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The problem of estimating the difference between two Poisson means is considered. A new moment
confidence interval (CI), and a fiducial CI for the difference between the means are proposed. The moment
CI is simple to compute, and it specializes to the classical Wald CI when the sample sizes are equal.
Numerical studies indicate that the moment CI offers improvement over the Wald CI when the sample sizes
are different. Exact properties of the CIs based on the moment, fiducial and hybrid methods are evaluated
numerically. Our numerical study indicates that the hybrid and fiducial CIs are in general comparable, and
the moment CI seems to be the best when the expected total counts from both distributions are two or
more. The interval estimation procedures are illustrated using two examples.

Keywords: confidence limits; exact coverage probability; Poisson rates; ratio of Poisson means

1. Introduction

Poisson distributions are routinely used to model the number of random occurrences of an event
over a time interval or a specified space. Poisson model is appropriate to describe the distribution
of counts of rare events, and so it is sometimes referred to as the law of rare events. If the mean rate
of occurrence of an event is λ, then the probability distribution of the number of occurrences X can
be modelled by a Poisson distribution with mean λ, say, Poisson(λ). In this case, the probability
mass function of X is given by

P(X = x|λ) = λx e−λ

x! , x = 0, 1, 2, . . . , λ > 0. (1)

Let Xi be the number of random occurrences of an event from a sample of ni units (or over a
period of time ti) with mean rate λi, so that Xi ∼ Poisson(niλi), i = 1, 2. The problem of interest
here is to find confidence intervals (CIs) for the difference λ1 − λ2 based on X1 and X2.

The problem of estimating or testing the difference between Poisson means commonly arise
in biological, epidemiological and medical sciences. For example, one may want to compare the
incident rates of a disease in a treatment group and control group, where the incident rate is defined
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2 K. Krishnamoorthy and M. Lee

as the number of events (such as death) observed divided by the time at risk during the observed
period. Rothman and Greenland [1] present a specific example where two groups of women were
compared to find whether those who had been examined using X-ray fluoroscopy during treatment
for tuberculosis had a higher rate of breast cancer than those who had not been examined using
X-ray fluoroscopy. For other-related applications and examples in health sciences, see Section 4
of this paper and the articles [2–4] that are appeared in medical journals.

There are many articles [5–8] that proposed some new tests for comparing two Poisson means
and compared them with other available tests. Regarding inferential procedures for λ1 − λ2, sev-
eral articles considered hypothesis testing, and provided tests, and compared it with the Wald test
based on normal approximation, [6,7,9]. Even though some of the proposed tests are accurate and
satisfactory (in terms of Type I error rates and powers), many of these tests are difficult to invert
to obtain closed-form CIs for the difference between two Poisson means. Schwetman and Mar-
tinez [10] compared eight approximate CIs, and concluded that the Wald CI is the best. Miettinen
and Nurminen [11] have developed a likelihood-based CI whose endpoints are determined by
two roots of a fourth-order polynomial function. As noted by Liu et al. [12], it is hard to identify
the two meaningless roots and so not practical to use without a numerical algorithm. Recently,
Li et al. [13] have proposed some hybrid CIs that are based on individual CIs for λ1 and λ2, and
made some recommendations as to the choice of CIs for applications.

In this article, we seek some simple CIs for the difference between two Poisson means that
are accurate and easy to use. To this end, we propose a moment CI for the difference λ1 − λ2,
which is obtained by inverting a test statistic proposed by Krishnamoorthy and Thomson [7].
This moment CI simplifies to the usual Wald CI when the sample sizes are equal, and offers
appreciable improvement for some cases of unequal sample sizes. Recently, Krishnamoorthy
and Lee [14] proposed a fiducial approach for finding CIs for a function of several Poisson
parameters. The fiducial approach is more general, and is useful to find CIs, for example, for
the ratio of two Poisson means or product of several Poisson means. So, it is of interest to see
the performance of the fiducial CIs for the difference between two Poisson means. Furthermore,
we also outline a ‘hybrid’ method of obtaining CIs proposed by Li et al. [13]. In Section 3, we
evaluate exact coverage probabilities and expected widths of all CIs and compare them. Based
on our comparison studies, some recommendations are made as to the choice of CIs for practical
applications. The interval estimation procedures are illustrated using two examples in Section 4,
and some concluding remarks are given in Section 5.

2. Confidence intervals

Let Xi denote the total number of Poisson events based on a sample of size ni so that Xi ∼
Poisson(niλi), i = 1, 2. In the following, we shall describe some interval estimation procedures
based on X1 and X2.

2.1. Wald and moment CIs

Consider testing

H0 : λ1 − λ2 ≤ d versus Ha : λ1 − λ2 > d, (2)

where d is a specified value based on X1 ∼ Poisson(n1λ1) and X2 ∼ Poisson(n2λ2). Let λ̂i =
Xi/ni, i = 1, 2. The usual statistic for testing Equation (2) is

Zw = λ̂1 − λ̂2 − d√
v̂ar(λ̂1 − λ̂2)

, (3)
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Journal of Statistical Computation and Simulation 3

where v̂ar is a variance estimate, which follows the standard normal distribution asymptotically.
The Wald test statistic uses the variance estimate v̂ar(λ̂1 − λ̂2) = λ̂1/n1 + λ̂2/n2. For a given level
α, the Wald test rejects the H0 in Equation (2) if Zw ≥ z1−α/2, where zp denotes the p quantile of
the standard normal distribution.

Instead of using the usual variance estimate in the test statistic, we can use ‘hypothesis
dependent moment estimate’ as suggested by Krishnamoorthy and Thomson [7]. These authors
have numerically showed that the test based on Zw with the moment estimate performs better
than the Wald test described in the preceding paragraph. To find the moment estimate for the
var(λ̂1 − λ̂2) = λ1/n1 + λ2/n2, let w1 = n1/(n1 + n2) and w2 = 1 − w1. Note that, under H0, we
have λ2 = λ1 − d and

E

(
X1 + X2

n1 + n2

)
= w1λ1 + w2λ2 = λ1 − w2d. (4)

Let λ̂ = (X1 + X2)/(n1 + n2) = w1λ̂1 + w2λ̂2. Then, the moment estimates of λ1 and λ2 based
on (4) are, respectively, given by

λ̂1m = λ̂ + w2d and λ̂2m = λ̂ − w1d. (5)

Using λ̂1m/n1 + λ̂2m/n2 as a variance estimate in (3), we propose

Zm = (λ̂1 − λ̂2 − d)√
λ̂1m/n1 + λ̂2m/n2

= (λ̂1 − λ̂2 − d)√
λ̂(1/n1 + 1/n2) + d(1/n1 − 1/n2)

(6)

as an approximate pivotal statistic.
The estimate λ̂2m = λ̂ − w1d could be less than or equal to zero, resulting to a negative variance

estimate in Equation (6). However, we can obtain one-sided confidence limits as follows. For
instance, consider testing (2), and without loss of generality assume that d ≥ 0 (see Remark 1
below).As noted in Krishnamoorthy and Thomson [7], it can be easily verified that λ̂2m ≤ 0 implies
that λ̂1 − λ̂2 ≤ d. In this case, no formal test is necessary and the null hypothesis in Equation (2)
cannot be rejected. In other words, values of d for which λ̂2m ≤ 0 are not in the ‘rejection region’.
Therefore, we shall seek the values of d for which the null hypothesis in Equation (2) is rejected.
That is, assuming asymptotic normality for Zm, we find values of d for which Zm > z1−α , where
zq is the q quantile of the standard normal distribution. Solving this inequality Zm > z1−α for d,
we see that for any d for which

L12 = λ̂1 − λ̂2 + z2
1−α

2

(
1

n1
− 1

n2

)
− z1−α

√√√√(
λ̂1

n1
+ λ̂2

n2

)
+ z2

1−α

4

(
1

n1
− 1

n2

)2

> d, (7)

the null hypothesis in Equation (2) is rejected at the level of significance α. For any d > L12, the
null hypothesis is not rejected, and so L12 is a 1 − α lower confidence limit for λ1 − λ2.

Remark 1 If the specified value in Equation (2) is negative, then writing the hypotheses in
Equation (2) in terms of λ2 − λ1, we can make the specified value to be positive. An upper con-
fidence limit for λ2 − λ1 can be obtained by inverting the test for λ2 − λ1. This upper confidence
limit with negative sign is the desired lower confidence limit for λ1 − λ2.

A 1 − α upper confidence limit for λ1 − λ2 is the negative of 1 − α lower confidence limit
for λ2 − λ1, and the latter can be obtained by inverting the test for H0 : λ2 − λ1 ≤ d versus
Ha : λ2 − λ1 > d. Note that this testing problem is the same as the one for the hypotheses in
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4 K. Krishnamoorthy and M. Lee

Equation (2), and the lower confidence limit for λ2 − λ1 is the one for λ1 − λ2 with subscripts
(1,2) replaced by (2,1). Specifically, the 1 − α lower confidence limit for λ2 − λ1 is given by

L21 = λ̂2 − λ̂1 + z2
1−α

2

(
1

n2
− 1

n1

)
− z1−α

√√√√(
λ̂1

n1
+ λ̂2

n2

)
+ z2

1−α

4

(
1

n1
− 1

n2

)2

.

As noted earlier, −L21 is the 1 − α upper confidence limit for λ1 − λ2, which is L12 in Equation (7)
with the term −z1−α replaced by +z1−α . A 1 − α CI for λ1 − λ2 can be readily obtained from
these one-sided limits, and is given by

λ̂1 − λ̂2 + z2
1−α/2

2

(
1

n1
− 1

n2

)
± z1−α/2

√√√√(
λ̂1

n1
+ λ̂2

n2

)
+ z2

1−α/2

4

(
1

n1
− 1

n2

)2

. (8)

Since the above CI is based on moment estimates, we shall refer to this CI as the moment CI.
Note that this moment CI in Equation (8) simplifies to the Wald CI

λ̂1 − λ̂2 ± z1−α/2

√√√√(
λ̂1

n1
+ λ̂2

n2

)
(9)

when n1 = n2.

2.2. Fiducial CIs

Following the procedure of Cox [15], Krishnamoorthy and Lee [14] developed a fiducial quantity
for the mean of a Poisson distribution as follows. Let ki be an observed value of Xi, i = 1, 2.
Noting that P(Xi ≥ ki|niλi) = P(χ2

2ki
≤ 2niλi) and P(Xi ≤ ki|niλi) = P(χ2

2ki+2 > 2niλi), where
χ2

a is the chi-square random variable with degrees of freedom a, we see that there is a pair of
fiducial variables for λi, namely, χ2

2ki
/(2ni) and χ2

2ki+2/(2ni). As χ2
a is stochastically increasing in

a, the random variable χ2
2ki+1/(2ni), which stochastically lies between the two fiducial variables,

is an approximate fiducial quantity for λi. Denoting this approximate fiducial quantity by Qλi , we
can find a fiducial quantity for the difference between two means as

Qλ1−λ2 = Qλ1 − Qλ2 = 1

2n1
χ2

2k1+1 − 1

2n2
χ2

2k2+1. (10)

Note that, for a given (k1, k2), the distribution of Qλ1−λ2 does not depend on any parameter, and so
its percentiles can be evaluated numerically or estimated by Monte Carlo simulation. The interval
(Qλ1−λ2;α/2, Qλ1−λ2;1−α/2), where Qλ1−λ2;p is the p quantile of Qλ1−λ2 , is a 1 − α CI for λ1 − λ2.

To evaluate the percentiles of Equation (10) numerically, we note that, for c1 > 0 and c2 > 0,

P(c1χ
2
f1 − c2χ

2
f2 ≤ q) = 1

2f2/2�(f2/2)

∫ ∞

0
F

(
q + c2y

c1
; f1

)
e−y/2y(f2/2)−1 dy,

where F(x; f ) denotes the cumulative distribution function of χ2
f random variable. The pth quantile

of Equation (10) is the value of q for which

P(c1χ
2
f1 − c2χ

2
f2 ≤ q) = p, (11)

where c1 = 0.5n1, c2 = 0.5n2, f1 = 2k1 + 1 and f2 = 2k2 + 1. The root of Equation (11) can be
obtained numerically.

D
ow

nl
oa

de
d 

by
 [

K
. K

ri
sh

na
m

oo
rt

hy
] 

at
 0

8:
26

 2
2 

M
ay

 2
01

2 



Journal of Statistical Computation and Simulation 5

It is interesting to note that the above fiducial CI and the Wald CI are asymptotically the same. To
prove this, recall that χ2

m is normally distributed for large m. Furthermore, as the chi-square random
variables in Equation (10) are independent, Qλ1−λ2 follows a N(μ, σ 2) distribution asymptotically,
where the mean and the variance are determined by

μ = E(Qλ1−λ2) = 2k1 + 1

2n1
− 2k2 + 1

2n2
and σ 2 = var(Qλ1−λ2) = 2k1 + 1

2n2
1

+ 2k2 + 1

2n2
2

.

Thus, for large samples, the fiducial CI can be expressed as

μ ± z1−α/2σ = (λ̂1 − λ̂2) + 1

2

(
1

n1
− 1

n2

)
± z1−α/2

√
λ̂1

n1
+ λ̂2

n2
+ 1

2

(
1

n2
1

+ 1

n2
2

)
. (12)

It is clear that the above CI approaches the Wald CI in Equation (9) as (n1, n2) → ∞.

2.3. Hybrid CIs

We shall now outline a hybrid approach for finding a CI for λ1 − λ2 as described in Li et al. [13].
This approach essentially uses a variance estimate that depends on individual confidence limits
for λ1 and λ2. Let (li, ui) be a 1 − α CI for λi based on the total count Xi, i = 1, 2. A 1 − α CI
(L, U) for λ1 − λ2 based on the individual confidence limits is given by

L = λ̂1 − λ̂2 −
√

(λ̂1 − l1)2 + (u2 − λ̂2)2 (13)

and

U = λ̂1 − λ̂2 +
√

(u1 − λ̂1)2 + (λ̂2 − l2)2. (14)

Li et al. [13] compared a few hybrid CIs and other CIs, and concluded that the hybrid CI based
on the Freedman–Tukey confidence limits li and ui, and the one based on the Jeffreys confidence
limits li and ui are comparable and they are better than others, and so we shall consider only the
latter for comparison purpose.

The Jeffreys CIs for the individual parameters λ1 and λ2 are given by

(li, ui) =
(

1

2ni
χ2

2ki+1;α/2,
1

2ni
χ2

2ki+1;1−α/2

)
, i = 1, 2,

where (k1, k2) is an observed value of (X1, X2) and χ2
m,α denotes the α quantile of the chi-square

distribution with m degrees of freedom. Substituting these limits in Equations (13) and (14), we
get a CI for λ1 − λ2, which will be referred to as the Jeffreys hybrid CI or simply hybrid CI.

3. Accuracy studies and comparison

To judge the accuracy of the moment and other CIs, we computed their coverage probabilities as
follows. Let (L(X1, X2), U(X1, X2)) be a 1 − α CI for η = λ1 − λ2. Then, for a given λ1 and λ2,
the coverage probability of (L(X1, X2), U(X1, X2)) is given by

∞∑
x1=0

∞∑
x2=0

e−n1λ1(n1λ1)
x1

x1!
e−n2λ2(n2λ2)

x2

x2! I[(L(x1,x2),U(x1,x2))](η), (15)

where I[A](x) is the indicator function. For an accurate CI, the above coverage probability should
be close to the nominal level 1 − α. If the coverage probabilities of a CI are often larger than
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6 K. Krishnamoorthy and M. Lee

1 − α, then it is classified as conservative; if they are less than 1 − α, then the CI is classified as
liberal or anti-conservative. Exact expected width of a CI can be calculated using Equation (15)
with the indicator function replaced by the width U(x1, x2) − L(x1, x2).

The infinite sums in Equation (15) can be evaluated by first computing the probabilities at
the modes of the Poisson distributions int(n1λ1) and int(n2λ2), and then computing the other
terms using forward and backward recurrence relations for Poisson probability mass function.
Evaluation of each sum in Equation (15) may be terminated once the Poisson probabilities are
small, say, less than 10−6.

We shall first compare the Wald, moment and the approximate fiducial (Equation (12)) CIs
because they are of similar form. The coverage probabilities of all three CIs are presented in Table 1
for some small sample sizes and parameter values. The reported coverage probabilities clearly
indicate that the moment CI has better coverage probabilities than other two CIs. In particular,
the Wald CI is too liberal as its coverage probabilities are much smaller than the nominal levels,
whereas the approximate fiducial CI is too conservative having coverage probabilities much larger
than the nominal levels in some cases. We next compare the Wald and the moment CIs for some
moderate but very different sample sizes. For (n1 = 10, n2 = 50) and (n1 = 20, n2 = 60), we
calculated the coverage probabilities of 95% CIs and reported them in Table 2 for some small
values of parameters. We observe from the reported values that the coverage probabilities of the
moment CI are very close to the nominal level whereas those of the Wald CI are not so close to
the nominal level 0.95, and in some cases they are much smaller than the nominal level. In view
of these comparison results, we shall compare only the moment, fiducial and the hybrid CIs in
the sequel.

The coverage probabilities of the moment, fiducial and the hybrid CIs are plotted in Figure 1 as
a function of λ1 while λ2 is fixed at 0.5, 1 and 2. These three plots indicate that none of the CIs is

Table 1. Coverage probabilities of CIs.

1 − α = 0.90 1 − α = 0.95 1 − α = 0.99

(λ1, n1, λ2, n2) 1 2 3 1 2 3 1 2 3

(1,5,1,1) 0.671 0.930 0.976 0.729 0.959 0.996 0.913 0.985 1
(1,5,1,2) 0.845 0.906 0.921 0.892 0.957 0.976 0.968 0.994 0.998
(1,10,1,1) 0.628 0.933 0.986 0.635 0.957 0.998 0.680 0.985 1
(1,7,2,1) 0.847 0.928 0.889 0.862 0.966 0.942 0.865 0.990 0.993
(5,10,6,1) 0.874 0.902 0.902 0.922 0.953 0.946 0.961 0.990 0.979

Notes: 1, Wald; 2, moment; 3, approximate fiducial.

Table 2. Coverage probabilities of 95% CIs; n1 = 10, n2 = 50 (n1 = 20, n2 = 60).

λ1

λ2 Methods 0.2 0.4 0.7 1 1.2

0.2 Wald 0.859 (0.925) 0.905 (0.940) 0.931 (0.948) 0.944 (0.950) 0.933 (0.949)
Moment 0.961 (0.954) 0.950 (0.949) 0.937 (0.940) 0.943 (0.944) 0.942 (0.943)

0.4 Wald 0.901 (0.931) 0.917 (0.939) 0.932 (0.945) 0.937 (0.948) 0.940 (0.949)
Moment 0.952 (0.951) 0.956 (0.952) 0.952 (0.948) 0.951 (0.950) 0.948 (0.948)

0.7 Wald 0.921 (0.937) 0.931 (0.941) 0.932 (0.944) 0.938 (0.947) 0.940 (0.948)
Moment 0.953 (0.952) 0.953 (0.952) 0.952 (0.950) 0.951 (0.951) 0.952 (0.950)

1 Wald 0.929 (0.942) 0.934 (0.943) 0.936 (0.946) 0.939 (0.947) 0.940 (0.947)
Moment 0.951 (0.949) 0.953 (0.949) 0.952 (0.951) 0.952 (0.949) 0.951 (0.949)

1.2 Wald 0.933 (0.942) 0.935 (0.944) 0.936 (0.945) 0.938 (0.946) 0.941 (0.947)
Moment 0.952 (0.949) 0.951 (0.950) 0.951 (0.951) 0.950 (0.950) 0.951 (0.950)

Note: The values within parentheses are coverage probabilities when n1 = 20, n2 = 60.
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Journal of Statistical Computation and Simulation 7

Figure 1. Coverage probabilities of 95% CIs; n1 = n2 = 1.

satisfactory for very small values of parameters. Specifically, we observe from the first two plots
that, for small parameter values, the fiducial and the hybrid CIs are overly conservative, whereas
the moment CI is too liberal having coverage probabilities much smaller than the nominal level.
However, we see from the third plot that all three CIs perform satisfactorily controlling coverage
probabilities close to the nominal level. In particular, the third plot indicates that all three CIs
are satisfactory, and the hybrid and fiducial CIs perform better than the moment CI, if the mean
counts of both Poisson distributions are two or more.

In Table 3, we presented coverage probabilities of 90% and 95% CIs by the moment, fiducial
and hybrid methods for values of λ1 and λ2 ranging from 0.5 to 3.5. Here, we see that the fiducial
and hybrid CIs are better than the moment CI for some small values of parameters; see the columns
of λ1 = 0.75, 1, 1.25 and the rows of λ2 = 1.5 and 2. We once again observe that for λ1 ≥ 2 and
λ2 ≥ 2, all three CIs control the coverage levels satisfactorily. In Table 4, we present coverage
probabilities for n1 = n2 = 4 and for the same parameter configurations as in Table 3. For all the
cases considered, note that the expected counts are two or more, and so the coverage probabilities
are very close to the nominal level. However, the moment CI has an edge over other two CIs in
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Table 3. Coverage probabilities of 95% and 90% (in parentheses) CIs; n1 = n2 = 1.

λ1

λ2 Methods 0.5 0.75 1 1.25 1.5 2 2.5 3 3.5

0.5 Moment 1 (0.98) – – – – – – – –
Fiducial 1 (0.98) – – – – – – – –
Hybrid 1 (0.98) – – – – – – – –

0.75 Moment 0.71 (0.70) 0.99 (0.96) – – – – – – –
Fiducial 0.99 (0.97) 0.99 (0.96) – – – – – – –
Hybrid 0.99 (0.97) 0.99 (0.96) – – – – – – –

1 Moment 0.77 (0.73) 0.82 (0.80) 0.99 (0.94) – – – – – –
Fiducial 0.99 (0.96) 0.99 (0.90) 0.99 (0.94) – – – – – –
Hybrid 0.99 (0.96) 0.99 (0.95) 0.99 (0.94) – – – – – –

1.25 Moment 0.82 (0.71) 0.85 (0.80) 0.89 (0.86) 0.97 (0.92) – – – – –
Fiducial 0.99 (0.95) 0.98 (0.93) 0.98 (0.93) 0.97 (0.92) – – – – –
Hybrid 0.99 (0.95) 0.98 (0.93) 0.98 (0.93) 0.97 (0.92) – – – – –

1.5 Moment 0.77 (0.76) 0.88 (0.77) 0.89 (0.83) 0.92 (0.88) 0.97 (0.91) – – – –
Fiducial 0.98 (0.90) 0.98 (0.93) 0.97 (0.91) 0.95 (0.91) 0.97 (0.90) – – – –
Hybrid 0.97 (0.97) 0.98 (0.93) 0.97 (0.91) 0.97 (0.91) 0.97 (0.90) – – – –

2 Moment 0.86 (0.85) 0.86 (0.84) 0.86 (0.84) 0.93 (0.84) 0.93 (0.87) 0.96 (0.90) – – –
Fiducial 0.94 (0.91) 0.97 (0.90) 0.94 (0.89) 0.96 (0.89) 0.96 (0.90) 0.96 (0.88) – – –
Hybrid 0.98 (0.91) 0.97 (0.90) 0.94 (0.94) 0.96 (0.89) 0.96 (0.90) 0.96 (0.88) – – –

2.5 Moment 0.91 (0.89) 0.91 (0.89) 0.91 (0.88) 0.91 (0.87) 0.90 (0.87) 0.94 (0.88) 0.95 (0.90) – –
Fiducial 0.96 (0.89) 0.95 (0.89) 0.96 (0.89) 0.95 (0.90) 0.93 (0.89) 0.95 (0.89) 0.94 (0.87) – –
Hybrid 0.96 (0.89) 0.95 (0.93) 0.96 (0.89) 0.95 (0.90) 0.93 (0.92) 0.95 (0.89) 0.95 (0.87) – –

3 Moment 0.93 (0.87) 0.94 (0.91) 0.93 (0.89) 0.93 (0.90) 0.93 (0.89) 0.93 (0.89) 0.95 (0.89) 0.95 (0.90) –
Fiducial 0.94 (0.91) 0.93 (0.90) 0.95 (0.90) 0.94 (0.90) 0.94 (0.87) 0.93 (0.90) 0.95 (0.89) 0.95 (0.87) –
Hybrid 0.97 (0.91) 0.96 (0.88) 0.95 (0.90) 0.94 (0.91) 0.95 (0.87) 0.93 (0.91) 0.95 (0.89) 0.95 (0.87) –

3.5 Moment 0.86 (0.84) 0.95 (0.84) 0.94 (0.87) 0.94 (0.90) 0.94 (0.89) 0.94 (0.90) 0.94 (0.90) 0.95 (0.89) 0.95 (0.90)
Fiducial 0.94 (0.91) 0.95 (0.92) 0.95 (0.91) 0.94 (0.90) 0.95 (0.90) 0.94 (0.88) 0.95 (0.90) 0.95 (0.90) 0.95 (0.87)
Hybrid 0.95 (0.92) 0.95 (0.92) 0.96 (0.91) 0.95 (0.87) 0.95 (0.90) 0.95 (0.87) 0.94 (0.90) 0.95 (0.90) 0.95 (0.87)
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Table 4. Coverage probabilities and expected widths (in parentheses) of 95% CIs; n1 = 2, n2 = 4.

λ1

λ2 Methods 0.5 0.75 1 1.25 1.5 2 3

0.5 Moment 0.958 (1.88) – – – – – –
Fiducial 0.951 (2.21) – – – – – –
Hybrid 0.951 (2.29) – – – – – –

0.75 Moment 0.948 (2.13) 0.955 (2.34) – – – – –
Fiducial 0.950 (2.42) 0.942 (2.62) – – – – –
Hybrid 0.950 (2.49) 0.942 (2.68) – – – – –

1 Moment 0.948 (2.34) 0.953 (2.54) 0.954 (2.73) – – – –
Fiducial 0.948 (2.61) 0.945 (2.79) 0.943 (2.96) – – – –
Hybrid 0.948 (2.68) 0.945 (2.85) 0.944 (3.02) – – – –

1.25 Moment 0.943 (2.54) 0.951 (2.73) 0.953 (2.90) 0.953 (3.06) – – –
Fiducial 0.952 (2.78) 0.941 (2.96) 0.949 (3.13) 0.947 (3.27) – – –
Hybrid 0.952 (2.85) 0.944 (3.02) 0.947 (3.17) 0.945 (3.32) – – –

1.5 Moment 0.935 (2.73) 0.946 (2.90) 0.949 (3.06) 0.952 (3.21) 0.952 (3.36) – –
Fiducial 0.945 (2.94) 0.947 (3.11) 0.949 (3.27) 0.946 (3.42) 0.950 (3.55) – –
Hybrid 0.953 (3.01) 0.946 (3.17) 0.947 (3.32) 0.949 (3.46) 0.945 (3.60) – –

2 Moment 0.935 (3.06) 0.945 (3.21) 0.949 (3.36) 0.951 (3.50) 0.946 (3.63) 0.952 (3.89) –
Fiducial 0.952 (3.25) 0.948 (3.39) 0.950 (3.55) 0.945 (3.68) 0.947 (3.81) 0.947 (4.06) –
Hybrid 0.953 (3.31) 0.948 (3.46) 0.950 (3.60) 0.944 (3.73) 0.948 (3.86) 0.947 (4.10) –

3 Moment 0.934 (3.63) 0.938 (3.76) 0.933 (3.89) 0.933 (4.01) 0.931 (4.13) 0.929 (4.35) 0.948 (4.78)
Fiducial 0.941 (3.78) 0.951 (3.91) 0.952 (4.04) 0.947 (4.16) 0.955 (4.28) 0.933 (4.51) 0.947 (4.91)
Hybrid 0.971 (3.84) 0.956 (3.97) 0.952 (4.09) 0.947 (4.21) 0.955 (4.32) 0.933 (4.54) 0.947 (4.95)

Table 5. Coverage probabilities and expected widths (in parentheses) of 95% CIs; n1 = 30, n2 = 15.

λ1

λ2 Methods 0.5 0.75 1 1.25 1.5 2 3

0.5 Moment 0.953 (0.88) 0.947 (1.01) 0.948 (1.13) 0.949 (1.24) 0.947 (1.34) 0.947 (1.52) 0.946 (1.82)
Fiducial 0.950 (0.90) 0.949 (1.03) 0.950 (1.15) 0.950 (1.25) 0.951 (1.35) 0.951 (1.53) 0.951 (1.83)
Hybrid 0.950 (0.91) 0.948 (1.04) 0.950 (1.15) 0.948 (1.26) 0.951 (1.35) 0.948 (1.53) 0.949 (1.83)

0.75 Moment 0.952 (0.95) 0.952 (1.08) 0.949 (1.19) 0.951 (1.29) 0.949 (1.39) 0.949 (1.56) 0.949 (1.86)
Fiducial 0.947 (0.97) 0.946 (1.09) 0.948 (1.20) 0.950 (1.30) 0.949 (1.40) 0.950 (1.57) 0.948 (1.86)
Hybrid 0.951 (0.98) 0.949 (1.10) 0.947 (1.21) 0.950 (1.31) 0.949 (1.40) 0.951 (1.57) 0.950 (1.87)

1 Moment 0.950 (1.01) 0.951 (1.13) 0.950 (1.24) 0.951 (1.34) 0.950 (1.43) 0.949 (1.60) 0.949 (1.89)
Fiducial 0.948 (1.04) 0.950 (1.15) 0.949 (1.26) 0.950 (1.35) 0.948 (1.44) 0.948 (1.61) 0.949 (1.90)
Hybrid 0.950 (1.04) 0.949 (1.16) 0.950 (1.26) 0.950 (1.36) 0.950 (1.45) 0.950 (1.61) 0.949 (1.90)

1.25 Moment 0.949 (1.08) 0.951 (1.19) 0.951 (1.29) 0.950 (1.39) 0.951 (1.48) 0.950 (1.64) 0.949 (1.93)
Fiducial 0.948 (1.09) 0.948 (1.21) 0.948 (1.31) 0.950 (1.40) 0.950 (1.49) 0.949 (1.65) 0.949 (1.93)
Hybrid 0.950 (1.10) 0.949 (1.21) 0.950 (1.31) 0.949 (1.40) 0.950 (1.49) 0.950 (1.65) 0.949 (1.94)

1.5 Moment 0.950 (1.13) 0.951 (1.24) 0.950 (1.34) 0.950 (1.43) 0.951 (1.52) 0.950 (1.68) 0.950 (1.96)
Fiducial 0.950 (1.15) 0.950 (1.26) 0.950 (1.36) 0.948 (1.45) 0.949 (1.53) 0.949 (1.69) 0.950 (1.97)
Hybrid 0.948 (1.16) 0.950 (1.26) 0.949 (1.36) 0.949 (1.45) 0.950 (1.54) 0.950 (1.69) 0.950 (1.97)

2 Moment 0.950 (1.24) 0.950 (1.34) 0.951 (1.43) 0.951 (1.52) 0.950 (1.60) 0.951 (1.75) 0.950 (2.02)
Fiducial 0.950 (1.26) 0.948 (1.36) 0.951 (1.45) 0.949 (1.53) 0.951 (1.62) 0.948 (1.76) 0.950 (2.03)
Hybrid 0.950 (1.27) 0.950 (1.36) 0.949 (1.45) 0.950 (1.54) 0.950 (1.62) 0.950 (1.77) 0.950 (2.04)

3 Moment 0.949 (1.43) 0.951 (1.52) 0.950 (1.60) 0.950 (1.68) 0.950 (1.75) 0.950 (1.89) 0.950 (2.15)
Fiducial 0.948 (1.45) 0.950 (1.53) 0.949 (1.62) 0.949 (1.69) 0.950 (1.77) 0.949 (1.91) 0.951 (2.16)
Hybrid 0.949 (1.45) 0.950 (1.54) 0.950 (1.62) 0.950 (1.70) 0.950 (1.77) 0.950 (1.91) 0.949 (2.16)
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Table 6. 95% CIs for the difference between incidence rates in treatment groups losartan and captopril.

Losartan Captopril

Methods k1 t1 k2 t2 Wald Moment Hybrid Fiduciala

Death 11 309.5 25 295.3 (−0.0887, −0.0101) (−0.0910, −0.1053) (−0.0885, −0.0098) (−0.0905, −0.0107)
Pain, chest 6 309.2 5 295.9 (−0.0193, 0.0237) (−0.0206, 0.0256) (−0.0190, 0.0239) (−0.0202, 0.0254)
Heart failure 22 303.7 22 288.6 (−0.0482, 0.0399) (−0.0490, 0.0408) (−0.0478, 0.0403) (−0.0494, 0.0403)
Myocardial infarction 5 308.7 12 294.1 (−0.0520, 0.0022) (−0.0546, 0.0022) (−0.0517, 0.0025) (−0.0545, 0.0019)

aBased on 100,000 simulation runs.
Notes: k1, k2, number of events; t1, t2, patient-years.
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terms of precision (shorter expected widths). The moment CI has shorter expected width than
other two CIs for all the cases considered.

Finally, to judge the performance of the CIs for moderate sample sizes, we evaluated the
coverage probabilities and expected widths for sample sizes n1 = 10 and n2 = 50, and presented
then in Table 5. As anticipated, all CIs have excellent coverage properties maintaining coverage
probabilities very close to the nominal level. We also notice that the moment CI has shortest
expected widths among all three CIs, even though the differences in expected widths are not
appreciable.

Overall, our evaluation studies indicate that the fiducial and hybrid CIs are preferable for very
small expected counts, and the moment CI is preferable to other two CIs when the expected counts
from both distributions are two or more.

4. Examples

Example 1 To illustrate the methods in the preceding sections, we shall use the serious adverse
experience data analysed in Liu et al. [12]. The data were collected during the course of a 48-week
multi-center clinical trial to compare the tolerability of two drugs losartan and captopril. A total
of 722 elderly with heart failure were randomly assigned to double-blind losartan (n = 352) or
to captopril (n = 370). Various adverse events and the patient-years are reported in the study, and
for illustration purpose, we present here a few events, namely, deaths, heart failure, chest pain
and myocardial infarction along with patient-years in Table 6.

Note that for each type of event, the numbers of occurrences are not too small and the number
of patient-years is quite large. As a result, all methods produced CIs that are very similar; see
Table 6. In particular, we notice that the Wald CIs and the moment CIs are very close, and the
Jeffreys hybrid CIs and the fiducial CIs are in good agreement.

Example 2 This example is taken from Jaech [16], and it involves comparison of two types
of material. Three reactor fuel element failures were observed out of 310 process tubes for a
given type material. In a second type material, seven failures were observed out of 3500 process
tubes. Here, binomial models are more appropriate to compare the failure rates. As the Poisson
distribution is a limiting form of a binomial distribution, we can apply the interval estimation
procedures given earlier. Let λ1 be the failure rate of the first-type material, and λ2 be the failure
rate of the second-type material. CIs for the difference of failure rates are given in Table 7.

Here, we observe that the computed moment, fiducial and Jeffreys hybrid intervals for the
difference indicate that λ1 is greater than λ2, whereas the Wald interval for the difference (one-
sided as well as two-sided) indicates no significant difference between λ1 and λ2. This example
indicates that even for very large samples, the Wald CI could be inaccurate.

Table 7. 95% CIs for the difference between failure rates of two types of fuel elements.

Method Two-sided One-sided lower One-sided upper

Wald (−0.0034, 0.0187) −0.00160 0.01695
Moment (0.0009, 0.02573) 0.00156 0.02175
Fiduciala (0.0004, 0.02364) 0.00124 0.02068
Fiducialb (0.0004, 0.02375) 0.00123 0.02061
Jeffreys hybrid (0.0005, 0.02386) 0.00130 0.02072

aBased on 100,000 simulation runs.
bBased on the roots of Equation (11).
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5. Concluding remarks

We proposed a moment CI and a fiducial CI for estimating the difference between two Poisson
means. The moment CI is similar to the classical Wald CI, and it coincides with the Wald CI
when the sample sizes are equal. Our numerical study indicates that the Wald CI can be safely
used in situations where n1 = n2 and the expected counts from both Poisson distributions are at
least two. Furthermore, our studies and Example 2 indicate that all CIs that are considered in the
preceding sections could perform asymptotically similar, but they do differ appreciably even for
large samples. In particular, as noted in Example 2, the Wald CI could be different from others even
for very large samples with unequal sample sizes. The moment CI for the difference between two
Poisson means is simple to compute and offers improvement over other CIs provided expected
number of total counts from each population is at least two, which is a reasonable assumption in
many practical situations. Between the Jeffreys hybrid and fiducial CIs, the latter one offers slight
improvement (having shorter expected widths) over the former, but computation of the fiducial
CIs involves Monte Carlo simulation or numerical method. Finally, we note that both fiducial
and hybrid CIs could be overly conservative (yielding CIs that are unnecessarily wide) for small
values of (n1λ1, n2λ2), and thus they are also inaccurate in a sense.
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