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Abstract

The lognormal distribution is widely used to describe the distribution of positive random
variables; in particular, it is used to model data relevant to occupational hygiene and to model
biological data. A problem of interest in this context is statistical inference concerning the mean
of the lognormal distribution. For obtaining con&dence intervals and tests for a single lognormal
mean, the available small sample procedures are based on a certain conditional distribution, and
are computationally very involved. Occupational hygienists have in fact pointed out the di4culties
in applying these procedures. In this article, we have &rst developed exact con&dence intervals
and tests for a single lognormal mean using the ideas of generalized p-values and generalized
con&dence intervals. The resulting procedures are easy to compute and are applicable to small
samples. We have also developed similar procedures for obtaining con&dence intervals and tests
for the ratio (or the di6erence) of two lognormal means. Our work appears to be the &rst attempt
to obtain small sample inference for the latter problem. We have also compared our test to a
large sample test. The conclusion is that the large sample test is too conservative or too liberal,
even for large samples, whereas the test based on the generalized p-value controls type I error
quite satisfactorily. The large sample test can also be biased, i.e., its power can fall below type
I error probability. Examples are given in order to illustrate our results. In particular, using an
example, it is pointed out that simply comparing the means of the logged data in two samples
can produce a di6erent conclusion, as opposed to comparing the means of the original data.
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1. Introduction

Random variables that are inherently positive occur in many real life applications.
The suitability of the lognormal distribution has been validated for several such ap-
plications; in particular, for analyzing biological data (Koch, 1966), and for analyzing
data on workplace exposure to contaminants (Oldham, 1953; Esmen and Hammad,
1977; Rappaport and Selvin, 1987; Selvin and Rappaport, 1989; Lyles and Kupper,
1996). Let X be a random variable having a lognormal distribution, and let � and �2,
respectively, denote the mean and variance of ln(X ) so that Y = ln(X ) ∼ N (�; �2).
Many of the parameters of interest concerning the lognormal distribution (for example
the mean of X ) turn out to be functions of both � and �2 and it appears di4cult to
obtain exact and=or optimum tests and con&dence intervals. In particular, the mean of
the lognormal distribution is given by

E(X ) = E(exp(Y )) = exp(
); where 
= � +
�2

2
: (1.1)

Clearly, the computation of con&dence intervals and test procedures concerning the
mean of X is equivalent to the computation of the corresponding quantities for 
. The
problem of obtaining con&dence intervals and tests concerning 
 has been addressed
by Land (1971, 1972, 1973, 1975, 1988) in a series of articles. However, the tests and
con&dence intervals derived by Land are conditional (i.e., based on a certain conditional
distribution) and this makes the procedure somewhat di4cult to use in practice. In fact,
concerning Land’s procedures, Lyles and Kupper (1996, p. 9) comment that “: : : this
method is apparently not used extensively by environmental scientists. This lack of use
may be due to the fact that extensive tables required for the procedure are somewhat
obscure: : :” A similar remark concerning the di4culties associated with Land’s method
is also pointed out in Zhou and Gao (1997, p. 784). It should however be noted
that some of the tables required for implementing Land’s procedure is reproduced
in Gibbons and Coleman (2001), who have also summarized Land’s procedure; see
Gibbons and Coleman (2001, Chapter 19). The table values depend on the observed
sample standard deviation of the logged sample data; the table cannot be used if this
observed value is di6erent from one of the tabulated values.

Some simple procedures for obtaining con&dence intervals for a single lognormal
mean are reviewed and compared in Zhou and Gao (1997). These include a large
sample method due to Cox, reported in Land (1972), a conservative method due to
Angus (1988), and a parametric bootstrap method, also due to Angus (1994). The
numerical results in Zhou and Gao (1997) show that in terms of coverage probability,
all of these procedures are too conservative or too liberal, unless the sample size
is big, in which case, the procedure due to Cox is satisfactory. Thus, for obtaining
con&dence intervals or hypotheses tests for a single lognormal mean, satisfactory small
sample procedures are unavailable except the results due to Land mentioned above.
The problem of testing the equality of two lognormal means is investigated in Zhou
et al. (1997), and an approach similar to the Cox procedure is recommended for large
samples. For this problem, no small sample results are available so far. Yet, in many
applications where lognormal data come up, small samples are quite common and small
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sample inference is called for. In fact, in the context of analyzing occupational exposure
data using the lognormal distribution, Lyles et al. (1997, p. 69) mention that “personal
exposure monitoring is relatively time consuming and costly, so typical samples will
seldom be large in a statistical sense”.

Perhaps an obvious question to ask is why it is of interest to do inference on the
mean of a skewed distribution such as the lognormal. It may appear more meaning-
ful to deal with the median rather than the mean. Furthermore, consideration of the
lognormal median has the added advantage that the inference problem will reduce to
that concerning a normal mean. However, there are applications that speci&cally re-
quire inference concerning the mean of a lognormal distribution—most notably in the
context of analyzing data on occupational exposure to contaminants. The need to have
statistical inference on the lognormal mean, and the lack of simple and easy to use
procedures for the same, are clearly pointed out in the literature on occupational ex-
posure; see, for example, Rappaport and Selvin (1987), Spear and Selvin (1989), and
Lyles and Kupper (1996). In particular, regarding exposure data analysis using the
lognormal distribution, Rappaport and Selvin (1987, p. 375) states: “Unfortunately, the
median exposure has no physiological signi&cance without additional information con-
cerning the variance of the exposure distribution. Estimation procedures for evaluating
the mean exposure per se have de&ned limit values not to be exceeded by either a
single measured exposure or the estimated mean of a series of exposures”. A major
motivation for the present work is the need for easily computable tests and con&dence
regions for the lognormal mean, as required in the analysis of occupational exposure
data. Other applications that require inferences on a single lognormal mean and the
comparison of two lognormal means are discussed in Zhou and Gao (1997) and Zhou
et al. (1997).

The &rst goal of this article is to come up with exact tests and con&dence inter-
vals for 
 in (1.1) using the novel concepts of generalized p-values and generalized
con&dence intervals. In particular, we obtain test procedures and con&dence intervals
applicable to small samples. The generalized p-value has been introduced by Tsui and
Weerahandi (1989) and the generalized con&dence interval by Weerahandi (1993);
see the book by Weerahandi (1995a) for a detailed discussion along with numerous
examples. Weerahandi (1995a, p. 109) has in fact mentioned the applicability of the
generalized p-value for dealing with parameters of the type 
 in (1.1). The concepts
of generalized p-values and generalized con&dence intervals have turned out to be
extremely fruitful for obtaining tests and con&dence intervals involving “non-standard”
parameters, such as 
 in (1.1). Several articles have appeared in the literature describ-
ing such applications; see Weerahandi and Johnson (1992), Zhou and Mathew (1994),
Weerahandi (1995b), Weerahandi and Berger (1999), and Krishnamoorthy and Mathew
(2002). In the next section we discuss the problem of testing hypotheses and computing
con&dence intervals for 
 in (1.1), using generalized p-values and generalized con&-
dence intervals. For two independent lognormal distributions with means exp(
1) and
exp(
2), we have also considered the problem of testing hypotheses and computing
con&dence intervals for 
1 − 
2. This is described in Section 3. Such a problem can
come up when we want to compare occupational exposure data (or pollution measure-
ments) at two di6erent sites. The problem also comes up in the context of comparing
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the average medical costs for African American patients and White patients with type
I diabetes, described in Zhou et al. (1997). These authors have noted that such data
follow the lognormal distribution. Note that inference concerning 
1 − 
2 is equivalent
to that for the ratio of two lognormal means, namely, exp(
1)=exp(
2). Furthermore,
we have also provided a procedure for constructing con&dence limits for the di6erence
between the lognormal means, namely, exp(
1) − exp(
2).

For each of the problems that we have considered, we have also explained the
required computational procedures. Furthermore, in Section 4, we have illustrated our
procedures with two examples that involve the comparison of two lognormal means.
One of the applications is on the comparison of the means of two sets of carbon
monoxide emission measurements, and the problem is to check if an oil re&nery is
overestimating the carbon monoxide emissions. A second example is on the comparison
of the amount of rainfall from clouds seeded with silver nitrate and from unseeded
clouds. For this example, comparison of the means from the logged data (which are
normally distributed) gave a conclusion that was di6erent from the comparison of the
lognormal means.

2. Tests and con�dence intervals for a lognormal mean

Suppose the random variable X follows the lognormal distribution so that Y =
ln(X ) ∼ N (�; �2). Then the mean of X is as de&ned in (1.1). Consider the prob-
lem of testing

H0: 
6 
0 vs: H1: 
¿
0; (2.1)

where 
 = � + �2=2 and 
0 is a speci&ed quantity. Let X1, X2, . . . , Xn be a random
sample from the lognormal distribution, and let Yi = ln(Xi), i = 1; 2; : : : ; n. We shall
develop a test for the hypotheses in (2.1) and a con&dence interval for 
 based on the
su4cient statistics

PY =
1
n

n∑
i=1

Yi and S2 =
1
n− 1

n∑
i=1

(Yi − PY )2: (2.2)

We shall also denote by Py and s2, the observed values of PY and S2, respectively.
In order to de&ne a p-value (referred to as the generalized p-value) for testing the
hypotheses in (2.1), we shall &rst de&ne a generalized test variable T1 that is a function
of the random variables PY and S2, their observed values Py and s2, where T1 could also
depend on the unknown parameters. However, T1 is required to satisfy the following
conditions:

(a) The distribution of T1 is stochastically monotone in 
:

(b) The observed value of T1 is free of any unknown parameters:

(c) At 
= 
0; the distribution of T1 is free of any unknown parameters: (2.3)

Let t1 denote the observed value of a generalized test variable T1 satisfying the three
conditions in (2.3). If T1 is stochastically increasing in 
, the generalized p-value for
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testing the hypotheses in (2.1) is de&ned as P(T1¿ t1|
=
0). On the other hand, if T1

is stochastically decreasing in 
, the generalized p-value is de&ned as P(T16 t1|
=
0).

2.1. A test for (2.1) and a con3dence interval for 


We shall now de&ne a generalized test variable satisfying the conditions in (2.3).
Let

T1 = Py −
PY − �
S=
√
n
s=
√
n+

1
2
�2

S2 s
2 − 


= Py − Z
U=

√
n− 1

s√
n

+
1
2

s2

U 2=(n− 1)
− 
; (2.4)

where Z =
√
n( PY − �)=� ∼ N (0; 1) independently of U 2 = (n− 1)S2=�2 ∼ �2

n−1: Here
�2
r denotes the central chisquare distribution with df = r. The observed value of T1 is

obtained by replacing PY and S2 by Py and s2, respectively, in the &rst expression in
(2.4), and this observed value is zero. It is clear that T1 satis&es the conditions in (2.3)
and the distribution of T1 is stochastically decreasing in 
. The generalized p-value for
testing the hypotheses in (2.1) is thus given by P(T16 0|
=
0). The test based on the
generalized p-value rejects H0 if the generalized p-value is less than some speci&ed
level � (say, � = 0:05). It should however be noted that type I error probability and
the power of such a test may depend on unknown parameters. Consequently, it is
necessary to simulate type I error probability in order to see whether the test controls
type I error.

In order to obtain an upper con&dence interval for 
, let

T2 = Py −
PY − �
S=
√
n
s=
√
n+

1
2
�2

S2 s
2

= Py − Z
U=

√
n− 1

s√
n

+
1
2

s2

U 2=(n− 1)
; (2.5)

where the various quantities in (2.5) are as de&ned before for T1. Notice that T2 reduces
to 
 when PY = Py and S2 = s2, and the distribution of T2 is free of any unknown
parameters. If T2(1 − �) denotes the 100(1 − �)th percentile of T2, then T2(1 − �) is
the 100(1 − �)% generalized upper con&dence interval for 
. Once again, the actual
coverage probability of this interval may not be 1 − �; the coverage could depend
on unknown parameters, and it is necessary to simulate the coverage probability to
study the behavior of the con&dence interval. Such simulation results are reported in
Section 2.2. A 100(1−�)% generalized lower con&dence interval for 
 can be similarly
obtained as T2(�). A two-sided 100(1 − �)% generalized con&dence interval for 
 is
given by (T2(�=2); T2(1 − �=2)). We recall that, unlike Land’s results (see Land 1975,
pp. 386–387), our pivot variable T2 can be used for constructing both one-sided and
equi-tailed two-sided con&dence intervals.

Note that with T1 and T2 as de&ned in (2.4) and(2.5), respectively, T1 = T2 − 

and the generalized p-value for testing (2.1) is given by P(T26 
0). It is also easy
to verify that for testing the hypotheses in (2.1), the test based on the generalized



108 K. Krishnamoorthy, T. Mathew / Journal of Statistical Planning and Inference 115 (2003) 103–121

p-value is equivalent to a test procedure based on the generalized lower con&dence
limit T2(�). Rejecting H0 when the generalized p-value is less than � is easily seen to
be equivalent to rejecting H0 when T2(�)¿
0.

Both the generalized p-value and the generalized con&dence interval can be com-
puted using the following algorithm.

Algorithm 1.
For a given data set x1; : : : ; xn; set yi = ln(xi); i = 1; : : : ; n.
Compute Py = (1=n)

∑n
i=1 yi and s2 = (1=(n− 1))

∑n
i=1 (yi − Py)2

For i = 1 to m
Generate Z ∼ N (0; 1) and U 2 ∼ �2

n−1
Set T2i = Py − (Z=(U=

√
n− 1))s=

√
n+ 1

2 s
2=U 2=(n− 1)

(end i loop)
Let Ki = 1 if T2i6 
0; else Ki = 0
(1=m)

∑m
i=1 Ki is a Monte Carlo estimate of the generalized p-value for testing (2.1)

The 100(1 − �)th percentile of T21; : : : ; T2m; denoted by T2(1 − �); is a Monte Carlo
estimate of the 100(1 − �)% generalized upper con&dence limit for 
= � + �2=2:

The 100(1−�)th percentile of T2 can also be obtained using a numerical integration
and a root &nding method as shown below. Noting that Z is distributed as −Z , and
rearranging the terms in (2.5), we write

T2 = Py + s

√
n− 1
n

(
Z
U

+
s
√
n(n− 1)
2U 2

)
:

Let c1−� denote the 100(1 − �)th percentile of (Z=U + s
√
n(n− 1)=2U 2). Using the

fact that Z ∼ N (0; 1) independently of U 2 ∼ �2
n−1, it can be easily shown that c1−� is

the root of the equation∫ ∞

0
�

((
√
xc1−� − s

√
n(n− 1)
2
√
x

))
f(x; n− 1) dx = 1 − �; (2.6)

where f(x; n−1) is the probability density function of the chi-square distribution with
df = n− 1: The 100(1 − �)% upper limit on the basis of c1−� is given by

Py + c1−�s

√
n− 1
n
: (2.7)

Although the con&dence limit (2.7) may be more accurate than the one based on
Algorithm 1, evaluating c1−� is numerically involved. Algorithm 1 is simple to use,
and the con&dence limit (2.7) and the one based on Algorithm 1 with 100,000 runs
are very close. For instance, when Py = 1:0, s = 0:5 and n = 3, the 95% upper limit
using (2.7) is 3.718, and Algorithm 1 yielded 3.729; for the same values of Py and s,
and n = 5 both yielded 1.948; when n = 10 both produced the same limit of 1.517.
Therefore, for practical use we recommend Algorithm 1 to construct con&dence limits
for 
= � + �2=2:
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2.2. Numerical results on the coverage probability

In order to understand the performance of the generalized p-value and the generalized
con&dence limits, we estimated the coverage probabilities of the generalized con&dence
interval as follows:

Algorithm 2. For speci&ed values of n; �; � and 0¡�¡ 1:
For i = 1; m1

Generate Py from N (�; �2=n)
Generate Q from �2

n−1; and set s2 = �2Q=(n− 1)
For j = 1; m2

Generate Z ∼ N (0; 1) and U 2 ∼ �2
n−1

Set T2j = Py − (Z=(U=
√
n− 1))s=

√
n+ 1

2 s
2=U 2=(n− 1)

(end j loop)
If the 100(1−�)th percentile T2(1−�) of {T21; : : : ; T2m2} is greater than 
=�+�2=2;
set Ki = 1; else set Ki = 0

(end i loop)
(1=m1)

∑m1
i Ki is an estimate of the coverage probability of the generalized upper

con&dence limit.

For an accurate interval estimation procedure, estimated coverage probabilities should
be equal to the nominal level 1 − �. We estimated the coverage probabilities of the
one-sided upper limits of � + �2=2 using the above method with m1 = m2 = 10; 000.
We used the IMSL subroutine RNCHI to generate chi-square random numbers and the
function subroutine RNNOF to generate normal random numbers. Following Algorithm
2, the coverage probabilities were computed for the parameter values � = 1, � = 0:1,
0.5, 2, 5, 10, n= 3, 10, 20, and 1 − � = 0:90, 0.95 and 0.99. The estimated coverage
probabilities coincided with the nominal levels in all the cases considered for the
simulation (for this reason table values are not reported here). Consequently, we also
conclude that for testing the hypotheses in (2.1), the estimated type I error probabilities
of the test based on the generalized p-value will coincide with the corresponding
nominal signi&cance level, at least for the above parameter combinations considered
for the simulation.

2.3. Comparison with parametric bootstrap and Land’s (1973) procedure

We compared our generalized con&dence limits with those of Land (1973) for var-
ious values of n and s, and with the con&dence limits obtained by the parametric
bootstrap method, described in Angus (1994). Land’s procedure can be described as
follows. De&ne

T =
√
n( PY − 
)
S

and V = [(n− 1)S2 + n( PY − 
)2]1=2:

Let f(t|v) denote the conditional density of T given V = v, and let t(1 − �; 
; v)
denote the 100(1 − �)th percentile of f(t|v). Land’s 100(1 − �)% upper limit for 
 is
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Table 1
Upper limits for 
 = � + �2=2 based on (a) Algorithm 1, (b) Land’s formula (2.8), and (c) parametric
bootstrap by Angus (1994); Py = 1

n s 95% limits 99% limits

(a) (b) (c) (a) (b) (c)

3 0.1 1.226 1.199 1.184 1.731 1.594 1.431
3 0.5 3.724 3.421 2.329 13.831 13.436 4.052
3 5 244.25 244.69 164.44 1242.41 1244.57 446.52

11 0.1 1.062 1.062 1.061 1.093 1.093 1.091
11 1 2.499 2.448 2.367 3.247 3.194 2.902
11 10 128.11 128.10 127.22 196.57 196.69 193.76
21 0.1 1.044 1.044 1.043 1.062 1.062 1.062
21 0.5 1.355 1.347 1.344 1.476 1.468 1.456
21 2 4.889 4.852 4.769 6.113 6.068 5.809
21 10 93.39 93.33 93.26 122.51 122.29 121.80

101 0.5 1.218 1.217 1.216 1.259 1.258 1.258
101 5 17.145 17.139 17.130 18.988 18.975 18.960
101 10 65.273 65.260 65.227 72.518 72.500 72.440
501 5 14.963 14.964 14.510 15.621 15.623 15.617
501 10 56.704 56.711 56.690 59.286 59.291 59.301

1001 5 14.510 14.510 14.510 14.951 14.954 14.953
1001 10 54.940 54.940 59.94 56.672 56.673 56.622

given by

Py − t(1 − �; 
; v) s√
n
: (2.8)

Note that for computing this interval, one needs t(1−�; 
; v). We used the table values
given in Land (1975) for obtaining t(1−�; 
; v). The resulting con&dence interval (2.8),
along with our generalized con&dence interval, are given in Table 1.

From the numerical results in Table 1, it should be clear that our generalized con-
&dence limit and the con&dence limit obtained by Land’s (1973) method practically
coincide. The limits based on the parametric bootstrap (PB) method due to Angus
(1994) are smaller than the other two limits whenever the sample sizes are small
and s is large. Simulation studies due to Angus (1994, Table 1) also exhibit similar
property. This observation indicates, contrary to the numerical studies by Zhou and
Gao (1997), that the con&dence limits based on the PB method could be liberal. To
con&rm this, we estimated the coverage probabilities of our generalized con&dence
limits and the PB con&dence limits for various values of n, �2 and � = −�2=2: The
coverage probabilities of the PB method are estimated using the algorithm given in
Angus (1994). We used 5000 samples from N (�; �2) distribution and 2000 bootstrap
samples to estimate the coverage probabilities. The estimated coverage probabilities in
Table 2 clearly indicate that the PB intervals are liberal when the sample sizes are
small and the �2’s are large, whereas the coverage probabilities of the generalized
limits are always close to the nominal level. Thus, the computational simplicity of our
approach along with the fact that its coverage probability coincides with the nominal
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Table 2
Coverage probabilities of two-sided limits for 
=�+�2=2 based on (a) Algorithm 1, and (c) PB by Angus
(1994); � = −�2=2

Nominal level 90% 95%

n �2 (a) (c) (a) (c)

5 0.5 0.895 0.889 0.947 0.946
1 0.880 0.867 0.949 0.934
5 0.893 0.857 0.948 0.896

20 0.897 0.864 0.948 0.911

10 0.500 0.895 0.889 0.952 0.943
1 0.897 0.886 0.950 0.942
5 0.899 0.879 0.950 0.932

20 0.901 0.888 0.949 0.933

15 0.5 0.899 0.891 0.948 0.942
1 0.896 0.884 0.947 0.943
5 0.892 0.880 0.951 0.928

20 0.901 0.893 0.950 0.945

25 0.5 0.904 0.903 0.950 0.948
1 0.895 0.897 0.946 0.942
5 0.900 0.895 0.947 0.939

20 0.909 0.902 0.949 0.947
100 0.897 0.897 0.947 0.946

level (at least for the parameter combinations considered for simulation) make the gen-
eralized con&dence interval and the generalized p-value attractive options for inference
concerning the mean of a lognormal distribution.

3. Comparing the means of two lognormal distributions

Let X1 and X2 be two independent lognormal random variables, so that Y1=
ln(X1) ∼ N (�1; �2

1) and Y2 = ln(X2) ∼ N (�2; �2
2). Let


1 = �1 +
�2

1

2
and 
2 = �2 +

�2
2

2
(3.1)

so that E(X1) = exp(
1) and E(X2) = exp(
2). Thus, for comparing the two lognormal
means, the problem reduces to inference concerning the di6erence 
1 − 
2. We shall
now address the problem of testing hypotheses and deriving con&dence intervals for
the di6erence 
1 − 
2.

3.1. Hypothesis testing

Let X1i, i = 1; 2; : : : ; n1, and X2i, i = 1; 2; : : : ; n2, denote random samples from the
lognormal distributions of X1 and X2, respectively. Let Y1i = ln(X1i), i = 1; 2; : : : ; n1,
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and Y2i = ln(X2i), i = 1; 2; : : : ; n2. De&ne

PY i =
1
ni

ni∑
j=1

Yij and S2
i =

1
ni − 1

ni∑
j=1

(Yij − PY i)2; i = 1; 2: (3.2)

Furthermore, let Py 1, Py 2, s21 and s22 denote the observed values of PY 1, PY 2, S2
1 and S2

2 ,
respectively. Consider the problem of testing

H0: 
16 
2 vs: H1: 
1¿
2: (3.3)

Let

T3i = Py i −
PY i − �i
Si=

√
ni
si=

√
ni +

1
2
�2
i

S2
i
s2i

= Py i −
Zi

Ui=
√
ni − 1

si√
ni

+
1
2

s2i
U 2
i =(ni − 1)

; i = 1; 2; (3.4)

where Zi =
√
ni( PY i − �i)=�i ∼ N (0; 1) and U 2

i = (ni − 1)S2
i =�

2
i ∼ �2

ni−1 for i= 1, 2, and
these random variables are also independent. De&ne the generalized test variable

T3 = T31 − T32 − (
1 − 
2) (3.5)

and let

T4 = T31 − T32 (3.6)

so that T3 =T4 − (
1 − 
2). It is easily veri&ed that T3 satis&es the conditions in (2.3),
with 
 replaced by 
1 − 
2 and 
0 replaced by 0. Furthermore, the distribution of T3

is stochastically decreasing in 
1 − 
2. Thus the generalized p-value for testing the
hypotheses in (3.3) is given by

P(T36 0|
1 − 
2 = 0) = P(T46 0): (3.7)

3.2. Con3dence intervals

One-sided (upper or lower) and two-sided con&dence intervals for 
1 − 
2 can be
obtained using T4 de&ned above. Note that the observed value of T4 is in fact 
1 − 
2.
Thus the appropriate percentiles of T4 can be used for obtaining con&dence intervals
for 
1 −
2. The con&dence limits for the di6erence between the lognormal means, that
is, exp(
1) − exp(
2), can be constructed using the percentiles of

T5 = exp(T31) − exp(T32); (3.8)

where T31 and T32 are given in (3.4).

3.3. Comparison with a large sample test: one-sided hypotheses

Zhou et al. (1997) have proposed a large sample test that can be used for testing
the hypotheses in (3.3), and also for testing two-sided hypotheses. The test proposed
by these authors is based on

Z =
PY 2 − PY 1 + 1

2 (S2
2 − S2

1 )√
S2

1 =n1 + S2
2 =n2 + 1

2 (S4
1 =(n1 − 1) + S4

2 =(n2 − 1))
: (3.9)
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Fig. 1. Histograms of the Z-score statistic in (3.9); the numbers in parenthesis represent (n1; �1; �2
1 ; n2; �2; �2

2).

Zhou et al. claimed that, for large samples, the distribution of the Z-score statistic in
(3.9) is approximately normal under H0 in (3.3). However, the histograms (based on
5000 simulated data) of the Z-score statistic in Fig. 1 indicate that such an approxima-
tion is valid only when both samples are large and (n1; �1; �2

1) is approximately equal
to (n2; �2; �2

2). In other situations, the distributions of the Z-score statistic appear to be
highly skewed, and hence a normal approximation is not valid.

We carried out a comparison of the Z-score test based on Z in (3.9), and the
test based on the generalized p-value mentioned above using Monte Carlo simulation.
The simulation study was carried out along the lines of Algorithm 2 given for the
one-sample case. The numerical results in Zhou et al. (1997) are for the case of
n1¿ 25 and n2¿ 25. For smaller values of n1 and n2, the Z-score test has type I
probabilities which are either too large or too small, whereas the test based on the
generalized p-value is extremely satisfactory for controlling type I error probability.
Since the Z-score test is meant for large samples, we are mainly interested in studying
its large sample properties. Numerical results on type I error probability and power are
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reported in Table 3 for various values of n1 and n2. For the simulations, we have taken
�2=0, without loss of generality. Various combinations of �2

1, �2
2, and �1 are considered

in Table 3, and all the results correspond to a nominal level of 5%. Type I error
probability corresponds to the parameter combinations satisfying �1 + 1

2�
2
1 = �2 + 1

2�
2
2.

Rest of the numerical results in Table 3 give the power of the tests.
The numerical results show that the Z-score test is either too conservative, or too

liberal, especially when the sample sizes are unequal. The pattern that emerges is the
following. For H1: 
1¿
2, the Z-score test is too liberal when n1¿n2 and is too
conservative when n1¡n2. In addition, our numerical results are in agreement with
the histograms in Fig. 1. For instance, we observe from the histograms in Fig. 1(e)
and (f), and their corresponding type I error probabilities in Table 3 (rows 24 and
30) that the Z-score test is too liberal when the histogram is right skewed and is too
conservative when the histogram is left skewed. On the other hand, the test based on
the generalized p-value controls type I error probability quite satisfactorily, regardless
of n1 and n2. Also, there is a clear pattern concerning the power. In cases where the
Z-score test is too liberal in terms of type I error probability, it has a larger power
compared to the generalized p-value test. On the other hand, in cases where the Z-score
test is too conservative, it has a smaller power compared to the generalized p-value
test. We also observe from Table 3 that there are parameter con&gurations for which
the sizes of the Z-score test exceed the nominal level of 0.05 even when the sample
sizes are very large and equal. Furthermore, there are also situations where the power
of the Z-score test can be smaller than the nominal level (see the last row in Table 3),
indicating that the Z-score test is biased.

The overall picture that emerges from the numerical results is that the test based
on the generalized p-value is extremely satisfactory, and it is applicable regardless of
the sample size. The computations required to obtain the generalized p-value (or the
generalized con&dence interval) are simple and straightforward.

3.4. Comparison with a large sample test: two-sided hypotheses

Since the Z-score test is skewed, it is not appropriate for testing one-sided hypothe-
ses; our numerical results in the previous section con&rmed this. The problem addressed
in Zhou et al. (1997) is that of testing the two sided hypotheses

H0: 
1 = 
2 vs: H1: 
1 �= 
2: (3.10)

For testing (3.10), Zhou et al. (1997) recommend the large sample test based on (3.9).
The two-sided generalized con&dence interval mentioned above can also be used to

test the hypotheses in (3.10), and the test procedure consists of rejecting H0 when
the generalized con&dence interval for 
1 − 
2 does not contain zero. A generalized
p-value for testing (3.10) can be developed as follows. Note that the null hypothesis
in (3.10) will be rejected if a small p-value is obtained for testing against at least
one of the alternatives: H1: 
1¿
2 or H1: 
1¡
2. In other words, we reject the null
hypothesis in (3.10) if at least one of the generalized p-values, P(T46 0) or P(T4¿ 0)
is small, where T4 is given in (3.6). Hence, for testing against the two-sided alternative
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Table 3
Sizes and powers of the generalized p-value test (GP test) and the Z-score test at 5% signi&cance level
when �2 = 0 and H1: 
1¿
2

n1 n2 �1 �2
1 �2

2 Size n1 n2 �1 �2
1 �2

2 Power

GP test Z-score GP test Z-score

4 4 1 2 4 0.0471 0.0963 4 4 0 12 4 0.1492 0.0376
0 3 3 0.0412 0.0433 0 20 4 0.2910 0.0387
5 2 12 0.0401 0.2067 3 2 4 0.1050 0.3726
0 12 12 0.0400 0.0171 4 1 1 0.6220 0.9734

10 10 1 2 4 0.0442 0.0882 10 10 0 12 4 0.3880 0.2386
0 3 3 0.0489 0.0397 0 20 4 0.6583 0.4370
5 2 12 0.0510 0.1428 3 2 4 0.2743 0.5119
0 12 12 0.0433 0.0286 4 1 1 0.9981 0.9992

25 25 0 1 1 0.0491 0.0530 25 25 1 1 1 0.8521 0.8880
0 5 5 0.0479 0.0438 1 5 5 0.1751 0.2123
0 10 10 0.0500 0.0420 1 10 10 0.1264 0.1150
0 100 100 0.0495 0.0363 0 4 2 0.3754 0.3207
2 4 8 0.0510 0.0789 0 9 7 0.1555 0.1079
4 8 16 0.0511 0.0821 0 4 1 0.7641 0.6768

40 25 0 1 1 0.0490 0.0591 40 25 1 1 1 0.8590 0.9238
0 5 5 0.0460 0.0606 1 5 5 0.2053 0.2650
0 10 10 0.0510 0.0610 1 10 10 0.1071 0.1565

25 40 0 1 1 0.0461 0.0446 25 40 1 1 1 0.9466 0.9444
0 5 5 0.0490 0.0302 1 5 5 0.2303 0.2177
0 10 10 0.0511 0.0280 1 10 10 0.1190 0.0996

40 25 5 2 12 0.0487 0.1084 40 25 1 5 4 0.3954 0.4789
25 40 5 2 12 0.0534 0.0963 1 10 9 0.1482 0.2201
40 40 8 4 20 0.0496 0.0959 25 40 1 5 4 0.4829 0.4181

14 4 32 0.0512 0.1002 1 10 9 0.2131 0.1580

100 25 0 1 1 0.0480 0.0711 100 25 1 1 1 0.9133 0.9531
0 5 5 0.0470 0.0770 1 5 5 0.2438 0.3353
0 10 10 0.0530 0.0860 1 10 10 0.1374 0.2045

25 100 0 1 1 0.0511 0.0341 25 100 1 1 1 0.9912 0.9851
0 5 5 0.0472 0.0197 1 5 5 0.3401 0.2221
0 10 10 0.0520 0.0130 1 10 10 0.1638 0.0788

100 25 13 4 30 0.0501 0.1221 100 25 0 2 1 0.3936 0.4744
25 100 13 4 30 0.0541 0.0780 0 3 1 0.8259 0.8535

100 100 13 4 30 0.0491 0.0810 25 100 0 2 1 0.3925 0.2906
0 3 1 0.6933 0.5525

100 25 1 5 4 0.4592 0.5785
1 10 9 0.1765 0.2857

25 100 1 5 4 0.5684 0.4930
1 10 9 0.2627 0.1404

(continued on next page)
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Table 3 (continued )

n1 n2 �1 �2
1 �2

2 Size n1 n2 �1 �2
1 �2

2 Power

GP test Z-score GP test Z-score

200 50 0 1 1 0.0481 0.0633 50 200 1 1 1 1.0000 1.0000
200 50 0 5 5 0.0512 0.0712 50 200 1 5 5 0.4925 0.4305
200 50 0 10 10 0.0530 0.0698 50 200 1 10 10 0.2125 0.1576
50 200 0 1 1 0.0517 0.0399 200 50 1 1 1 0.9982 0.9986
50 200 0 5 5 0.0487 0.0293 200 50 1 5 5 0.3751 0.4646
50 200 0 10 10 0.0482 0.0250 200 50 1 10 10 0.1823 0.2409

200 200 24 12 60 0.0471 0.0691 200 50 0 2 1 0.6814 0.7164
200 200 40 2 82 0.0498 0.0750 200 50 0 3 1 0.9805 0.9848

50 200 0 2 1 0.6010 0.5086
50 200 0 3 1 0.8940 0.8589
25 300 0.8 12 12 0.1251 0.0357

in (3.10), the p-value can be computed as

2 × min{P(T46 0); P(T4¿ 0)}: (3.11)

Note that (3.11) is essentially in the spirit of the computation of the usual p-value
for testing against two-sided alternatives; see Gibbons and Pratt (1975), or Pratt and
Gibbons (1981, Section 4.5), for a discussion of the computation of such p-values. In
fact, the computation in (3.11) follows one of the recommendation by these authors.

Table 4 gives numerical results on type I error probability and power of the gen-
eralized p-value test and the Z-score test for testing the hypotheses in (3.10), where
the generalized p-value is computed following (3.11). In terms of controlling type I
error probability, the large sample Z-score test now performs much more satisfactorily,
compared to the testing of the one-sided hypotheses. However, there are still situations
where the Z-score test is unsatisfactory. The pattern seems to be that the Z-score test
performs well in terms type I probabilities when �1 = �2 and �2

1 = �2
2. In fact the

parameter con&gurations in the numerical results reported in Zhou et al. (1997) have
the �’s close to each other and the �2’s close to each other, and good performance
was noted in terms type I error probabilities. Note that the generalized p-value test
continues to provide satisfactory performance in terms of type I error. Regarding the
power, the pattern that we noticed in Table 3 continues to hold in Table 4 as well.

4. Illustrative examples

Example 4.1. (Source: http://lib.stat.cmu.edu/DASL/) An oil re&nery located at the
northeast of San Francisco conducted a series of 31 daily measurements of the carbon
monoxide levels arising from one of their stacks between April 16 and May 16; 1993.
The measurements were submitted as evidence for establishing a baseline to the Bay
Area Air Quality Management District (BAAQMD). BAAQMD personnel also made 9
independent measurements of the carbon monoxide concentration from the same stack
over the period from September 11; 1990–March 30; 1993. As mentioned in the “data

http://lib.stat.cmu.edu/DASL/
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Table 4
Sizes and Powers of the generalized p-value test (GP test) and the Z-score test at 5% signi&cance level
when �2 = 0 and H1: 
1 �= 
2
n1 n2 �1 �2

1 �2
2 Size n1 n2 �1 �2

1 �2
2 Power

GP test Z-score GP test Z-score

4 4 1 2 4 0.0293 0.0720 4 4 0 12 4 0.0820 0.0301
0 3 3 0.0387 0.0454 0 20 4 0.1580 0.0298
5 2 12 0.0379 0.1773 3 2 4 0.0750 0.2930
0 12 12 0.0299 0.0175 4 1 1 0.4060 0.9466

10 10 1 2 4 0.0415 0.0581 10 10 0 12 4 0.2810 0.0861
0 3 3 0.0417 0.0409 0 20 4 0.5560 0.1601
5 2 12 0.0473 0.1110 3 2 4 0.1690 0.4209
0 12 12 0.0419 0.0148 4 1 1 0.9890 0.9986

25 25 0 1 1 0.0415 0.0478 25 25 1 1 1 0.7290 0.8117
0 5 5 0.0414 0.0386 1 5 5 0.1280 0.1340
0 10 10 0.0474 0.0333 1 10 10 0.0740 0.0620
0 100 100 0.0487 0.0257 0 4 2 0.2730 0.1968
2 4 8 0.0503 0.0532 0 9 7 0.0800 0.0602
4 8 16 0.0441 0.0518 0 4 1 0.6710 0.5263

40 25 0 1 1 0.0410 0.0520 40 25 1 1 1 0.7960 0.8642
0 5 5 0.0413 0.0422 1 5 5 0.1090 0.1907
0 10 10 0.0511 0.0401 1 10 10 0.0600 0.0899

25 40 0 1 1 0.0423 0.0512 25 40 1 1 1 0.8570 0.8993
0 5 5 0.0496 0.0459 1 5 5 0.1540 0.1332
0 10 10 0.0476 0.0402 1 10 10 0.0750 0.0526

40 25 5 2 12 0.0467 0.0746 40 25 1 5 4 0.2620 0.3637
25 40 5 2 12 0.0480 0.0658 1 10 9 0.1010 0.1375
40 40 8 4 20 0.0474 0.0664 25 40 1 5 4 0.3470 0.2875

14 4 32 0.0483 0.0696 1 10 9 0.1170 0.0838

100 25 0 1 1 0.0471 0.0563 100 25 1 1 1 0.7980 0.9207
0 5 5 0.0467 0.0564 1 5 5 0.1270 0.2518
0 10 10 0.0430 0.0575 1 10 10 0.0670 0.1426

25 100 0 1 1 0.0510 0.0566 25 100 1 1 1 0.9840 0.9669
0 5 5 0.0410 0.0580 1 5 5 0.2050 0.1228
0 10 10 0.0492 0.0600 1 10 10 0.0970 0.0404

100 25 13 4 30 0.0470 0.0823 100 25 0 2 1 0.2720 0.3619
25 100 13 4 30 0.0480 0.0557 0 3 1 0.6760 0.7678

100 100 13 4 30 0.0460 0.0592 25 100 0 2 1 0.3040 0.1580
0 3 1 0.5950 0.3869

100 25 1 5 4 0.3200 0.4631
1 10 9 0.1060 0.2198

25 100 1 5 4 0.4990 0.3230
1 10 9 0.1760 0.0708

(continued on next page)
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Table 4 (continued )

n1 n2 �1 �2
1 �2

2 Size n1 n2 �1 �2
1 �2

2 Power

GP test Z-score GP test Z-score

200 50 0 1 1 0.0532 0.0550 50 200 1 1 1 100 0.9999
200 50 0 5 5 0.0458 0.0544 50 200 1 5 5 0.4110 0.2913
200 50 0 10 10 0.0491 0.0556 50 200 1 10 10 0.1390 0.0847
50 200 0 1 1 0.0446 0.0514 200 50 1 1 1 0.9810 0.9967
50 200 0 5 5 0.0501 0.0518 200 50 1 5 5 0.2190 0.3654
50 200 0 10 10 0.0521 0.0547 200 50 1 10 10 0.1140 0.1725

200 200 24 12 60 0.0419 0.0493 200 50 0 2 1 0.5290 0.6074
200 200 40 2 82 0.0478 0.0532 200 50 0 3 1 0.9520 0.9645

50 200 0 2 1 0.4730 0.3720
50 200 0 3 1 0.8340 0.7638
25 300 0.80 12 12 0.0880 0.0363

& story library” at the above web address; in this case; the re&nery had an incentive
to overestimate carbon monoxide emissions (to setup a baseline at a higher level); and
the purpose of our analysis is to test this. The data are given below:

Carbon monoxide measurements by the re&nery (in ppm): 45, 30, 38, 42, 63, 43,
102, 86, 99, 63, 58, 34, 37, 55, 58, 153, 75, 58, 36, 59, 43, 102, 52, 30, 21, 40, 141,
85, 161, 86, 161, 86, 71.

Carbon monoxide measurements by the BAAQMD (in ppm): 12.5, 20, 4, 20, 25,
170, 15, 20, 15.

We checked the assumption of lognormality using MINITAB, and found that a
lognormal model adequately describes both sets of measurements but normal model
does not &t the data at any practical levels of signi&cance. The hypotheses to be tested
are

H0: 
16 
2 vs: H1: 
1¿
2;

where exp(
1)= exp(�1+�2
1=2) and exp(
2)= exp(�2+�2

2=2) denote the population mean
of the re&nery measurements and that of the BAAQMD measurements, respectively.

For logged measurements taken by the re&nery, we have: n1=31, sample mean= Py 1=
4:0743 and the sample SD = s1 = 0:5021; for logged measurements collected by the
BAAQMD, n2 = 9, sample mean= Py 2 = 2:963 and sample SD = s2 = 0:974. The 95%
generalized lower con&dence limit for (�1 + �2

1=2) − (�2 + �2
2=2) is −0:40. Hence the

95% generalized lower con&dence limit for the ratio of the lognormal population means
(that is, for exp(
1)=exp(
2)) is exp(−0:40)=0:67, which is ¡ 1. Using (3.7), we also
computed the 95% lower limit for exp(
1)− exp(
2) as −32:91. Finally, we computed
the generalized p-value using (3.7) as 0.112. All these results lead to the conclusion
that the data do not provide su4cient evidence to indicate that the mean measurement
by the re&nery is greater than that of BAAQMD, which is contrary to the speculation
mentioned in the Data & Story Library.
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Example 4.2. (Source: http://lib.stat.cmu.edu/DASL/) The data on the amount of rain-
fall (in acre-feet) from 52 clouds; 26 of which were chosen at random and seeded with
silver nitrate are given in the aforementioned website. Probability plots indicate that
normal models do not &t the data whereas lognormal models &t the data sets very well.
The summary statistics for the logged data are as follows: For seeded clouds: n1 = 26;
Py 1 = 5:134; and s1 = 1:600; for unseeded clouds: n2 = 26; Py 2 = 3:990; and s2 = 1:642.
In order to understand the e6ect of silver nitrate seeding; we like to test H0: 
1 = 
2

vs. H1: 
1¿
2: We computed the 95% generalized lower con&dence limit for 
1 − 
2

as −0:20. This lower limit indicates that the data do not provide su4cient evidence
to indicate that the mean rainfall from seeded clouds is higher than the mean rainfall
from unseeded clouds. The generalized p-value turned out to be 0.078. On the other
hand; application of the two-sample t test for the logged data (note that two-sample
t test merely compares the means of the logged data; not of the original data) yields
a p-value of 0.007; indicating �1¿�2; where �i’s denote the means of logged data.

We also applied the Z-score test for the same problem. The 95% lower limit for

1 − 
2 based on the Z-score test is −0:06203. The corresponding p-value is 0.060.
The conclusion based on the Z-score test is consistent with the conclusion based on
the generalized p-value test.

5. Concluding remarks

In this article, we have derived exact inference procedures (hypotheses tests and
con&dence intervals) concerning the mean of a single lognormal distribution, and for
the ratio of the means of two independent lognormal distributions. The procedures are
applicable to small samples, and are easy to compute and implement. The available
procedures due to Land (1973) for deriving tests and con&dence intervals concern-
ing a single lognormal mean, being based on a conditional distribution, appear to be
computationally more involved than the procedure given in this paper. The procedures
described in Zhou and Gao (1997) and Zhou et al. (1997) are mostly applicable to large
samples. The methods we have developed based on the concepts of the generalized
p-value and generalized con&dence interval are relatively easy to implement, and nu-
merical results show that they give equivalent results compared to Land’s (1973) pro-
cedure. Regarding the problem of hypotheses tests and con&dence intervals concerning
the ratio of two lognormal means and the di6erence between two lognormal means,
this article appears to be the &rst to provide satisfactory solutions, applicable to small
samples. The solutions are once again based on the concepts of the generalized p-value
and generalized con&dence interval. Numerical results show that our procedures based
on the generalized p-value and generalized con&dence interval are much more satisfac-
tory compared to large sample procedures. Furthermore, one of our numerical examples
show that if we compare the means of the logged data, as opposed to the means of
the original data, the conclusions can be drastically di6erent. Our procedures and con-
clusions should be of considerable interest to occupational hygienists and biologists,
since lognormal data are commonly encountered in their applications.

http://lib.stat.cmu.edu/DASL/
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