Simple stably projectionless C^*-algebras

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405
U.S.A.

Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
Most results of this talk is taken from a joint work with Guihua Gong and a joint work with Elliott, Gong and Niu.
Most results of this talk is taken from a joint work with Guihua Gong and a joint work with Elliott, Gong and Niu.

Recall that

Theorem (GLN, EGLN, TWW, more)

Let A and B be two unital separable simple C^*-algebras with finite nuclear dimension which satisfy the UCT. Then $A \cong = B$ if and only if $\text{Ell}(A) \cong = \text{Ell}(B)$.
Most results of this talk is taken from a joint work with Guihua Gong and a joint work with Elliott, Gong and Niu. Recall that

Theorem (GLN, EGLN, TWW, more)

Let A and B be two unital separable simple C^*-algebras with finite nuclear dimension which satisfy the UCT. Then

$$A \cong B$$

if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$
We will consider non-unital separable simple amenable C^*-algebras.
We will consider non-unital separable simple amenable C^*-algebras. For the convenience, we will discuss only the case $K_0(A)_+ = \{0\}$.
We will consider non-unital separable simple amenable C^*-algebras. For the convenience, we will discuss only the case $K_0(A)_+ = \{0\}$. If $K_0(A)_+ \neq \{0\}$, the classification can be reduced to the unital case.
We will consider non-unital separable simple amenable C^*-algebras. For the convenience, we will discuss only the case $K_0(A)_+ = \{0\}$. If $K_0(A)_+ \neq \{0\}$, the classification can be reduced to the unital case.
Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT such that $\text{gTR}(A) \leq 1$, $\text{gTR}(B) \leq 1$.

Suppose that $\ker \rho_A = K_0(A)$ and $\ker \rho_B = K_0(B)$.

Then $A \sim B$ if and only if $\text{Ell}(A) \sim \text{Ell}(B)$.

$K_0(A)_+ = \{0\}$.
$K_0(A)_+ = \{0\}$.

Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT.
Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT such that $gTR(A) \leq 1$, $gTR(B) \leq 1$.

\[K_0(A)^+ = \{0\}. \]
$K_0(A)_+ = \{0\}.$

Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT such that $gTR(A) \leq 1$, $gTR(B) \leq 1$. Suppose that $\ker \rho_A = K_0(A)$ and $\ker \rho_B = K_0(B)$. Then $A \sim B$ if and only if $\Ell(A) \sim \Ell(B)$.
$K_0(A)_+ = \{0\}.$

Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT such that $g_{TR}(A) \leq 1$, $g_{TR}(B) \leq 1$. Suppose that $\ker \rho_A = K_0(A)$ and $\ker \rho_B = K_0(B)$. Then $A \cong B$ if and only if $\Ell(A) \cong \Ell(B)$.
There is a (non-unital) separable simple C^*-algebra Z_0 which is an inductive limit of 1-dim. NCWC s
There is a (non-unital) separable simple C^*-algebra \mathcal{Z}_0 which is an inductive limit of 1-dim. NCWC s such that $K_0(\mathcal{Z}_0) = \mathbb{Z}$, $K_1(\mathcal{Z}_0) = \{0\}$ with unique tracial state.
There is a (non-unital) separable simple C^*-algebra \mathcal{Z}_0 which is an inductive limit of 1-dim. NCWC s such that $K_0(\mathcal{Z}_0) = \mathbb{Z}$, $K_1(\mathcal{Z}_0) = \{0\}$ with unique tracial state and $K_0(\mathcal{Z}_0) = \ker \rho_{\mathcal{Z}_0}$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Then $A \otimes \mathcal{Z}_0 \cong B \otimes \mathcal{Z}_0$ if and only if $\text{Ell}(A \otimes \mathcal{Z}_0) \cong \text{Ell}(B \otimes \mathcal{Z}_0)$.

Corollary

In particular, $\mathcal{Z}_0 \otimes \mathcal{Z}_0 \cong \mathcal{Z}_0$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong Lafayette, Louisiana, Oct, 2017 5/26
There is a (non-unital) separable simple C^*-algebra \mathcal{Z}_0 which is an inductive limit of 1-dim. NCWC s such that $K_0(\mathcal{Z}_0) = \mathbb{Z}$, $K_1(\mathcal{Z}_0) = \{0\}$ with unique tracial state and $K_0(\mathcal{Z}_0) = \ker \rho_{\mathcal{Z}_0}$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT.

$A \otimes \mathcal{Z}_0 \sim = B \otimes \mathcal{Z}_0$ if and only if $\text{Ell}(A \otimes \mathcal{Z}_0) \sim = \text{Ell}(B \otimes \mathcal{Z}_0)$.

In particular, $\mathcal{Z}_0 \otimes \mathcal{Z}_0 \sim = \mathcal{Z}_0$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras
Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
There is a (non-unital) separable simple C^*-algebra \mathcal{Z}_0 which is an inductive limit of 1-dim. NCWC s such that $K_0(\mathcal{Z}_0) = \mathbb{Z}$, $K_1(\mathcal{Z}_0) = \{0\}$ with unique tracial state and $K_0(\mathcal{Z}_0) = \ker\rho_{\mathcal{Z}_0}$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Then $A \otimes \mathcal{Z}_0 \cong B \otimes \mathcal{Z}_0$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
There is a (non-unital) separable simple C^*-algebra \mathcal{Z}_0 which is an inductive limit of 1-dim. NCWC s such that $K_0(\mathcal{Z}_0) = \mathbb{Z}$, $K_1(\mathcal{Z}_0) = \{0\}$ with unique tracial state and $K_0(\mathcal{Z}_0) = \ker \rho_{\mathcal{Z}_0}$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Then $A \otimes \mathcal{Z}_0 \cong B \otimes \mathcal{Z}_0$ if and only if

$$\text{Ell}(A \otimes \mathcal{Z}_0) \cong \text{Ell}(B \otimes \mathcal{Z}_0).$$
There is a (non-unital) separable simple C^*-algebra Z_0 which is an inductive limit of 1-dim. NCWC's such that $K_0(Z_0) = \mathbb{Z}$, $K_1(Z_0) = \{0\}$ with unique tracial state and $K_0(Z_0) = \ker \rho_{Z_0}$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Then $A \otimes Z_0 \cong B \otimes Z_0$ if and only if

$$\text{Ell}(A \otimes Z_0) \cong \text{Ell}(B \otimes Z_0).$$
There is a (non-unital) separable simple C^*-algebra Z_0 which is an inductive limit of 1-dim. NCWC s such that $K_0(Z_0) = \mathbb{Z}$, $K_1(Z_0) = \{ 0 \}$ with unique tracial state and $K_0(Z_0) = \ker \rho_{Z_0}$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Then $A \otimes Z_0 \cong B \otimes Z_0$ if and only if

$$\text{Ell}(A \otimes Z_0) \cong \text{Ell}(B \otimes Z_0).$$

Corollary

In particular, $Z_0 \otimes Z_0 \cong Z_0$.
Let A be a C^*-algebra. Denote by $T(A)$ the tracial state space of A.
Let A be a C^*-algebra. Denote by $T(A)$ the tracial state space of A. Let $\text{Aff}(T(A))$ be the space of all real valued affine continuous functions on $T(A)$.
Let A be a C^*-algebra. Denote by $T(A)$ the tracial state space of A. Let $\text{Aff}(T(A))$ be the space of all real valued affine continuous functions on $T(A)$. There is an (order preserving) homomorphism $\rho_A : K_0(A) \to \text{Aff}(T(A))$.

Note $\ker \rho_A \subset K_0(A)$ is a subgroup of $K_0(A)$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong Lafayette, Louisiana, Oct, 2017
Let A be a C^*-algebra. Denote by $T(A)$ the tracial state space of A.

Let $\text{Aff}(T(A))$ be the space of all real valued affine continuous functions on $T(A)$.

There is an (order preserving) homomorphism $\rho_A : K_0(A) \rightarrow \text{Aff}(T(A))$.

Note $\ker \rho_A \subset K_0(A)$ is a subgroup of $K_0(A)$.
Let $\tilde{T}(A)$ be the cone of densely defined, positive lower semi-continuous traces on A equipped with the topology of point-wise convergence on elements of the Pedersen ideal $P(A)$ of A.

Let $a \in A^+$. Suppose that $\tilde{T}(A) \neq \emptyset$.

Recall that $d\tau(a) = \lim_{\epsilon \to 0} \tau(f_\epsilon(a))$ with possible infinite value.

Note that $f_\epsilon(a) \in P(A)^+$. Therefore $\tau \mapsto d\tau(a)$ is a lower semi-continuous affine function on $\tilde{T}(A)$ (to $[0, \infty]$).

Suppose that A is non-unital.

Let $a \in A^+$ be a strictly positive element.

Define $\Sigma_A(\tau) = d\tau(a)$ for all $\tau \in \tilde{T}(A)$.

Σ_A is independent of the choice of a.

The lower semi-continuous affine function Σ_A is called the scale function of A.
Let $\tilde{T}(A)$ be the cone of densely defined, positive lower semi-continuous traces on A equipped with the topology of point-wise convergence on elements of the Pedersen ideal $P(A)$ of A.
Let $\tilde{T}(A)$ be the cone of densely defined, positive lower semi-continuous traces on A equipped with the topology of point-wise convergence on elements of the Pedersen ideal $P(A)$ of A.

Let $a \in A_+$. Suppose that $\tilde{T}(A) \neq \emptyset$.
Let $\tilde{T}(A)$ be the cone of densely defined, positive lower semi-continuous traces on A equipped with the topology of point-wise convergence on elements of the Pedersen ideal $P(A)$ of A.

Let $a \in A_+$. Suppose that $\tilde{T}(A) \neq \emptyset$. Recall that

$$d_\tau(a) = \lim_{\epsilon \to 0} \tau(f_\epsilon(a))$$

with possible infinite value.
Let $\tilde{T}(A)$ be the cone of densely defined, positive lower semi-continuous traces on A equipped with the topology of point-wise convergence on elements of the Pedersen ideal $P(A)$ of A.

Let $a \in A_+$. Suppose that $\tilde{T}(A) \neq \emptyset$. Recall that

$$d_\tau(a) = \lim_{\epsilon \to 0} \tau(f_\epsilon(a))$$

with possible infinite value. Note that $f_\epsilon(a) \in P(A)_+$.
Let $\tilde{T}(A)$ be the cone of densely defined, positive lower semi-continuous traces on A equipped with the topology of point-wise convergence on elements of the Pedersen ideal $P(A)$ of A.

Let $a \in A_+$. Suppose that $\tilde{T}(A) \neq \emptyset$. Recall that

$$d_\tau(a) = \lim_{\epsilon \to 0} \tau(f_\epsilon(a))$$

with possible infinite value. Note that $f_\epsilon(a) \in P(A)_+$. Therefore $\tau \mapsto d_\tau(a)$ is a lower semi-continuous affine function on $\tilde{T}(A)$ (to $[0, \infty]$).

Suppose that A is non-unital.
Let $\tilde{T}(A)$ be the cone of densely defined, positive lower semi-continuous traces on A equipped with the topology of point-wise convergence on elements of the Pedersen ideal $P(A)$ of A. Let $a \in A_+$. Suppose that $\tilde{T}(A) \neq \emptyset$. Recall that

$$d_\tau(a) = \lim_{\epsilon \to 0} \tau(f_\epsilon(a))$$

with possible infinite value. Note that $f_\epsilon(a) \in P(A)_+$. Therefore $\tau \mapsto d_\tau(a)$ is a lower semi-continuous affine function on $\tilde{T}(A)$ (to $[0, \infty]$). Suppose that A is non-unital. Let $a \in A_+$ be a strictly positive element.
Let \(\tilde{T}(A) \) be the cone of densely defined, positive lower semi-continuous traces on \(A \) equipped with the topology of point-wise convergence on elements of the Pedersen ideal \(P(A) \) of \(A \). Let \(a \in A_+ \). Suppose that \(\tilde{T}(A) \neq \emptyset \). Recall that

\[
d_{\tau}(a) = \lim_{\epsilon \to 0} \tau(f_{\epsilon}(a))
\]

with possible infinite value. Note that \(f_{\epsilon}(a) \in P(A)_+ \). Therefore \(\tau \mapsto d_{\tau}(a) \) is a lower semi-continuous affine function on \(\tilde{T}(A) \) (to \([0, \infty]\)).

Suppose that \(A \) is non-unital. Let \(a \in A_+ \) be a strictly positive element. Define

\[
\Sigma_A(\tau) = d_{\tau}(a) \quad \text{for all} \quad \tau \in \tilde{T}(A).
\]
Let $\tilde{T}(A)$ be the cone of densely defined, positive lower semi-continuous traces on A equipped with the topology of point-wise convergence on elements of the Pedersen ideal $P(A)$ of A.

Let $a \in A_+$. Suppose that $\tilde{T}(A) \neq \emptyset$. Recall that

$$d_\tau(a) = \lim_{\epsilon \to 0} \tau(f_\epsilon(a))$$

with possible infinite value. Note that $f_\epsilon(a) \in P(A)_+$. Therefore $\tau \mapsto d_\tau(a)$ is a lower semi-continuous affine function on $\tilde{T}(A)$ (to $[0, \infty]$).

Suppose that A is non-unital. Let $a \in A_+$ be a strictly positive element. Define

$$\Sigma_A(\tau) = d_\tau(a) \text{ for all } \tau \in \tilde{T}(A).$$

Σ_A is independent of the choice of a.
Let \(\tilde{T}(A) \) be the cone of densely defined, positive lower semi-continuous traces on \(A \) equipped with the topology of point-wise convergence on elements of the Pedersen ideal \(P(A) \) of \(A \).

Let \(a \in A_+ \). Suppose that \(\tilde{T}(A) \neq \emptyset \). Recall that

\[
d_{\tau}(a) = \lim_{\epsilon \to 0} \tau(f_{\epsilon}(a))
\]

with possible infinite value. Note that \(f_{\epsilon}(a) \in P(A)_+ \). Therefore \(\tau \mapsto d_{\tau}(a) \) is a lower semi-continuous affine function on \(\tilde{T}(A) \) (to \([0, \infty]\)).

Suppose that \(A \) is non-unital. Let \(a \in A_+ \) be a strictly positive element. Define

\[
\Sigma_A(\tau) = d_{\tau}(a) \quad \text{for all } \tau \in \tilde{T}(A).
\]

\(\Sigma_A \) is independent of the choice of \(a \). The lower semi-continuous affine function \(\Sigma_A \) is called the scale function of \(A \).
In the above cases,

\[\operatorname{Ell}(A) = (K_0(A), K_1(A), \tilde{T}(A), \Sigma_A). \]
In the above cases,

\[\text{Ell}(A) = (K_0(A), K_1(A), \tilde{T}(A), \Sigma_A). \]

Theorem (EGLN)

Let \(A \) and \(B \) be two separable simple \(C^* \)-algebras with finite nuclear dimension such that \(KK(A, A) = KK(B, B) = 0 \). Suppose that \(T(A), T(B) \neq \emptyset \). Then \(A \sim B \) if and only if \(\text{Ell}(A) \sim \text{Ell}(B) \).
In the above cases,

\[\text{Ell}(A) = (K_0(A), K_1(A), \tilde{T}(A), \Sigma_A). \]

Theorem (EGLN)

Let \(A \) and \(B \) be two separable simple \(C^* \)-algebras with finite nuclear dimension such that \(KK(A, A) = KK(B, B) = 0 \). Suppose that \(T(A), T(B) \neq \emptyset \). Then

\[A \sim B \] if and only if

\[\text{Ell}(A) \sim \text{Ell}(B). \]
In the above cases,

\[\text{Ell}(A) = (K_0(A), K_1(A), \tilde{T}(A), \Sigma_A). \]

Theorem (EGLN)

Let \(A \) and \(B \) be two separable simple \(C^* \)-algebras with finite nuclear dimension such that \(KK(A, A) = KK(B, B) = 0 \). Suppose that \(T(A), T(B) \neq \emptyset \). Then \(A \cong B \) if and only if
In the above cases,

$$\text{Ell}(A) = (K_0(A), K_1(A), \tilde{T}(A), \Sigma_A).$$

Theorem (EGLN)

Let A and B be two separable simple C^-algebras with finite nuclear dimension such that $KK(A, A) = KK(B, B) = 0$. Suppose that $T(A), T(B) \neq \emptyset$. Then $A \cong B$ if and only if*

$$\text{Ell}(A) \cong \text{Ell}(B).$$
In the above cases,

$$\Ell(A) = (K_0(A), K_1(A), \tilde{T}(A), \Sigma_A).$$

Theorem (EGLN)

Let A and B be two separable simple C^-algebras with finite nuclear dimension such that $KK(A, A) = KK(B, B) = 0$. Suppose that $T(A), T(B) \neq \emptyset$. Then $A \cong B$ if and only if*

$$\Ell(A) \cong \Ell(B).$$
In the above cases,

\[\text{Ell}(A) = (K_0(A), K_1(A), \tilde{T}(A), \Sigma_A). \]

Theorem (EGLN)

Let \(A \) and \(B \) be two separable simple \(C^* \)-algebras with finite nuclear dimension such that \(KK(A, A) = KK(B, B) = 0 \). Suppose that \(T(A), T(B) \neq \emptyset \). Then \(A \cong B \) if and only if

\[\text{Ell}(A) \cong \text{Ell}(B). \]

Theorem

Let \(B \) be a separable amenable simple \(C^* \)-algebra.
In the above cases,

\[\text{Ell}(A) = (K_0(A), K_1(A), \tilde{T}(A), \Sigma_A). \]

Theorem (EGLN)

Let \(A \) and \(B \) be two separable simple C*-algebras with finite nuclear dimension such that \(KK(A, A) = KK(B, B) = 0 \). Suppose that \(T(A), T(B) \neq \emptyset \). Then \(A \cong B \) if and only if

\[\text{Ell}(A) \cong \text{Ell}(B). \]

Theorem

Let \(B \) be a separable amenable simple C*-algebra. Then there exists \(A \) such that \(gTR(A) \leq 1 \) satisfying the UCT such that
In the above cases,

$$\text{Ell}(A) = (K_0(A), K_1(A), \tilde{T}(A), \Sigma_A).$$

Theorem (EGLN)

Let A and B be two separable simple C^*-algebras with finite nuclear dimension such that $KK(A, A) = KK(B, B) = 0$. Suppose that $T(A), T(B) \neq \emptyset$. Then $A \cong B$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$

Theorem

Let B be a separable amenable simple C^*-algebra. Then there exists A such that $gTR(A) \leq 1$ satisfying the UCT such that

$$\text{Ell}(B \otimes \mathcal{Z}_0) = \text{Ell}(A \otimes \mathcal{Z}_0).$$
Following L. Robert's term, let C_0 be the family of non-unital non-commutative 1-dimensional CW complices C (non-unital version of Elliott-Thomsen building blocks) with $K_0(C)_+ = \{0\}$,
Following L. Robert’s term, let \mathcal{C}_0 be the family of non-unital non-commutative 1-dimensional CW complices C (non-unital version of Elliott-Thomsen building blocks) with $K_0(C)_+ = \{0\}$, $K_1(C) = \{0\}$ and with $0 \not\in \overline{T(C)}^w$ (the weak*-closure of $T(C)$ in $\tilde{T}(C)$).
Following L. Robert’s term, let \mathcal{C}_0 be the family of non-unital non-commutative 1-dimensional CW complices C (non-unital version of Elliott-Thomsen building blocks) with $K_0(C) = \{0\}$, $K_1(C) = \{0\}$ and with $0 \not\in \overline{T(C)}^w$ (the weak*-closure of $T(C)$ in $\tilde{T}(C)$). Let \mathcal{C}_0^0 be family of those C^*-algebra in \mathcal{C}_0 with $K_0(C) = \{0\}$.

Ex: The following are examples from a paper of Razak:
Following L. Robert’s term, let \mathcal{C}_0 be the family of non-unital non-commutative 1-dimensional CW complexes C (non-unital version of Elliott-Thomsen building blocks) with $K_0(C)_+ = \{0\}$, $K_1(C) = \{0\}$ and with $0 \not\in \overline{T(C)}^w$ (the weak*-closure of $T(C)$ in $\tilde{T}(C)$). Let \mathcal{C}_0^0 be family of those C^*-algebra in \mathcal{C}_0 with $K_0(C) = \{0\}$.

Ex: The following are examples from a paper of Razak: Let $F_1 = M_k$ for some $k \geq 1$ and $F_2 = M_{(m+1)k}$ for some $m \geq 1$.

Following L. Robert’s term, let \mathcal{C}_0 be the family of non-unital non-commutative 1-dimensional CW complices C (non-unital version of Elliott-Thomsen building blocks) with $K_0(C)_+ = \{0\}$, $K_1(C) = \{0\}$ and with $0 \notin \overline{T(C)}^w$ (the weak*-closure of $T(C)$ in $\tilde{T}(C)$). Let \mathcal{C}_0^0 be family of those C^*-algebra in \mathcal{C}_0 with $K_0(C) = \{0\}$.

Ex: The following are examples from a paper of Razak: Let $F_1 = M_k$ for some $k \geq 1$ and $F_2 = M_{(m+1)k}$ for some $m \geq 1$. Define $\psi_0, \psi_1 : F_1 \to F_2$ by

$$\psi_0(a) = \text{diag}(\underbrace{a, a, \ldots, a, 0}_m)$$
Following L. Robert’s term, let C_0 be the family of non-unital non-commutative 1-dimensional CW complices C (non-unital version of Elliott-Thomsen building blocks) with $K_0(C)_+ = \{0\}$, $K_1(C) = \{0\}$ and with $0 \notin \overline{T(C)}^w$ (the weak*-closure of $T(C)$ in $\tilde{T}(C)$). Let C_0^0 be family of those C^*-algebra in C_0 with $K_0(C) = \{0\}$.

Ex: The following are examples from a paper of Razak: Let $F_1 = M_k$ for some $k \geq 1$ and $F_2 = M_{(m+1)k}$ for some $m \geq 1$. Define $\psi_0, \psi_1 : F_1 \to F_2$ by

$$\psi_0(a) = \text{diag}(a, a, \ldots, a, 0) \quad \text{and} \quad \psi_1(a) = \text{diag}(a, a, \ldots, a, a)$$

for all $a \in F_2$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong Lafayette, Louis
Following L. Robert’s term, let \mathcal{C}_0 be the family of non-unital non-commutative 1-dimensional CW complices C (non-unital version of Elliott-Thomsen building blocks) with $K_0(C)_+ = \{0\}$, $K_1(C) = \{0\}$ and with $0 \notin \overline{T(C)}^w$ (the weak*-closure of $T(C)$ in $\tilde{T}(C)$). Let \mathcal{C}_0^0 be family of those C^*-algebra in \mathcal{C}_0 with $K_0(C) = \{0\}$.

Ex: The following are examples from a paper of Razak: Let $F_1 = M_k$ for some $k \geq 1$ and $F_2 = M_{(m+1)k}$ for some $m \geq 1$. Define $\psi_0, \psi_1 : F_1 \to F_2$ by

$$
\psi_0(a) = \text{diag}(a, a, \ldots, a, 0) \quad \text{and} \quad \psi_1(a) = \text{diag}(a, a, \ldots, a, a)
$$

for all $a \in F_2$. Let

$$
A = \{(f, a) : f \in C([0, 1], F_2) \oplus F_1 : f(0) = \psi_0(a) \text{ and } f(1) = \psi_1(a)\}
$$

Then $K_0(A) = \{0\} = K_1(A)$ and $0 \notin \overline{T(A)}^w$ (Razak).
Let $F_1 = \mathbb{C} \oplus \mathbb{C}$, $F_2 = M_{2n}(\mathbb{C})$. For $(a, b) \in \mathbb{C} \oplus \mathbb{C} = F_1$, define

$$\psi_0(a, b) = \text{diag}(a, a, \ldots, a, 0, 0),$$

and

$$\psi_1(a, b) = \text{diag}(a, a, \ldots, a, b, b, \ldots, b).$$

Then $A = \{(f, x) \in \mathbb{C}([0, 1], F_2) \oplus F_1 : f(0) = \psi_0(x) \text{ and } f(1) = \psi_1(x)\}$ has the property that $K_0(A) = \{(k, -k) \in \mathbb{Z} \oplus \mathbb{Z} \}$, which is isomorphic to \mathbb{Z} but $K_0(A) + = \{0\}$. Also $K_1(A) = \{0\}$. Thus $A \in \mathbb{C}_0$ but $A/ \in \mathbb{C}_0$. Let \mathbb{C}'_0 denote the class of all full hereditary \mathbb{C}^*-subalgebras of \mathbb{C}^*-algebras in \mathbb{C}_0.
Let $F_1 = \mathbb{C} \oplus \mathbb{C}$, $F_2 = M_{2n}(\mathbb{C})$. For $(a, b) \in \mathbb{C} \oplus \mathbb{C} = F_1$, define

$$\psi_0(a, b) = \text{diag}(a, a \ldots a, b, b \ldots b, 0, 0)_{n-1 \times n-1}$$
Let \(F_1 = \mathbb{C} \oplus \mathbb{C}, F_2 = M_{2n}(\mathbb{C}) \). For \((a, b) \in \mathbb{C} \oplus \mathbb{C} = F_1\), define

\[
\psi_0(a, b) = \text{diag}(a, a, \ldots, a, b, b, \ldots, b, 0, 0)
\]

\[(e0.1)\]

and

\[
\psi_1(a, b) = \text{diag}(a, a, \ldots, a, b, b, \ldots, b).
\]

\[(e0.2)\]
Let \(F_1 = \mathbb{C} \oplus \mathbb{C}, \quad F_2 = M_{2n}(\mathbb{C}) \). For \((a, b) \in \mathbb{C} \oplus \mathbb{C} = F_1\), define

\[
\psi_0(a, b) = \text{diag}(a, a \ldots a, b, b \ldots b, 0, 0)
\]

\[
\text{and} \quad \psi_1(a, b) = \text{diag}(a, a \ldots a, b, b \ldots b).
\]

Then

\[
A = \{(f, x) \in C([0, 1], F_2) \oplus F_1 : f(0) = \psi_0(x) \text{ and } f(1) = \psi_1(x)\}
\]

has the property that \(K_0(A) = \{(k, -k) \in \mathbb{Z} \oplus \mathbb{Z}\} \)
Let $F_1 = \mathbb{C} \oplus \mathbb{C}$, $F_2 = M_{2n}(\mathbb{C})$. For $(a, b) \in \mathbb{C} \oplus \mathbb{C} = F_1$, define

$$\psi_0(a, b) = \text{diag}(a, a...a, b, b...b, 0, 0)$$

and

$$\psi_1(a, b) = \text{diag}(a, a...a, b, b...b).$$

Then

$$A = \{(f, x) \in C([0, 1], F_2) \oplus F_1 : f(0) = \psi_0(x) \text{ and } f(1) = \psi_1(x)\}$$

has the property that $K_0(A) = \{(k, -k) \in \mathbb{Z} \oplus \mathbb{Z}\}$ which is isomorphic to \mathbb{Z}.
Let \(F_1 = \mathbb{C} \oplus \mathbb{C}, F_2 = M_{2n}(\mathbb{C}) \). For \((a, b) \in \mathbb{C} \oplus \mathbb{C} = F_1\), define

\[
\psi_0(a, b) = \text{diag}(a, a...a, b, b...b, 0, 0)
\]
and \[
\psi_1(a, b) = \text{diag}(a, a...a, b, b...b).
\]

Then

\[
A = \{(f, x) \in C([0, 1], F_2) \oplus F_1 : f(0) = \psi_0(x) \text{ and } f(1) = \psi_1(x)\}
\]

has the property that \(K_0(A) = \{(k, -k) \in \mathbb{Z} \oplus \mathbb{Z}\} \) which is isomorphic to \(\mathbb{Z} \) but \(K_0(A)_+ = \{0\} \). Also \(K_1(A) = \{0\} \).
Let $F_1 = \mathbb{C} \oplus \mathbb{C}$, $F_2 = M_{2n}(\mathbb{C})$. For $(a, b) \in \mathbb{C} \oplus \mathbb{C} = F_1$, define

$$
\psi_0(a, b) = \text{diag}(a, a...a, b, b...b, 0, 0) \quad (e0.1)
$$

and

$$
\psi_1(a, b) = \text{diag}(a, a...a, b, b...b) \quad (e0.2)
$$

Then

$$
A = \{(f, x) \in C([0, 1], F_2) \oplus F_1 : f(0) = \psi_0(x) \text{ and } f(1) = \psi_1(x)\}
$$

has the property that $K_0(A) = \{(k, -k) \in \mathbb{Z} \oplus \mathbb{Z}\}$ which is isomorphic to \mathbb{Z} but $K_0(A)_+ = \{0\}$. Also $K_1(A) = \{0\}$. Thus $A \in C_0$ but $A \notin C_0^0$.

Let C' denote the class of all full hereditary C^*-subalgebras of C^*-algebras in C_0, let C_0' denote the class of all full hereditary C^*-subalgebras of C^*-algebras in C_0.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras
Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
Let $F_1 = \mathbb{C} \oplus \mathbb{C}$, $F_2 = M_{2n}(\mathbb{C})$. For $(a, b) \in \mathbb{C} \oplus \mathbb{C} = F_1$, define

$$\psi_0(a, b) = \text{diag}(a, a...a, b, b...b, 0, 0)$$

and

$$\psi_1(a, b) = \text{diag}(a, a...a, b, b...b).$$

Then

$$A = \{(f, x) \in C([0, 1], F_2) \oplus F_1 : f(0) = \psi_0(x) \text{ and } f(1) = \psi_1(x)\}$$

has the property that $K_0(A) = \{(k, -k) \in \mathbb{Z} \oplus \mathbb{Z}\}$ which is isomorphic to \mathbb{Z} but $K_0(A)_+ = \{0\}$. Also $K_1(A) = \{0\}$. Thus $A \in C_0$ but $A \notin C_0'$. Let C_0' denote the class of all full hereditary C^*-subalgebras of C^*-algebras in C_0 let $C_0^{0'}$ denote the class of all full hereditary C^*-subalgebras of C^*-algebras in C_0.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong Lafayette, Louisiana, Oct, 2017
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A)
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$,
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$, Suppose that, for any $\epsilon > 0$,
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$, Suppose that, for any $\epsilon > 0$, any finite subset $\mathcal{F} \subset A$
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$, Suppose that, for any $\epsilon > 0$, any finite subset $F \subset A$ and any $b \in A_+ \setminus \{0\}$,
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$. Suppose that, for any $\epsilon > 0$, any finite subset $\mathcal{F} \subset A$ and any $b \in A_+ \setminus \{0\}$, there are \mathcal{F}-ϵ-multiplicative c.p.c. linear maps $\phi : A \to A$ and $\psi : A \to D$ for some C^*-subalgebra $D \subset A$.
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$, Suppose that, for any $\epsilon > 0$, any finite subset $F \subset A$ and any $b \in A_+ \setminus \{0\}$, there are F-ϵ-multiplicative c.p.c. linear maps $\phi : A \to A$ and $\psi : A \to D$ for some C^*-subalgebra $D \subset A$ such that $D \in C'_0$ (or in C'_0)

$$\|x - \text{diag}(\phi(x), \psi(x))\| < \epsilon \text{ for all } x \in F \cup \{a\}, \quad (e\ 0.3)$$
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$, Suppose that, for any $\epsilon > 0$, any finite subset $F \subset A$ and any $b \in A_+ \setminus \{0\}$, there are F-ϵ-multiplicative c.p.c. linear maps $\phi : A \to A$ and $\psi : A \to D$ for some C^*-subalgebra $D \subset A$ such that $D \in C_0'$ (or in $C_0^{0'}$)

$$\|x - \text{diag}(\phi(x), \psi(x))\| < \epsilon \text{ for all } x \in F \cup \{a\}, \quad (e0.3)$$

$$\phi(a) \lesssim b, \quad (e0.4)$$
Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$, Suppose that, for any $\epsilon > 0$, any finite subset $F \subset A$ and any $b \in A_+ \setminus \{0\}$, there are F-ϵ-multiplicative c.p.c. linear maps $\phi : A \to A$ and $\psi : A \to D$ for some C^*-subalgebra $D \subset A$ such that $D \in C'_0$ (or in C'_0)

\[
\|x - \text{diag}(\phi(x), \psi(x))\| < \epsilon \text{ for all } x \in F \cup \{a\}, \quad (e\,0.3)
\]

\[
\phi(a) \precsim b, \quad (e\,0.4)
\]

\[
t(f_{1/4}(\psi(a))) \geq 3/4 \text{ for all } t \in T(D).
\]
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$. Suppose that, for any $\epsilon > 0$, any finite subset $F \subset A$ and any $b \in A_+ \setminus \{0\}$, there are F-ϵ-multiplicative c.p.c. linear maps $\phi: A \to A$ and $\psi: A \to D$ for some C^*-subalgebra $D \subset A$ such that $D \in C_0'$ (or in C_0'')

$$\|x - \text{diag}(\phi(x), \psi(x))\| < \epsilon \quad \text{for all } x \in F \cup \{a\}, \quad (e \, 0.3)$$

$$\phi(a) \preceq b, \quad (e \, 0.4)$$

$$t(f_{1/4}(\psi(a))) \geq 3/4 \quad \text{for all } t \in T(D). \quad (e \, 0.5)$$

Then we say $A \in D$ (or D_0).
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$, Suppose that, for any $\epsilon > 0$, any finite subset $F \subset A$ and any $b \in A_+ \setminus \{0\}$, there are F-ϵ-multiplicative c.p.c. linear maps $\phi : A \to A$ and $\psi : A \to D$ for some C^*-subalgebra $D \subset A$ such that $D \in C'_0$ (or in C'_0) such that

\[
\|x - \text{diag}(\phi(x), \psi(x))\| < \epsilon \quad \text{for all} \quad x \in F \cup \{a\}, \tag{e 0.3}
\]
\[
\phi(a) \preceq b, \tag{e 0.4}
\]
\[
t(f_{1/4}(\psi(a))) \geq 3/4 \quad \text{for all} \quad t \in T(D). \tag{e 0.5}
\]

Then we say $A \in D$ (or D_0).

$W, Z_0 \in D_0$.
Definition

(in a convenient setting) We say a non-unital separable simple C^*-algebra A has generalized tracial rank at most one, if there exists $a \in P(A) + \{0\}$ such that $eAe \in D$, or e is a non-zero projection and $g_{TR}(eAe) \leq 1$.
Definition

(in a convenient setting) We say a non-unital separable simple C^*-algebra A has generalized tracial rank at most one, if there exists $a \in P(A)_+ \setminus \{0\}$ such that

$$e_A e \in D,$$

or e is a non-zero projection and $g_{TR}(e_A e) \leq 1$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong Lafayette, Louis
Definition

(in a convenient setting) We say a non-unital separable simple C^*-algebra A has generalized tracial rank at most one, if there exists $a \in P(A)_+ \setminus \{0\}$ such that $eAe \in \mathcal{D}$,
Definition

(in a convenient setting) We say a non-unital separable simple C^*-algebra A has generalized tracial rank at most one, if there exists $a \in P(A)_+ \setminus \{0\}$ such that $eAe \in D$, or e is a non-zero projection and $gTR(eAe) \leq 1$.
Let \(A \in \mathcal{D} \).

(i) Then \(QT(A) = T(A) \);

(ii) \(A \) has the tracially approximate divisible property, if \(A \in \mathcal{D}_0 \);

(iii) \(A \) has strict comparison for positive elements (in usual sense).

(i.e., if \(a, b \in A^+ \) and \(d_\tau(a) < d_\tau(b) \) for all \(\tau \in T(A) \), then \(a \precsim b \).

Theorem (EGLN)

Let \(A \) be a non-unital separable simple \(C^* \)-algebra which is in \(\mathcal{D} \). Then \(A \) has stable rank one.
Theorem

Let $A \in \mathcal{D}$.

(1) Then $QT(A) = T(A)$.

(2) A has the tracially approximate divisible property, if $A \in \mathcal{D}_0$.

(3) A has strict comparison for positive elements (in usual sense).

(i.e., if $a, b \in A_+ +$ and $d_\tau(a) < d_\tau(b)$ for all $\tau \in T(A)$, then $a \lessapprox b$.)
Theorem

Let $A \in \mathcal{D}$.

1. Then $QT(A) = T(A)$;
2. A has the tracially approximate divisible property, if $A \in \mathcal{D}_0$,
Theorem

Let $A \in \mathcal{D}$.

(1) Then $QT(A) = T(A)$;

(2) A has the tracially approximate divisible property, if $A \in \mathcal{D}_0$,

(3) A has strict comparison for positive elements (in usual sense).
Let $A \in \mathcal{D}$.

(1) Then $QT(A) = T(A)$;

(2) A has the tracially approximate divisible property, if $A \in \mathcal{D}_0$,

(3) A has strict comparison for positive elements (in usual sense).

(i.e., if $a, b \in A_+$ and

\[d_\tau(a) < d_\tau(b) \text{ for all } \tau \in \overline{T(A)}^w, \]

then $a \precsim b$.)
Theorem

Let $A \in \mathcal{D}$.
(1) Then $QT(A) = T(A)$;
(2) A has the tracially approximate divisible property, if $A \in \mathcal{D}_0$,
(3) A has strict comparison for positive elements (in usual sense).
(i.e., if $a, b \in A_+$ and

$$d_\tau(a) < d_\tau(b) \text{ for all } \tau \in T(A)^w,$$

then $a \preccurlyeq b$.)

Theorem (EGLN)

Let A be a non-unital separable simple C^*-algebra which is in \mathcal{D}.
Theorem

Let $A \in \mathcal{D}$.

(1) Then $QT(A) = T(A)$;

(2) A has the tracially approximate divisible property, if $A \in \mathcal{D}_0$,

(3) A has strict comparison for positive elements (in usual sense).

(i.e., if $a, b \in A_+$ and

$$d_\tau(a) < d_\tau(b) \text{ for all } \tau \in T(A)^w,$$

then $a \precsim b$.)

Theorem (EGLN)

Let A be a non-unital separable simple C^*-algebra which is in \mathcal{D}. Then A has stable rank one.
Theorem

Let $A \in \mathcal{D}$.

(1) Then $QT(A) = T(A)$;
(2) A has the tracially approximate divisible property, if $A \in \mathcal{D}_0$,
(3) A has strict comparison for positive elements (in usual sense).

(i.e., if $a, b \in A_+ \text{ and }$

$$d_\tau(a) < d_\tau(b) \text{ for all } \tau \in T(A)^w,$$

then $a \precsim b$.)

Theorem (EGLN)

Let A be a non-unital separable simple C^*-algebra which is in \mathcal{D}. Then A has stable rank one.
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A).
D^d

Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$,
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$. Suppose that, for any $\epsilon > 0$,
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$, Suppose that, for any $\varepsilon > 0$, any finite subset $\mathcal{F} \subset A$.
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$, Suppose that, for any $\epsilon > 0$, any finite subset $\mathcal{F} \subset A$ and any $b \in A_+ \setminus \{0\}$,
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$. Suppose that, for any $\epsilon > 0$, any finite subset $F \subset A$ and any $b \in A_+ \setminus \{0\}$, and any integer $n > 0$,
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$. Suppose that, for any $\varepsilon > 0$, any finite subset $F \subset A$ and any $b \in A_+ \setminus \{0\}$, and any integer $n > 0$, there are F-ε-multiplicative c.p.c. linear maps $\phi : A \to A$ and $\psi : A \to D$ for some C^*-subalgebra $D \subset A$. \[a \precsim b, \quad t(\frac{f_1}{4}(\psi(a))) \geq \frac{3}{4} \quad \text{for all} \quad t \in T(D).\] Then we say $A \in D_d$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras
Joint work with Guihua Gong Lafayette, Louisiana, Oct, 2017
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$, Suppose that, for any $\epsilon > 0$, any finite subset $\mathcal{F} \subset A$ and any $b \in A_+ \setminus \{0\}$, and any integer $n > 0$, there are \mathcal{F}-ϵ-multiplicative c.p.c. linear maps $\phi: A \to A$ and $\psi: A \to D$ for some C^*-subalgebra $D \subset A$ such that $D \in C'_0$

\[\|x - \text{diag}(\phi(x), \psi(x), \ldots, \psi(x))\| < \epsilon \text{ for all } x \in \mathcal{F} \cup \{a\}, \quad (\text{e 0.6}) \]
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$. Suppose that, for any $\epsilon > 0$, any finite subset $\mathcal{F} \subset A$ and any $b \in A_+ \setminus \{0\}$, and any integer $n > 0$, there are \mathcal{F}-ϵ-multiplicative c.p.c. linear maps $\phi : A \to A$ and $\psi : A \to D$ for some C^*-subalgebra $D \subset A$ such that $D \in C'_0$

$$\|x - \text{diag}(\phi(x), \psi(x), ..., \psi(x))\| < \epsilon \text{ for all } x \in \mathcal{F} \cup \{a\}, \quad (e\ 0.6)$$

$$\phi(a) \precsim b, \quad (e\ 0.7)$$
Definition

Let A be a non-unital and σ-unital simple C^*-algebra with $A = P(A)$ (Pedersen ideal of A) and with a strictly positive element $a \in A$ with $\|a\| = 1$ and with $\tau(a) > 3/4$ for all $\tau \in T(A)$. Suppose that, for any $\epsilon > 0$, any finite subset $F \subset A$ and any $b \in A_+ \setminus \{0\}$, and any integer $n > 0$, there are F-ϵ-multiplicative c.p.c. linear maps $\phi : A \to A$ and $\psi : A \to D$ for some C^*-subalgebra $D \subset A$ such that $D \in C'_0$

\[\|x - \text{diag}\left(\phi(x), \psi(x), \ldots, \psi(x)\right)\| < \epsilon \text{ for all } x \in F \cup \{a\}, \quad (e\ 0.6) \]

\[\phi(a) \lesssim b, \]

\[t\left(f_{1/4}(\psi(a))\right) \geq 3/4 \text{ for all } t \in T(D). \quad (e\ 0.7) \]
\(\mathcal{D}^d \)

Definition

Let \(A \) be a non-unital and \(\sigma \)-unital simple \(C^* \)-algebra with \(A = P(A) \) (Pedersen ideal of \(A \)) and with a strictly positive element \(a \in A \) with \(\|a\| = 1 \) and with \(\tau(a) > 3/4 \) for all \(\tau \in T(A) \), Suppose that, for any \(\epsilon > 0 \), any finite subset \(\mathcal{F} \subset A \) and any \(b \in A_+ \setminus \{0\} \), and any integer \(n > 0 \), there are \(\mathcal{F} \)-\(\epsilon \)-multiplicative c.p.c. linear maps \(\phi : A \to A \) and \(\psi : A \to D \) for some \(C^* \)-subalgebra \(D \subset A \) such that \(D \in C'_0 \)

\[
\| x - \text{diag}(\phi(x), \psi(x), \ldots, \psi(x)) \| < \epsilon \quad \text{for all } x \in \mathcal{F} \cup \{a\}, \quad (e0.6)
\]

\[
\phi(a) \lesssim b, \quad (e0.7)
\]

\[
t(f_{1/4}(\psi(a))) \geq 3/4 \quad \text{for all } t \in T(D). \quad (e0.8)
\]

Then then we say \(A \in \mathcal{D}^d \).
Theorem

Every C^*-algebra in D_0 are in D^d.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras
Joint work with Guihua Gong
Lafayette, Louis
Theorem

Every C^*-algebra in D_0 are in D^d.

Theorem

Every amenable C^*-algebra in D is \mathcal{Z}-stable.
Theorem

Every C^*-algebra in D_0 are in D^d.

Theorem

Every amenable C^*-algebra in D is \mathcal{Z}-stable.

For any unital C^*-algebra A, $CU(A)$ is the closure of commutator subgroup of $U(A)$.
Theorem

Every C^*-algebra in D_0 are in D^d.

Theorem

Every amenable C^*-algebra in D is \mathcal{Z}-stable.

For any unital C^*-algebra A, $CU(A)$ is the closure of commutator subgroup of $U(A)$.

Theorem

Let $A \in D$ and $u \in CU(\tilde{A})$. Then

$$\text{cel}(u) \leq 5\pi.$$
Theorem

Let A be a non-unital separable stably projectionless exact simple C^*-algebra with continuous scale which is Z-stable and $T(A) \neq \emptyset$. Then $K_0(\tilde{A})$ is weakly unperforated, i.e., if $x \in K_0(\tilde{A})$ with $kx \in K_0(\tilde{A}) + \{0\}$ for some integer $k \geq 1$, then $x \in K_0(\tilde{A}) + \{0\}$. Furthermore, if $p, q \in \mathcal{M}_s(\tilde{A})$ (for some $s \geq 1$) are two projections such that $\tau(q) < \tau(p)$ for all $\tau \in T(\tilde{A})$, then $q \precsim p$.

Theorem

Let $A \in D_d$ and $B \in D$. Suppose that $\phi, \psi : A \to B$ are two homomorphisms which map strictly positive elements to strictly positive elements. Then ϕ and ψ are approximately unitarily equivalent if and only if $[\phi] = [\psi]$ in $KL(A, B)$, $\phi^T = \psi^T$ and $\phi^* = \psi^*$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras
Theorem

Let A *be a non-unital separable stably projectionless exact simple* C^*-*algebra with continuous scale which is* \mathbb{Z}-*stable and* $T(A) \neq \emptyset$.

Furthermore, if $p, q \in M_s(\tilde{A})$ *(for some* $s \geq 1$ *) are two projections such that* $\tau(q) < \tau(p)$ *for all* $\tau \in T(\tilde{A})$, *then* $q \preccurlyeq p$.

Theorem

Let $A \in D_d$ and $B \in D_e$. *Suppose that* $\phi, \psi : A \to B$ *are two homomorphisms which map strictly positive elements to strictly positive elements.*

Then ϕ and ψ are approximately unitarily equivalent if and only if $[\phi] = [\psi]$ in $KL(A, B)$, $\phi^\tau = \psi^\tau$ and $\phi^\dag = \psi^\dag$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017

16/26
Theorem

Let A be a non-unital separable stably projectionless exact simple C^*-algebra with continuous scale which is \mathcal{Z}-stable and $T(A) \neq \emptyset$. Then $K_0(\tilde{A})$ is weakly unperforated, i.e.,

$$\ldots$$
Theorem

Let A be a non-unital separable stably projectionless exact simple C^*-algebra with continuous scale which is \mathbb{Z}-stable and $T(A) \neq \emptyset$. Then $K_0(\tilde{A})$ is weakly unperforated, i.e., if $x \in K_0(\tilde{A})$ with $kx \in K_0(\tilde{A})_+ \setminus \{0\}$ for some integer $k \geq 1$, then $x \in K_0(\tilde{A})_+$.

Furthermore, if $p, q \in M_s(\tilde{A})$ (for some $s \geq 1$) are two projections such that $\tau(q) < \tau(p)$ for all $\tau \in T(\tilde{A})$, then $q \ll p$.

Theorem

Let $A \in Dd$ and $B \in D$. Suppose that $\phi, \psi : A \to B$ are two homomorphisms which map strictly positive elements to strictly positive elements. Then ϕ and ψ are approximately unitarily equivalent if and only if $[\phi] = [\psi]$ in $KL(A, B)$, $\phi^T = \psi^T$ and $\phi^\dagger = \psi^\dagger$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong Lafayette, Louisiana, Oct, 2017
Theorem

Let A be a non-unital separable stably projectionless exact simple C^*-algebra with continuous scale which is \mathcal{Z}-stable and $T(A) \neq \emptyset$. Then $K_0(\tilde{A})$ is weakly unperforated, i.e., if $x \in K_0(\tilde{A})$ with $kx \in K_0(\tilde{A})_+ \setminus \{0\}$ for some integer $k \geq 1$, then $x \in K_0(\tilde{A})_+$. Furthermore, if $p, q \in M_s(\tilde{A})$ (for some $s \geq 1$) are two projections such that $\tau(q) < \tau(p)$ for all $\tau \in T(\tilde{A})$,
Theorem

Let A be a non-unital separable stably projectionless exact simple C^*-algebra with continuous scale which is \mathbb{Z}-stable and $T(A) \neq \emptyset$. Then $K_0(\tilde{A})$ is weakly unperforated, i.e., if $x \in K_0(\tilde{A})$ with $kx \in K_0(\tilde{A})_+ \setminus \{0\}$ for some integer $k \geq 1$, then $x \in K_0(\tilde{A})_+$. Furthermore, if $p, q \in M_s(\tilde{A})$ (for some $s \geq 1$) are two projections such that $\tau(q) < \tau(p)$ for all $\tau \in T(\tilde{A})$, then $q \precsim p$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
16/26
Theorem

Let A be a non-unital separable stably projectionless exact simple C^*-algebra with continuous scale which is \mathbb{Z}-stable and $T(A) \neq \emptyset$. Then $K_0(\tilde{A})$ is weakly unperforated, i.e., if $x \in K_0(\tilde{A})$ with $kx \in K_0(\tilde{A})_+ \setminus \{0\}$ for some integer $k \geq 1$, then $x \in K_0(\tilde{A})_+$. Furthermore, if $p, q \in M_s(\tilde{A})$ (for some $s \geq 1$) are two projections such that $\tau(q) < \tau(p)$ for all $\tau \in T(\tilde{A})$, then $q \preceq p$.

Theorem

Let $A \in \mathcal{D}^d$ and $B \in \mathcal{D}$.
Theorem

Let A be a non-unital separable stably projectionless exact simple C^*-algebra with continuous scale which is \mathbb{Z}-stable and $T(A) \neq \emptyset$. Then $K_0(\tilde{A})$ is weakly unperforated, i.e., if $x \in K_0(\tilde{A})$ with $kx \in K_0(\tilde{A})_+ \setminus \{0\}$ for some integer $k \geq 1$, then $x \in K_0(\tilde{A})_+$. Furthermore, if $p, q \in M_s(\tilde{A})$ (for some $s \geq 1$) are two projections such that $\tau(q) < \tau(p)$ for all $\tau \in T(\tilde{A})$, then $q \lesssim p$.

Theorem

Let $A \in \mathcal{D}^d$ and $B \in \mathcal{D}$. Suppose that $\phi, \psi : A \to B$ are two homomorphisms which map strictly positive elements to strictly positive elements.
Theorem

Let A be a non-unital separable stably projectionless exact simple C^*-algebra with continuous scale which is \mathbb{Z}-stable and $T(A) \neq \emptyset$. Then $K_0(\tilde{A})$ is weakly unperforated, i.e., if $x \in K_0(\tilde{A})$ with $kx \in K_0(\tilde{A})_+ \setminus \{0\}$ for some integer $k \geq 1$, then $x \in K_0(\tilde{A})_+$. Furthermore, if $p, q \in M_s(\tilde{A})$ (for some $s \geq 1$) are two projections such that $\tau(q) < \tau(p)$ for all $\tau \in T(\tilde{A})$, then $q \preceq p$.

Theorem

Let $A \in \mathcal{D}^d$ and $B \in \mathcal{D}$. Suppose that $\phi, \psi : A \to B$ are two homomorphisms which map strictly positive elements to strictly positive elements. Then ϕ and ψ are approximately unitarily equivalent.
Theorem

Let A be a non-unital separable stably projectionless exact simple C^*-algebra with continuous scale which is \mathbb{Z}-stable and $T(A) \neq \emptyset$. Then $K_0(\tilde{A})$ is weakly unperforated, i.e., if $x \in K_0(\tilde{A})$ with $kx \in K_0(\tilde{A})_+ \setminus \{0\}$ for some integer $k \geq 1$, then $x \in K_0(\tilde{A})_+$. Furthermore, if $p, q \in M_s(\tilde{A})$ (for some $s \geq 1$) are two projections such that $\tau(q) < \tau(p)$ for all $\tau \in T(\tilde{A})$, then $q \precsim p$.

Theorem

Let $A \in \mathcal{D}^d$ and $B \in \mathcal{D}$. Suppose that $\phi, \psi : A \to B$ are two homomorphisms which map strictly positive elements to strictly positive elements. Then ϕ and ψ are approximately unitarily equivalent if and only if

$$[\phi] = [\psi] \text{ in } KL(A, B),$$

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
Theorem

Let A be a non-unital separable stably projectionless exact simple C^*-algebra with continuous scale which is \mathbb{Z}-stable and $T(A) \neq \emptyset$. Then $K_0(\tilde{A})$ is weakly unperforated, i.e., if $x \in K_0(\tilde{A})$ with $kx \in K_0(\tilde{A})_+ \setminus \{0\}$ for some integer $k \geq 1$, then $x \in K_0(\tilde{A})_+$. Furthermore, if $p, q \in M_s(\tilde{A})$ (for some $s \geq 1$) are two projections such that $\tau(q) < \tau(p)$ for all $\tau \in T(\tilde{A})$, then $q \preccurlyeq p$.

Theorem

Let $A \in \mathcal{D}_d$ and $B \in \mathcal{D}$. Suppose that $\phi, \psi : A \to B$ are two homomorphisms which map strictly positive elements to strictly positive elements. Then ϕ and ψ are approximately unitarily equivalent if and only if

$$[\phi] = [\psi] \text{ in } KL(A, B),$$
$$\phi_T = \psi_T \text{ and } \phi^\dagger = \psi^\dagger$$

(e0.9)

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras
Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
Theorem

Let $A \in \mathcal{D}^d$ and $B \in \mathcal{D}$. Suppose that $\phi, \psi : A \to B$ are two homomorphisms which maps strictly positive elements to strictly positive elements.

Then ϕ and ψ are approximately unitarily equivalent if and only if $[\phi] = [\psi]$ in $\text{KL}(A, B)$, $\phi^T = \psi^T$ and $\phi^\dagger = \psi^\dagger$.

ϕ^T, ψ^T are affine continuous maps from $T(B)$ to $T(A)$ induced by ϕ and ψ, respectively. ϕ^\dagger, $\psi^\dagger : \tilde{U}(\tilde{A})/\text{CU}(\tilde{A}) \to \tilde{U}(\tilde{B})/\text{CU}(\tilde{B})$ are the continuous homomorphisms given by ϕ and ψ.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C*-algebras
Theorem

Let $A \in \mathcal{D}^d$ and $B \in \mathcal{D}$. Suppose that $\phi, \psi : A \to B$ are two homomorphisms which maps strictly positive elements to strictly positive elements. Then ϕ and ψ are approximately unitarily equivalent if and only if

$$[\phi] = [\psi] \text{ in } KL(A, B), \phi_T = \psi_T \text{ and } \phi^\dagger = \psi^\dagger.$$
Theorem

Let $A \in \mathcal{D}^d$ and $B \in \mathcal{D}$. Suppose that $\phi, \psi : A \to B$ are two homomorphisms which maps strictly positive elements to strictly positive elements. Then ϕ and ψ are approximately unitarily equivalent if and only if

\[[\phi] = [\psi] \text{ in } KL(A, B), \phi_T = \psi_T \text{ and } \phi^\dagger = \psi^\dagger. \]

ϕ_T, ψ_T are affine continuous maps from $T(B)$ to $T(A)$ induced by ϕ and ψ, respectively.

ϕ^\dagger, $\psi^\dagger : U(\tilde{A})/CU(\tilde{A}) \to U(\tilde{B})/CU(\tilde{B})$ are the continuous homomorphisms given by ϕ and ψ.
Theorem

Let A and B be two separable amenable C^*-algebras in D^d which satisfies the UCT.

Consider the case that A and B have continuous scale. Then $\text{Ell}(A) \sim = \text{Ell}(B)$ means the following:

Two isomorphisms $\kappa_i : K_i(A) \to K_i(B)$, $i = 0, 1$ one affine homeomorphism $\kappa_T : T(A) \to T(B)$; Moreover, for all $\tau \in T(B)$ and $x \in K_0(A)$,

$$\kappa_0(x)(\tau) = \kappa_{-1}T(\tau)(x).$$
Theorem

Let A and B be two separable amenable C^*-algebras in D^d which satisfies the UCT. Then $A \cong B$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$

Consider the case that A and B have continuous scale. Then $\text{Ell}(A) \cong \text{Ell}(B)$ means the following:

Two isomorphisms $\kappa_i: K_i(A) \to K_i(B)$, $i = 0, 1$ one affine homeomorphism $\kappa_T: T(A) \to T(B)$;

Moreover, for all $\tau \in T(B)$ and $x \in K_0(A)$,

$$\kappa_0(x)(\tau) = \kappa_{-1}(T(\tau))(x).$$

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
Theorem

Let A and B be two separable amenable C^*-algebras in \mathcal{D}^d which satisfies the UCT. Then $A \cong B$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$

Consider the case that A and B have continuous scale.
Theorem

Let A and B be two separable amenable C^*-algebras in \mathcal{D}^d which satisfies the UCT. Then $A \cong B$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$

Consider the case that A and B have continuous scale. Then $\text{Ell}(A) \cong \text{Ell}(B)$ means the following:
Theorem

Let A and B be two separable amenable C^*-algebras in D^d which satisfies the UCT. Then $A \cong B$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$

Consider the case that A and B have continuous scale. Then $\text{Ell}(A) \cong \text{Ell}(B)$ means the following:

Two isomorphisms $\kappa_i : K_i(A) \to K_i(B)$, $i = 0, 1$
Theorem

Let A and B be two separable amenable C^*-algebras in D^d which satisfies the UCT. Then $A \cong B$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$

Consider the case that A and B have continuous scale. Then $\text{Ell}(A) \cong \text{Ell}(B)$ means the following:

Two isomorphisms $\kappa_i : K_i(A) \to K_i(B), i = 0, 1$

one affine homeomorphism $\kappa_T : T(A) \to T(B)$;
Theorem

Let A and B be two separable amenable C^*-algebras in D^d which satisfies the UCT. Then $A \cong B$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$

Consider the case that A and B have continuous scale. Then $\text{Ell}(A) \cong \text{Ell}(B)$ means the following:

Two isomorphisms $\kappa_i : K_i(A) \to K_i(B)$, $i = 0, 1$

one affine homeomorphism $\kappa_T : T(A) \to T(B)$;

Moreover, for all $\tau \in T(B)$ and $x \in K_0(A)$,
Theorem

Let A and B be two separable amenable C^*-algebras in \mathcal{D}^d which satisfies the UCT. Then $A \cong B$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$

Consider the case that A and B have continuous scale. Then $\text{Ell}(A) \cong \text{Ell}(B)$ means the following:

Two isomorphisms $\kappa_i : K_i(A) \to K_i(B)$, $i = 0, 1$

one affine homeomorphism $\kappa_T : T(A) \to T(B)$;

Moreover, for all $\tau \in T(B)$ and $x \in K_0(A)$,

$$\kappa_0(x)(\tau) = \kappa_T^{-1}(\tau)(x).$$
Theorem

Let $A \in D$. Then $A \in D_0$ if and only if $\ker \rho_A = K_0(A)$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Then $A \otimes Z \sim B \otimes Z$ if and only if $\Ell(A \otimes Z) \sim \Ell(B \otimes Z)$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras
Theorem

Let $A \in D$. Then $A \in D_0$ if and only if $\ker \rho_A = K_0(A)$.

Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT.
Theorem

Let $A \in \mathcal{D}$. Then $A \in \mathcal{D}_0$ if and only if $\ker \rho_A = K_0(A)$.

Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT such that $gTR(A) \leq 1$, $gTR(B) \leq 1$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT.

Then $A \otimes \mathbb{Z}_0 \sim B \otimes \mathbb{Z}_0$ if and only if $\text{Ell}(A \otimes \mathbb{Z}_0) \sim \text{Ell}(B \otimes \mathbb{Z}_0)$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras
Theorem

Let $A \in \mathcal{D}$. Then $A \in \mathcal{D}_0$ if and only if $\ker \rho_A = K_0(A)$.

Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT such that $gTR(A) \leq 1$, $gTR(B) \leq 1$. Suppose that $\ker \rho_A = K_0(A)$ and $\ker \rho_B = K_0(B)$.
Theorem

Let $A \in \mathcal{D}$. Then $A \in \mathcal{D}_0$ if and only if $\ker \rho_A = K_0(A)$.

Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT such that $gTR(A) \leq 1$, $gTR(B) \leq 1$. Suppose that $\ker \rho_A = K_0(A)$ and $\ker \rho_B = K_0(B)$. Then $A \cong B$ if and only if $\Ell(A) \cong \Ell(B)$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Then $A \otimes \mathcal{Z} \cong B \otimes \mathcal{Z}$ if and only if $\Ell(A \otimes \mathcal{Z}) \cong \Ell(B \otimes \mathcal{Z})$.
Theorem

Let $A \in D$. Then $A \in D_0$ if and only if $\ker \rho_A = K_0(A)$.

Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT such that $gTR(A) \leq 1$, $gTR(B) \leq 1$. Suppose that $\ker \rho_A = K_0(A)$ and $\ker \rho_B = K_0(B)$. Then $A \cong B$ if and only if $\Ell(A) \cong \Ell(B)$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT.
Theorem

Let $A \in \mathcal{D}$. Then $A \in \mathcal{D}_0$ if and only if $\ker \rho_A = K_0(A)$.

Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT such that $gTR(A) \leq 1$, $gTR(B) \leq 1$. Suppose that $\ker \rho_A = K_0(A)$ and $\ker \rho_B = K_0(B)$. Then $A \cong B$ if and only if $\mathcal{E}(A) \cong \mathcal{E}(B)$.

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Then $A \otimes \mathbb{Z}_0 \cong B \otimes \mathbb{Z}_0$.
Theorem

Let $A \in \mathcal{D}$. Then $A \in \mathcal{D}_0$ if and only if $\ker \rho_A = K_0(A)$.

Theorem

Let A and B be two stably projectionless simple amenable C^*-algebras with UCT such that $gTR(A) \leq 1$, $gTR(B) \leq 1$. Suppose that $\ker \rho_A = K_0(A)$ and $\ker \rho_B = K_0(B)$. Then $A \cong B$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$

Corollary

Let A and B be two separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Then $A \otimes \mathcal{Z}_0 \cong B \otimes \mathcal{Z}_0$ if and only if

$$\text{Ell}(A \otimes \mathcal{Z}_0) \cong \text{Ell}(B \otimes \mathcal{Z}_0).$$
Theorem

Let A and B be two stably projectionless separable simple C^*-algebras with finite nuclear dimension and satisfy UCT.

Suppose also that $K_0(A) = Tor(K_0(A))$ and $K_0(B) = Tor(K_0(B))$.

Then $A \sim B$ if and only if $Ell(A) \sim Ell(B)$.
Theorem

Let A and B be two stably projectionless separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Suppose also that $K_0(A) = \text{Tor}(K_0(A))$ and $K_0(B) = \text{Tor}(K_0(B))$. Then $A \cong B$ if and only if $\text{Ell}(A) \cong \text{Ell}(B)$.
Theorem

Let A and B be two stably projectionless separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Suppose also that $K_0(A) = \text{Tor}(K_0(A))$ and $K_0(B) = \text{Tor}(K_0(B))$. Then $A \cong B$.
Theorem

Let A and B be two stably projectionless separable simple C^*-algebras with finite nuclear dimension and satisfy UCT. Suppose also that $K_0(A) = \text{Tor}(K_0(A))$ and $K_0(B) = \text{Tor}(K_0(B))$. Then $A \cong B$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$
Note every C^*-algebra $A \in \mathcal{D}$ is in \mathcal{D}^d.
Note every C^*-algebra $A \in D$ is in D^d.

Let D be a non-unital C^*-algebra. Denote by D_T the C^*-subalgebra of $C(T, \tilde{D})$ generated by $C_0(T) \{1\} \otimes 1_{\tilde{D}}$ and $1_{C(T)} \otimes D$.

The unitization of D_T is $C(T, \tilde{D}) = C(T) \otimes \tilde{D}$.

Let C be another non-unital C^*-algebra, $L : D_T \to C$ be a c.p.c. map and $L_{\sim} : C(T) \otimes \tilde{D} \to \tilde{C}$ be the unitization.

Denote by z the standard unitary generator of $C(T)$.

For any finite subset $F \subset C(T) \otimes \tilde{D}$, any finite subset $F_d \subset \tilde{D}$, and $\epsilon > 0$, there exists a finite subset $G \subset D$ and $\delta > 0$ such that, whenever $\phi : D \to C$ is a G_δ-multiplicative c.p.c. map (for any C^*-algebra C) and $\|u \cdot \phi(g)\| < \delta$ for some unitary $u \in \tilde{C}$ and for all $g \in G$, there exists a F_ϵ-multiplicative c.p.c. map $L_1 : C(T) \otimes \tilde{D} \to \tilde{C}$ such that $\|L_1(z \otimes 1) - u\| < \epsilon$ and $\|L_1(1 \otimes d) - \phi_{\sim}(d)\| < \epsilon$ for all $d \in F_d$.

We will denote such L_1 by $\Phi_{\phi, u}$.

Note every C^*-algebra $A \in D$ is in D^d.

Let D be a non-unital C^*-algebra. Denote by D_T the C^*-subalgebra of $C(T, \tilde{D})$ generated by $C_0(T) \{1\} \otimes 1_{\tilde{D}}$ and $1_{C(T)} \otimes D$.

The unitization of D_T is $C(T, \tilde{D}) = C(T) \otimes \tilde{D}$.

Let C be another non-unital C^*-algebra, $L : D_T \to C$ be a c.p.c. map and $L_{\sim} : C(T) \otimes \tilde{D} \to \tilde{C}$ be the unitization.

Denote by z the standard unitary generator of $C(T)$.

For any finite subset $F \subset C(T) \otimes \tilde{D}$, any finite subset $F_d \subset \tilde{D}$, and $\epsilon > 0$, there exists a finite subset $G \subset D$ and $\delta > 0$ such that, whenever $\phi : D \to C$ is a G_δ-multiplicative c.p.c. map (for any C^*-algebra C) and $\|u \cdot \phi(g)\| < \delta$ for some unitary $u \in \tilde{C}$ and for all $g \in G$, there exists a F_ϵ-multiplicative c.p.c. map $L_1 : C(T) \otimes \tilde{D} \to \tilde{C}$ such that $\|L_1(z \otimes 1) - u\| < \epsilon$ and $\|L_1(1 \otimes d) - \phi_{\sim}(d)\| < \epsilon$ for all $d \in F_d$.

We will denote such L_1 by $\Phi_{\phi, u}$.
Note every C^*-algebra $A \in \mathcal{D}$ is in \mathcal{D}^d. Let D be a non-unital C^*-algebra.
Note every C^*-algebra $A \in \mathcal{D}$ is in \mathcal{D}^d. Let D be a non-unital C^*-algebra. Denote by $D^\mathbb{T}$ the C^*-subalgebra of $C(\mathbb{T}, \tilde{D})$ generated by $C_0(\mathbb{T} \setminus \{1\}) \otimes 1_{\tilde{D}}$ and $1_{C(\mathbb{T})} \otimes D$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A. Simple stably projectionless C^*-algebras Joint work with Guihua Gong Lafayette, Louisiana, Oct, 2017 21/26
Note every C^*-algebra $A \in \mathcal{D}$ is in \mathcal{D}^d. Let D be a non-unital C^*-algebra. Denote by $D^\mathbb{T}$ the C^*-subalgebra of $C(\mathbb{T}, \tilde{D})$ generated by $C_0(\mathbb{T} \setminus \{1\}) \otimes 1_{\tilde{D}}$ and $1_{C(\mathbb{T})} \otimes D$. The unitization of $D^\mathbb{T}$ is $C(\mathbb{T}, \tilde{D}) = C(\mathbb{T}) \otimes \tilde{D}$.
Note every C^*-algebra $A \in \mathcal{D}$ is in \mathcal{D}^d. Let D be a non-unital C^*-algebra. Denote by $D^\mathbb{T}$ the C^*-subalgebra of $C(\mathbb{T}, \tilde{D})$ generated by $C_0(\mathbb{T} \setminus \{1\}) \otimes 1_{\tilde{D}}$ and $1_{C(\mathbb{T})} \otimes D$. The unitization of $D^\mathbb{T}$ is $C(\mathbb{T}, \tilde{D}) = C(\mathbb{T}) \otimes \tilde{D}$.

Let C be another non-unital C^*-algebra, $L : D^\mathbb{T} \to C$ be a c.p.c. map and $L^\sim : C(\mathbb{T}) \otimes \tilde{D} \to \tilde{C}$ be the unitization.
Note every C^*-algebra $A \in \mathcal{D}$ is in \mathcal{D}_d. Let D be a non-unital C^*-algebra. Denote by $D^\mathbb{T}$ the C^*-subalgebra of $C(\mathbb{T}, \tilde{D})$ generated by $C_0(\mathbb{T} \setminus \{1\}) \otimes 1_{\tilde{D}}$ and $1_{C(\mathbb{T})} \otimes D$. The unitization of $D^\mathbb{T}$ is $C(\mathbb{T}, \tilde{D}) = C(\mathbb{T}) \otimes \tilde{D}$.

Let C be another non-unital C^*-algebra, $L : D^\mathbb{T} \to C$ be a c.p.c. map and $L^\sim : C(\mathbb{T}) \otimes \tilde{D} \to \tilde{C}$ be the unitization. Denote by z the standard unitary generator of $C(\mathbb{T})$.
Note every C^*-algebra $A \in \mathcal{D}$ is in \mathcal{D}^d. Let D be a non-unital C^*-algebra. Denote by $D^\mathbb{T}$ the C^*-subalgebra of $C(\mathbb{T}, \tilde{D})$ generated by $C_0(\mathbb{T} \setminus \{1\}) \otimes 1\tilde{D}$ and $1_{C(\mathbb{T})} \otimes D$. The unitization of $D^\mathbb{T}$ is $C(\mathbb{T}, \tilde{D}) = C(\mathbb{T}) \otimes \tilde{D}$.

Let C be another non-unital C^*-algebra, $L : D^\mathbb{T} \to C$ be a c.p.c. map and $L^\sim : C(\mathbb{T}) \otimes \tilde{D} \to \tilde{C}$ be the unitization. Denote by z the standard unitary generator of $C(\mathbb{T})$. For any finite subset $\mathcal{F} \subset C(\mathbb{T}) \otimes \tilde{D}$, any finite subset $\mathcal{F}_d \subset \tilde{D}$, and $\epsilon > 0$,
Note every C^*-algebra $A \in \mathcal{D}$ is in \mathcal{D}^d. Let D be a non-unital C^*-algebra. Denote by $D^\mathbb{T}$ the C^*-subalgebra of $C(\mathbb{T}, \tilde{D})$ generated by $C_0(\mathbb{T} \setminus \{1\}) \otimes 1_\tilde{D}$ and $1_{C(\mathbb{T})} \otimes D$. The unitization of $D^\mathbb{T}$ is $C(\mathbb{T}, \tilde{D}) = C(\mathbb{T}) \otimes \tilde{D}$.

Let C be another non-unital C^*-algebra, $L : D^\mathbb{T} \to C$ be a c.p.c. map and $L^\sim : C(\mathbb{T}) \otimes \tilde{D} \to \tilde{C}$ be the unitization. Denote by z the standard unitary generator of $C(\mathbb{T})$. For any finite subset $\mathcal{F} \subset C(\mathbb{T}) \otimes \tilde{D}$, any finite subset $\mathcal{F}_d \subset \tilde{D}$, and $\epsilon > 0$, there exists a finite subset $\mathcal{G} \subset D$ and $\delta > 0$ such that, whenever $\phi : D \to C$ is a \mathcal{G}-δ-multiplicative c.p.c. map (for any C^*-algebra C) and $\|[u, \phi(g)]\| < \delta$ for some unitary $u \in \tilde{C}$ and for all $g \in \mathcal{G}$,
Note every C^*-algebra $A \in \mathcal{D}$ is in \mathcal{D}^d. Let D be a non-unital C^*-algebra. Denote by $D^\mathbb{T}$ the C^*-subalgebra of $C(\mathbb{T}, \tilde{D})$ generated by $C_0(\mathbb{T} \setminus \{1\}) \otimes 1_{\tilde{D}}$ and $1_{C(\mathbb{T})} \otimes D$. The unitization of $D^\mathbb{T}$ is $C(\mathbb{T}, \tilde{D}) = C(\mathbb{T}) \otimes \tilde{D}$.

Let C be another non-unital C^*-algebra, $L : D^\mathbb{T} \to C$ be a c.p.c. map and $L^\sim : C(\mathbb{T}) \otimes \tilde{D} \to \tilde{C}$ be the unitization. Denote by z the standard unitary generator of $C(\mathbb{T})$. For any finite subset $\mathcal{F} \subset C(\mathbb{T}) \otimes \tilde{D}$, any finite subset $\mathcal{F}_d \subset \tilde{D}$, and $\epsilon > 0$, there exists a finite subset $\mathcal{G} \subset D$ and $\delta > 0$ such that, whenever $\phi : D \to C$ is a \mathcal{G}-δ-multiplicative c.p.c. map (for any C^*-algebra C) and $\|[u, \phi(g)]\| < \delta$ for some unitary $u \in \tilde{C}$ and for all $g \in \mathcal{G}$, there exists a \mathcal{F}-ϵ-multiplicative c.p.c. map $L_1 : C(\mathbb{T}) \otimes \tilde{D} \to \tilde{C}$ such that

$$\|L_1(z \otimes 1) - u\| < \epsilon \quad \text{and} \quad \|L_1(1 \otimes d) - \phi^\sim(d)\| < \epsilon \quad \text{for all} \quad d \in \mathcal{F}_d.$$
Note every C^*-algebra $A \in \mathcal{D}$ is in \mathcal{D}^d. Let D be a non-unital C^*-algebra. Denote by $D^\mathbb{T}$ the C^*-subalgebra of $C(\mathbb{T}, \tilde{D})$ generated by $C_0(\mathbb{T} \setminus \{1\}) \otimes 1_{\tilde{D}}$ and $1_{C(\mathbb{T})} \otimes D$. The unitization of $D^\mathbb{T}$ is $C(\mathbb{T}, \tilde{D}) = C(\mathbb{T}) \otimes \tilde{D}$.

Let C be another non-unital C^*-algebra, $L : D^\mathbb{T} \to C$ be a c.p.c. map and $L^\sim : C(\mathbb{T}) \otimes \tilde{D} \to \tilde{C}$ be the unitization. Denote by z the standard unitary generator of $C(\mathbb{T})$. For any finite subset $\mathcal{F} \subset C(\mathbb{T}) \otimes \tilde{D}$, any finite subset $\mathcal{F}_d \subset \tilde{D}$, and $\epsilon > 0$, there exists a finite subset $\mathcal{G} \subset D$ and $\delta > 0$ such that, whenever $\phi : D \to C$ is a \mathcal{G}-δ -multiplicative c.p.c. map (for any C^*-algebra C) and $\|[u, \phi(g)]\| < \delta$ for some unitary $u \in \tilde{C}$ and for all $g \in \mathcal{G}$, there exists a \mathcal{F}-ϵ-multiplicative c.p.c. map $L_1 : C(\mathbb{T}) \otimes \tilde{D} \to \tilde{C}$ such that

$$\|L_1(z \otimes 1) - u\| < \epsilon \text{ and } \|L_1(1 \otimes d) - \phi^\sim(d)\| < \epsilon \text{ for all } d \in \mathcal{F}_d.$$

We will denote such L_1 by $\Phi_{\phi, u}$.
Lemma

Let $A \in \mathcal{D}^d$ have continuous scale. For any $1 > \epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exist $\delta > 0$, $\sigma > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\{p_1, p_2, \ldots, p_k, q_1, q_2, \ldots, q_k\}$ of projections of $M_N(\tilde{A})$ (for some integer $N \geq 1$) such that $\{[p_1] - [q_1], [p_2] - [q_2], \ldots, [p_k] - [q_k]\}$ generates a free subgroup G_u of $K_0(A)$, and a finite subset $\mathcal{P} \subset K(A)$, satisfying the following:

Suppose that $\phi : A \to B \otimes U$ is a homomorphism which maps strictly positive elements to strictly positive elements, where $B \in \mathcal{D}$ has continuous scale and U is a UHF-algebra of infinite type. If $u \in U(B \otimes U)$ is a unitary such that

$$||[\phi(x), u]] < \delta \text{ for all } x \in \mathcal{G},$$
$$\text{Bott}(\phi, u)|_\mathcal{P} = 0,$$
$$\text{dist}(\langle((1 - \phi^\sim(p_i)) + \phi^\sim(p_i)u)(1 - \phi^\sim(q_i)) + \phi^\sim(q_i)u^*\rangle, \bar{1}) < \sigma \text{ and}$$
$$\text{dist}(\bar{u}, \bar{1}) < \sigma,$$

(where $u = u \otimes 1_{M_N}$), then there exists a continuous path of unitaries
Lemma

(continue) Suppose that $\phi : A \to B \otimes U$ is a homomorphism which maps strictly positive elements to strictly positive elements, where $B \in \mathcal{D}$ has continuous scale and U is a UHF-algebra of infinite type. If $u \in U(B \otimes U)$ is a unitary such that

$$\| [\phi(x), u] \| < \delta \text{ for all } x \in \mathcal{G},$$

$$\text{Bott}(\phi, u)|_P = 0,$$

$$\text{dist}(\langle ((1 - \phi^*(p_i)) + \phi^*(p_i)u)(1 - \phi^*(q_i)) + \phi^*(q_i)u^* \rangle, \tilde{1}) < \sigma \text{ and }$$

$$\text{dist}(\tilde{u}, \tilde{1}) < \sigma,$$

(weeks $u = u \otimes 1_{M_N}$), then there exists a continuous path of unitaries

$$\{u(t) : t \in [0, 1]\} \subset U_0(B \otimes U)$$

such that

$$u(0) = u, \ u(1) = 1 \quad (e\ 0.12)$$

$$\| [\phi(a), u(t)] \| < \epsilon \text{ for all } a \in \mathcal{F} \text{ and for all } t \in [0, 1]. \quad (e\ 0.13)$$
Theorem

Let $A \in \mathcal{D}^d$ with continuous scale which satisfies the UCT. Then, for any $\epsilon > 0$, any finite subset $\mathcal{F} \subset A$ and any finite subset $\mathcal{P} \subset K(A)$ with \(\{g_1, g_2, \ldots, g_k\} = \mathcal{P} \cap K_1(A)\), there exists $\eta > 0$ and a finite subset $\mathcal{Q} \subset K(A)$ satisfy the following: if $\alpha \in KL(A^\mathbb{T}, B)$, where $B = C \otimes U$, $C \in \mathcal{D}$ is amenable simple C^*-algebra with continuous scale and U is a UHF-algebra of infinite type such that

\[
|\rho_B(\beta(\alpha(g_i)))(\tau)| < \eta \quad \text{for all } \tau \in T(B), \quad i = 1, 2, \ldots, k, \quad (e\,0.14)
\]

and if $\phi : A \to B$ is homomorphism which maps strictly positive elements to strictly positive elements, there exists a unitary $u \in CU(\tilde{B})$ such that

\[
\|[\phi(a), u]\| < \epsilon \quad \text{for all } a \in \mathcal{F}, \quad (e\,0.15)
\]

\[
\text{Bott}(\phi, u)|_\mathcal{P} = \alpha(\beta)|_\mathcal{P}. \quad (e\,0.16)
\]
Theorem

Let C_1 be a simple C^*-algebra in D with continuous scale which satisfies the UCT,
Theorem

Let C_1 be a simple C^*-algebra in \mathcal{D} with continuous scale which satisfies the UCT, let A_1 be a separable simple C^*-algebra in \mathcal{D} with continuous scale, and let U_1 and U_2 be two UHF-algebras of infinite type. Let $C = C_1 \otimes U_1$ and $A = A_1 \otimes U_2$.

Suppose that $\phi_1, \phi_2 : C \to A$ are two monomorphisms which maps strictly positive elements to strictly positive elements. Then they are asymptotically unitarily equivalent if and only if $[\phi_1] = [\phi_2]$ in $KK(\mathcal{C}, \mathcal{A})$.
Theorem

Let C_1 be a simple C^*-algebra in \mathcal{D} with continuous scale which satisfies the UCT, let A_1 be a separable simple C^*-algebra in \mathcal{D} with continuous scale, and let U_1 and U_2 be two UHF-algebras of infinite type. Let $C = C_1 \otimes U_1$ and $A = A_1 \otimes U_2$. Suppose that $\phi_1, \phi_2: C \to A$ are two monomorphisms which maps strictly positive elements to strictly positive elements. Then they are asymptotically unitarily equivalent if and only if $[\phi_1] = [\phi_2]$ in $KK(C, A)$, $\phi_1^\sharp = \phi_2^\sharp$, $(\phi_1^T) = (\phi_2^T)$, and $R_{\phi_1, \phi_2} = 0$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405
U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong
Lafayette, Louisiana
Oct, 2017
Theorem

Let C_1 be a simple C^*-algebra in D with continuous scale which satisfies the UCT, let A_1 be a separable simple C^*-algebra in D with continuous scale, and let U_1 and U_2 be two UHF-algebras of infinite type. Let $C = C_1 \otimes U_1$ and $A = A_1 \otimes U_2$. Suppose that $\phi_1, \phi_2 : C \to A$ are two monomorphisms which maps strictly positive elements to strictly positive elements. Then they are asymptotically unitarily equivalent if and only if $[\phi_1] = [\phi_2]$ in $KK(C, A)$, $\phi_1^\wedge = \phi_2^\wedge$, $(\phi_1)^T = (\phi_2)^T$, and $R_{\phi_1, \phi_2} = 0$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
Theorem

Let C_1 be a simple C^*-algebra in D with continuous scale which satisfies the UCT, let A_1 be a separable simple C^*-algebra in D with continuous scale, and let U_1 and U_2 be two UHF-algebras of infinite type. Let $C = C_1 \otimes U_1$ and $A = A_1 \otimes U_2$. Suppose that $\phi_1, \phi_2 : C \to A$ are two monomorphisms which maps strictly positive elements to strictly positive elements. Then they are asymptotically unitarily equivalent.
Theorem

Let C_1 be a simple C^*-algebra in \mathcal{D} with continuous scale which satisfies the UCT, let A_1 be a separable simple C^*-algebra in \mathcal{D} with continuous scale, and let U_1 and U_2 be two UHF-algebras of infinite type. Let $C = C_1 \otimes U_1$ and $A = A_1 \otimes U_2$. Suppose that $\phi_1, \phi_2 : C \rightarrow A$ are two monomorphisms which maps strictly positive elements to strictly positive elements. Then they are asymptotically unitarily equivalent if and only if

$$[\phi_1] = [\phi_2] \text{ in } KK(C, A),$$

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
Theorem

Let \(C_1 \) be a simple \(C^* \)-algebra in \(\mathcal{D} \) with continuous scale which satisfies the UCT, let \(A_1 \) be a separable simple \(C^* \)-algebra in \(\mathcal{D} \) with continuous scale, and let \(U_1 \) and \(U_2 \) be two UHF-algebras of infinite type. Let \(C = C_1 \otimes U_1 \) and \(A = A_1 \otimes U_2 \). Suppose that \(\phi_1, \phi_2 : C \to A \) are two monomorphisms which maps strictly positive elements to strictly positive elements. Then they are asymptotically unitarily equivalent if and only if

\[
[\phi_1] = [\phi_2] \quad \text{in} \quad KK(C, A),
\]

\[
\phi^\dagger = \psi^\dagger, \quad (\phi_1)^T = (\phi_2)^T
\]
Theorem

Let C_1 be a simple C^*-algebra in D with continuous scale which satisfies the UCT, let A_1 be a separable simple C^*-algebra in D with continuous scale, and let U_1 and U_2 be two UHF-algebras of infinite type. Let $C = C_1 \otimes U_1$ and $A = A_1 \otimes U_2$. Suppose that $\phi_1, \phi_2 : C \rightarrow A$ are two monomorphisms which maps strictly positive elements to strictly positive elements. Then they are asymptotically unitarily equivalent if and only if

$[\phi_1] = [\phi_2]$ in $KK(C, A)$,

$\phi^\dagger = \psi^\dagger$, $(\phi_1)_T = (\phi_2)_T$ and $R_{\phi_1, \phi_2} = 0$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong Lafayette, Los Angeles
Theorem

Let A and B be two stably projectionless separable amenable simple C^*-algebras which satisfy the UCT.

$g_{TR}(A) \leq 1$ and $g_{TR}(B) \leq 1$. Then $A \sim B$ if and only if $Ell(A) \sim Ell(B)$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
Theorem

Let A and B be two stably projectionless separable amenable simple C^*-algebras which satisfy the UCT. Suppose that $gTR(A) \leq 1$ and $gTR(B) \leq 1$. Then $A \sim B$ if and only if $Ell(A) \sim Ell(B)$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Simple stably projectionless C^*-algebras

Joint work with Guihua Gong
Lafayette, Louisiana, Oct, 2017
Theorem

Let A and B be two stably projectionless separable amenable simple C^*-algebras which satisfy the UCT. Suppose that $gTR(A) \leq 1$ and $gTR(B) \leq 1$. Then $A \cong B$ if and only
Theorem

Let A and B be two stably projectionless separable amenable simple C^*-algebras which satisfy the UCT. Suppose that $gTR(A) \leq 1$ and $gTR(B) \leq 1$. Then $A \cong B$ if and only

$$\text{Ell}(A) \cong \text{Ell}(B).$$