping rule: Let P(Y = j) = e−&=2(&=2)j=j!. While computing the k ± i terms stop

if [1 −∑k+i
j=k−i P(Y = j)] is less than error tolerance or the number of iterations is

greater than a speciGed integer; else stop if [1−∑2k+i
j=0 P(Y = j)]Ix(2k + i+ 1) is less

than error tolerance or the number of iterations is greater than a speciGed integer.
Using the above stopping rule, recursion relations (4.3) and (4.4), and the recursion

relations for Poisson probabilities given in (3.4), we give the algorithm for computing
the cdf of the noncentral chisquare distribution in Section 7.

In order to demonstrate that the results based on our scalar algorithm are compara-
ble with those based on interval analysis methods, we computed P(%2

n(�)) using our
algorithm and the Applied Statistics algorithm AS 275 for the parameter conGgura-
tions considered in Wang and Kennedy (1994). The results of both Algorithms 7.3
in Section 7 and AS 275 are compared with those of interval computation given in
Table 6 of Wang and Kennedy (1994). The results are given in Table 3. We see from
these table values that the results of our Algorithm 7.3 are closer to those of interval
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Table 3
Computed values of P(%2

n(�)6 x) using interval computation, Algorithm 7.3 and algorithm AS 275

x n � Interval Computation Algorithm 7.3 Algorithm AS 275

0.00393 1.0 6.0 0:2498463724258039d-2 : : : 58047d-2 : : : 47769d-2
9.23636 5.0 1.0 0:8272918751175548d0 : : : 75470d0 : : : 71730d0

24.72497 11.0 21.0 0:2539481822183126d0 : : : 182580d0 : : : 179610d0
44.98534 31.0 6.0 0:8125198785064969d0 : : : 064480d0 : : : 060920d0
38.56038 51.0 1.0 0:8519497361859118d-1 : : : 8584550d-1 : : : 8068580d-1
82.35814 100.0 16.0 0:1184348822747824d-1 : : : 7441880d-1 : : : 6932340d-1

331.78852 300.0 16.0 0:7355956710306709d0 : : : 05250d0 overDow
459.92612 500.0 21.0 0:2797023600800060d-1 : : : 07884640d-1 overDow

0.00016 1.0 1.0 0:6121428929881423d-2 : : : 81473d-2 : : : 81051d-2
0.00393 1 1 0:303381422975380d-1 : : : 75378d-1 : : : 75253d-1

computation than the results of AS 275. Furthermore, AS 275 resulted in an overDow
error for two of the 10 cases. These overDow errors tend to occur when the degrees
of freedom is large.

5. CPU time comparisons

In order to understand the speed of the new algorithms and the existing AS algo-
rithms, we computed the CPU times for all the algorithms using the function subroutine
CPU TIME() of Compaq Visual Fortran 6.5. The calculations were made using a Pen-
tium IV (1:8 GhZ) computer. Because the CPU time for single evaluation is very small
(the function routine returns zero), we computed the CPU time for multiple computa-
tions. Details are given in the following subsections.

5.1. Speed comparison between Algorithms 7.1 and AS 260 for computing the CDF
of the squared sample multiple correlation coe5cient

For Gxed x; n, and 10,000 randomly generated �2 from Uniform(a; b) distribution,
the CPU times required to evaluate P(R26 x|�2; n; p) are computed for Algorithms
7.1 and AS 260. The CPU times are reported in Table 4 for some selected values of
a and b. In Table 4, k1 denotes the number of times the absolute di:erence between
the computed values using Algorithm 7.1 and AS 260 exceeds 10−7; k2 denotes the
number of times AS 260 returns zero while Algorithm 7.1 yielded a value greater
than 0.002. It is clear from the table values that AS 260 is as good as Algorithm
7.1 when �2 and the sample size are small. When 0¡�2¡ 0:5 and sample sizes are
large, Algorithm 7.1 is faster than AS 260. For �2 ∈ (0:5; 0:8), Algorithm 7.1 is not
only faster than AS 260 but also returns accurate values in all the cases considered.
For �2 ∈ (0:8; 1) and large values of x, AS 260 returns many inaccurate values even
though in two situations it is faster than Algorithm 7.1.
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Table 4
Time comparison between Algorithms 7.1 and AS 260 for computing P(R26 x|�2; n; p) 10,000 times (time
in second)

x p n Alg. 7.1 AS 260 k1 k2

�2 ∼ U (0; 0:5) 0.5 3 20 0.08 0.08 0 0
0.5 3 35 0.08 0.09 0 0
0.5 3 500 0.14 0.22 0 0
0.5 3 1000 0.18 0.33 0 0

�2 ∼ U (0:5; 0:8) 0.6 5 30 0.09 0.12 0 0
0.9 4 500 0.33 0.78 0 0
0.6 12 700 0.41 0.68 0 0
0.9 4 1000 0.44 5.35 1010 804

�2 ∼ U (0:8; 1) 0.8 12 600 6.39 2.56 0 0
0.8 12 900 6.50 76.7 2441 1039
0.9 12 600 6.53 2.74 923 85
0.9 12 900 6.40 9.32 6156 5232

Table 5
Time comparison between Algorithms 7.2 and AS 243 for computing P(tn(�)6 x|n; �) 10,000 times (time
in second)

x n Alg. 7.2 AS 243 k1 k2

� ∼ N (3; 1) 3 2 0.21 0.11 0 0
3 12 0.20 0.11 0 0
3 300 0.26 0.35 0 0
3 1200 0.55 1.10 0 0

� ∼ N (15; 3) 15 3 0.94 0.26 0 0
15 12 0.29 0.26 0 0
15 500 0.28 0.20 0 0
15 1200 0.30 0.20 0 0

� ∼ N (32; 1) 32 12 0.46 0.67 12 0
32 300 0.49 0.61 127 0

� ∼ N (35; 1) 35 12 0.49 0.77 48 2
� ∼ N (39; 1) 39 12 0.57 3.90 7857 6644
� ∼ N (40; 1) 40 12 0.60 4.67 9640 9238

5.2. Speed comparison between Algorithms 7.2 and AS 243 for computing the CDF
of noncentral t distribution

For Gxed x and n, the CPU times required to evaluate P(tn(�)6 x) for 10,000 �’s
generated from a N (�; )2) distribution are computed. The CPU times are presented in
Table 5, k1 =the number of times the absolute di:erence between the computed values
using Algorithm 7.2 and AS 243 exceeds 10−7 and k2 = the number of times AS 260
returns zeroes when Algorithm 7.2 produces a value greater than 0.002. It appears that,
for � around 32 or less, the algorithm AS 243 is in general faster than Algorithm 7.2
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Table 6
Time comparison between Algorithms 7.3 and AS 275 for computing P(%2

n(�)6 x|n; �) 10,000 times (time
in second)

x n Alg. 6.3 AS 275 k1 k2

� ∼ abs(N (2; 1)) 5 5 0.05 0.04 0 0
12 12 0.06 0.05 0 0
400 200 0.15 0.34 0 0
300 290 0.09 37.98 104 104

� ∼ abs(N (20; 1)) 40 20 0.05 0.07 0 0
60 40 0.06 0.07 0 0
220 200 0.08 0.09 0 0
340 280 0.10 37.78 104 0

� ∼ abs(N (280; 1)) 290 10 0.15 0.21 0 0
500 220 0.16 0.23 0 0
800 520 0.17 overDow — —
1500 30 0.70 0.53 104 104

� ∼ abs(N (1000; 1)) 1000 5 0.25 0.97 87 0
1200 200 0.25 0.83 186 0
1300 290 0.26 31.72 104 0
1500 30 0.70 0.53 104 104

and returns accurate values. For �¿ 35, AS 243 returns inaccurate values and is much
slower than Algorithm 7.2.

5.3. Speed comparison between Algorithms 7.3 and AS 275 for computing the CDF
of the noncentral chisquare distribution

To compare the CPU times of Algorithm 7.3 and AS 275, we evaluated P(%2
n(�)6

x|n; �) for Gxed x and n, and using 10,000 absolute values of N (�; )2) random numbers
for �. The total times required by both algorithms are presented in Table 6. In this
table, k1 denotes the number of times the absolute di:erence between the computed
values using Algorithm 7.3 and AS 275 exceed 10−10 and k2 denotes the number of
times AS 275 returns zero when the actual value is signiGcantly greater than zero.
We observe from the table values that AS 275 is in general slower than Algorithm
7.3. Furthermore, we observed that algorithm AS 275 su:ers from overDow errors or
returns zeroes in the following situations.

(i) When the noncentrality parameter is 1490 or above (regardless of the values of
other parameters).

(ii) The degrees of freedom n is 290 or above and x is close to n+ �.
(iii) The value of x is greater than or equal to 1500 (regardless of the values of other

parameters).

In each of the above situations, we computed the probabilities for various values of
x including values close to the mean n+ � of the noncentral chisquare distribution. It
is expected that the cumulative probabilities around the mean are close to 0.5 or at
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least signiGcantly greater than zero. But algorithm AS 275 returned 0 or encountered
overDow problem.

6. Concluding remarks

In this article, we provided algorithms to compute the cumulative distribution func-
tions of the squared sample multiple correlation coe+cient, noncentral t, and noncen-
tral chisquare. These algorithms are modiGcations of the existing Applied Statistics
algorithms. We showed that the AS algorithms have limitations under some parame-
ter conGgurations. In particular, they return a probability of zero when, in fact, there
should be signiGcant probability, and sometimes su:er from overDow errors. The mod-
iGed algorithms presented in this paper overcome these problems. We have also shown
that the results based on Algorithm 7.3 for computing chisquare cdf are in good agree-
ment with those based on interval computation reported in Wang and Kennedy (1994).
We were unable to do such comparison studies for the cdfs of noncentral t and R2

because algorithms or codes needed for interval computation are not available. How-
ever, we believe that the algorithms for evaluating the cdfs of noncentral t and R2

will share the properties of the algorithm for evaluating the noncentral chisquare cdf
because they are all based on Method 2 given in the introduction. Thus, the new al-
gorithms, although slower in some situations, are certainly preferable to the existing
ones.

The auxiliary algorithms (to compute incomplete beta function and natural logarithm
of gamma function) which are needed by Algorithms 7.1–7.3 can be obtained, for
example, from the FTP site: lib.stat.cmu.edu. This site has an almost complete collection
of algorithms from Applied Statistics.

7. Algorithms

Algorithm 7.1. Distribution function of the squared sample multiple correlation.

Input:
ns= sample size; (ns¿p)
p= number of variates; (p¿ 2)
x=the value at which the distribution function is to be computed;

(0¡x¡1)
r=squared population multiple correlation; (0¡r¡1)
errtol=error tolerance (10−6 for single precision, and 10−12 for double

precision)
maxitr=maximum number of iterations

Output:
cdf = P(R26 x)
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Set:
n= ns− 1
k = the integral part of nr=(2 ∗ (1 − r))
a= (p− 1)=2 + k
b= (n− p+ 1)=2

Compute the beta distribution of the kth term, and assign it to “betaf” and “betab”
so that it can be called later for forward and backward recursion:

betaf = beta distribution at (x; a; b)
betab = betaf

“xgamf” is an initialization to compute the second term on the right-hand side of
(2.6) recursively:

xgamf=exp((a−1) ∗ ln(x)+b ∗ ln(1−x)+ln�(a+b−1)−ln�(a)−ln�(b))
ln�(b))
“xgamb” is an initialization to compute the second term on the right-hand side of
(2.7) recursively:

xgamb = xgamf ∗ (a+ b− 1) ∗ x=a
Compute the kth term of negative binomial and assign it to“pnegbf” and “pnegbb”
so that it can be used for forward and backward recursions:

pnegbf=exp(ln(n=2+k)−ln�(k+1)−ln�(n=2)+k∗ln (r)+(n=2)∗ln (1−r))
pnegbb = pnegbf

Compute the remainder of the negative binomial probabilities:
remain = 1 − pnegbf
cdf = pnegbf ∗ betaf
i = 1

1 xgamf = xgamf ∗ (a+ b+ i − 2) ∗ x=(a+ i − 1)
betaf = betaf − xgamf
pnegbf = pnegbf ∗ (n=2 + k + i − 1) ∗ r=(k + i)
cdf = cdf + pnegbf ∗ betaf
error = remain ∗ betaf
remain = remain − pnegbf

Do forward and backward computations k times or until convergence
if i¿ k then
if error 6 errtol or i¿maxitr return
i = i + 1
goto 1
else
xgamb = xgamb ∗ (a− i + 1)=(x ∗ (a+ b− i))
betab = betab + xgamb
pnegbb = pnegbb ∗ (k − i + 1)=(r ∗ (n=2 + k − i))
cdf = cdf + pnegbb ∗ betab
remain = remain − pnegbb
if remain6 errtol or i¿maxitr return
i = i + 1
goto 1
end if
end
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Algorithm 7.2. Noncentral t distribution function.

Input:
delta = noncentrality parameter �; (−∞¡�¡∞)
df = degrees of freedom n; (n¿ 0)
t = the real number for which P(tn(�)6 t) is to be computed
errtol = error tolerance
maxitr = maximum number of iterations

Output:
cdf = P(tn(�)6 t)

If t ¡ 0, then the transformation in (3.2) must be used; In this case,
Set: x = −t; del = −delta
If t ¿ 0, then
Set: x = t; del = delta
Compute the normal cdf at (−del):

pnorm =  (−del)
if x = 0; set cdf = pnorm; return

Set:
y = x ∗ x=(df + x ∗ x)
dels = del ∗ del=2
k = integral part of (dels)
a= k + 1=2
c = k + 1
b= df=2

Initialization to compute the Pk ’s:
pkf = exp(−dels + k ∗ ln(dels) − ln(k + 1))
pkb = pkf

Initialization to compute the Qk ’s:
qkf = exp(−dels + k ∗ ln(dels) − ln(k + 3=2))
qkb = qkf

Compute the incomplete beta function associated with the Pk :
pbetaf = beta distribution at (y; a; b)
pbetab = pbetaf

Compute the incomplete beta function associated with the Qk :
qbetaf = beta distribution at (y; c; b)
qbetab = qbetaf

Initialization to compute the incomplete beta functions associated with the Pi’s
recursively:

pgamf = exp(ln�(a+b−1)−ln�(a)−ln�(b)+(a−1) ∗ ln(y)+b ∗ ln(1−y))
pgamb = pgamf ∗ y ∗ (a+ b− 1)=a

Initialization to compute the incomplete beta functions associated with the Qi’s
recursively:

qgamf=exp(ln�(c+b−1)−ln�(c)−ln�(b)+(c−1) ∗ ln(y)+b ∗ ln(1−y))
qgamb=qgamf ∗ y ∗ (c+b−1)=c
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Compute the remainder of the Poisson probabilities:
rempois = 1 − pkf
sum = pkf ∗ pbetaf + del ∗ qkf ∗ qbetaf =

√
2

i = 1
1 pgamf = pgamf ∗ y ∗ (a+ b+ i − 2)=(a+ i − 1)

pbetaf = pbetaf − pgamf
pkf = pkf ∗ dels=(k + i)
ptermf = pkf ∗ pbetaf
qgamf = qgamf ∗ y ∗ (c + b+ i − 2)=(c + i − 1)
qbetaf = qbetaf − qgamf
qkf = qkf ∗ dels=(k + i + 1=2)
qtermf = qkf ∗ qbetaf
sum = sum + ptermf + delta ∗ qtermf =

√
2

error = rempois ∗ (1 + abs(delta)=2)=2 ∗ pbetaf
rempois = rempois − pkf

Do forward and backward computations k times or until convergence:
if i¿ k; then
if (error 6 errtol or i¿maxitr) goto 2
i = i + 1
goto 1
else
pgamb = pgamb ∗ (a− i + 1)=(y ∗ (a+ b− i))
pbetab = pbetab + pgamb
pkb = pkb ∗ (k − i + 1)=dels
ptermb = ptermb ∗ pbetab
qgamb = qgamb ∗ (c − i + 1)=(y ∗ (c + b− i))
qbetab = qbetab + qgamb
qkb = qkb ∗ (k − i + 3=2)=dels
qtermb = qkb ∗ qbetab
sum = sum + ptermb + delta ∗ qtermb=

√
2

rempois = rempois − pkb
if rempois6 errtol or i¿maxitr goto 2
i = i + 1
goto 1

2 cdf = sum=2 + pnorm
If t is negative, then set:

cdf = 1 − cdf
end

Algorithm 7.3. Noncentral chisquare distribution function.

Input:
y=the value at which p(%2

n(&)6y) is to be computed, (0¡y¡∞)
n= degrees of freedom; (n¿ 0)



D. Benton, K. Krishnamoorthy / Computational Statistics & Data Analysis 43 (2003) 249–267 265

&= noncentrality parameter; (&¿ 0)
errtol = error tolerance
maxitr = maximum number of iterations

Output:
cdf = P(%2

n(&)6y)
Set:

x = y=2
del = &=2
k = integral part of (&=2)
a= n=2 + k

Compute the gamma distribution function using (4.5) at (x; a), and assign it to
“gamkf” and “gamkb” so that they can be called later for forward as well as
backward computations:

gamkf = gamma distribution function at (x; a)
gamkb = gamkf
if &= 0; set cdf = gamkf ; return

Compute the Poisson probability at (k; del) and assign it to “poikf” and “poikb”
so that they can be used as initial values for forward and backward recursions:

poikf = exp(−del + k ∗ ln(del) − ln�(k + 1))
poikb = poikf

“xtermf” is an initialization to compute the second term in (4.3) recursively:
xtermf = exp((a− 1) ∗ ln(x) − x − ln�(a))

“xtermb” is an initialization to compute the second term in (4.4) recursively:
xtermb = xtermf ∗ x=a
sum = poikf ∗ gamkf
remain = 1 − poikf
i = 1

1 xtermf = xtermf ∗ x=(a+ i − 1)
gamkf = gamkf − xtermf
poikf = poikf ∗ del=(k + i)
sum = sum + poikf ∗ gamkf
error = remain ∗ gamkf
remain = remain − poikf

Do forward and backward computations k times or until convergence:
if i¿ k then
if error 6 errtol or i¿maxitr goto 2
i = i + 1
goto 1
else
xtermb = xtermb ∗ (a− i + 1)=x
gamkb = gamkb + xtermb
poikb = poikb ∗ (k − i + 1)=del
sum = sum + gamkb ∗ poikb
remain = remain − poikb
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if remain 6 errtol or i¿maxitr goto 2
i = i + 1
goto 1
end if

2 cdf = sum
end
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