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CHAPTER 1

INTRODUCTION

“All models are wrong, but some are useful.”

—George E. P. Box

I shall begin by considering three hypothetical scenarios. The first scenario involves
the deployment by a military peacekeeping force of multiple, possibly heterogeneous,
wireless networks. Moreover, these wireless networks might collectively span a distance of
several miles within the theater of operations. There is the added requirement of integrating
these disparate wireless networks, such that both intra- and inter-network communications,
along with backhaul access to the wired Internet, are supported. Given the presumed danger
to both military and non-military personnel in such a potentially hostile environment, a
network deployment such as this must be done both quickly and efficiently, and with
minimal risk of serious injury to personnel or even loss of human life. Finally, the deployed
network must be reliable, robust, and easy to maintain.

The second scenario centers around an ambulance company that services a large
metropolitan area—Dallas, Texas, for example. Such a large-scale deployment should
support reliable wide-area, high-speed, wireless voice and data communications. In an effort
to maintain a fiduciary responsibility to all stakeholders, there should be relatively low
deployment costs associated with this scenario. Similar to the first scenario described earlier,
easy maintenance, reliability, and robustness, are all essential.

The third scenario involves the development of a wireless community network, such

that residents of homes and apartments have reliable high-speed backhaul access to the
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Figure 1.1: 802.11b Multi-hop Wireless Mesh Network

wired Internet. Although less serious in nature than the two preceding scenarios, subscribers
to such a wireless community network would presumably expect QoS levels that are
somewhat comparable to QoS levels expected of the wired Internet. Irrespective of whether
a wireless community network such as I have described it is owned and operated by a for-
profit organization or is operated by a governmental entity (in which case, it is owned by
taxpayers), this infrastructure must be relatively inexpensive and easy to deploy, in order to
be considered affordable by prospective subscribers.

The three scenarios just described differ with respect to their operating conditions,
scope, and scale; however, there also are requirements common among them. These might
include simple deployment at low-cost, reliability, robustness, and easy maintenance, to
name a few. Current advances in the state-of-the-art in multi-hop wireless mesh networks

(WMNs) suggest that such infrastructures might conceivably satisfy such requirements.



Figure 1.1 illustrates a conceptual view of a multi-hop WMN, around which my
dissertation work is centered. As shown in the figure, an 802.11b multi-hop WMN is a set of
topologically-static backhaul mesh routers, similar to an ad hoc network [1]. The traffic
generated by each mesh router, M;, is the aggregate traffic of j clients, Ci;, C, . . ., Cj;, that
are within the basic service set (BSS) of M;.

There is considerable research activity in the design of algorithms, protocols,
techniques, and architectures for multi-hop WMNSs. Such research activity is not unexpected,
given the ever-increasing demand by end users for anywhere-anytime connectivity.
Moreover, unlike many of the hybrid wired-wireless infrastructures already in use, multi-hop
WMNs may be deployed with comparative ease.

An important objective of multi-hop WMN deployment, as suggested in the literature,
is to provide for the wireless domain what has been until now a hybrid wired-wireless
scheme. Achieving this is no small accomplishment, however. Unlike wired networks, the
wireless channel entails an environment that may be hostile, chaotic, and unpredictable.

Multi-hop WMN research is still in its relative infancy; however, a survey of the
literature suggests that much has been accomplished thus far. This is due in no small
measure to continued improvements in IEEE 802.11-based wireless networks, which are
considered by some researchers as a subset of multi-hop WMNs [2]. If we accept this
premise, then many of the same problems, challenges, and opportunities associated with

IEEE 802.11 networks might indeed apply to multi-hop WMNSs.



Research Problem

Let us again consider the diverse conditions under which the three hypothetical scenarios
described earlier might operate. The environment with which a military peacekeeping force
must contend may be, depending upon the particular area of the world in which it occurs, a
region fraught with mountains and valleys. In contrast, the metropolitan area serviced by our
hypothetical ambulance company might be comprised of a variety and multitude of small,
medium, and large buildings, all located in a rather large urban environment. Finally, the
wireless community network scenario might possibly be developed in a rural area that is flat,
topologically speaking.

The foregoing discussion of these three, very diverse, operating environments is
intended to highlight the point that a “one-size-fits-all” deployment of a multi-hop wireless
mesh network is not likely to work for all three scenarios. Depending upon the particular
environment in which the network is to be deployed, factors such as routing protocol, traffic
load, network size, number and placement of gateways, and so on, will probably differ
among the different deployments. Thus, an understanding about how to evaluate the
behavior and performance of multi-hop wireless mesh networks might prove useful to

network system/protocol designers and developers.

Research Goals

In light of the research problem described in the previous section, I intend to accomplish the

following three research goals:



1. Develop a better understanding of fundamental performance, scaling properties,
and trade-offs of mesh networks;

2. Conduct a comprehensive evaluation of network performance over a large design
space; and

3. Characterize the functional relationship between performance metrics and

relevant factors.

My third research goal requires some elaboration. Realization of this research goal
suggests three questions. First, how is system performance affected by various combinations
of factor settings? Second, which combination of factor settings achieves specific
performance requirements over a specified region of interest? Third, which combination of

factor settings produces the optimal response or set of responses?

Motivation

My dissertation work has a threefold purpose. First, such an evaluation should facilitate an
understanding about: (1) performance responses (i.e., throughput, delay, jitter, and packet
delivery ratio); (2) particular system/network parameters that may affect performance
responses; and (3) the degree to which performance responses are affected when varying
system/network parameters. Second, results of my work should provide insight about
performance issues to system and protocol architects. Third, a holistic approach such as
mine expresses a chain of analyses, the result of which leads to response optimization.

I anticipate the following benefits from the results of my work:

1. The development of generalized empirical models of multi-hop wireless mesh

networks;



2. Characterization of cause/effect functional relationships between performance

responses and their factors and factor interactions;

3. Prediction of system performance and behavior, based upon factor variables and

their levels; and

4. Optimization for four response metrics—throughput, delay, jitter, and packet

delivery overhead.

Most scientific endeavors involve making observations and inductively drawing
inferences about the phenomena under study. These inferences can then be generalized in
such a way that predictions about the system may be deductively estimated. Characterizing
the functional relationships between performance responses and their factors and factor
interactions may be useful to system designers and developers when, for instance, deciding
upon the routing protocol that should lead to a desired performance level, given the
environment within which the wireless network will operate.

Prediction is one of the most important objectives of scientific research. In the case of
multi-hop wireless mesh networks, reliable empirical models, along with particular factor
levels, may lead to accurate predictions about performance of the system, even before
deployment actually takes place. This predictive aspect may lead to greater efficiency and
higher cost-effectiveness, since resources would not be depleted in real-time, as the network
is tuned to operate at a certain level of performance.

The aforementioned benefits highlight what I believe are important strengths of
empirical modeling. Basically, empirical modeling characterizes the “How” mechanism of a

system, but does not offer very much about the “Why.” Such “why” questions are the locus



of analytical models. Even though my work does not involve such models, empirical models

may offer a useful starting point from which analytical models might then be developed.

Empirical modeling

Performance of a target system is contingent upon the environment within which it operates;
this operating environment is comprised of possibly numerous variables, some of which are
controllable, and others over which there is little or no control. Empirical modeling provides
a framework by which a functional relationship between the target system and its factors may
be formed. Thus, observations of the interaction between a target system and its
environmental factors are the foundation upon which empirical modeling may take place.

Derivation of viable empirical models is both interesting and challenging. It is
interesting in that the researcher expands his knowledge about the world around him; and it is
challenging because the process usually involves considerable experimentation and
observation. The upshot, according to George E. P. Box, is that “all models are wrong, but
some are useful” [3].

At first glance, Box’s statement might seem to suggest that most, or perhaps all,
attempts at empirical modeling are less than worthwhile. However, because empirical
modeling has been used for centuries, it is difficult not to concede that there is both merit and
significant utility in developing and using empirical models. The literature in general
scientific principles, statistics, and philosophy of science contains significant support for the
“principle of simplicity” (also labeled as the “principle of parsimony’’), which posits that
simpler models are preferred to more complex models, so long as they provide a reliable
representation of the phenomena under study. Because this principle has been applied

successfully in many different research contexts, I intend to abide by it as well.



Terms and Definitions

I shall next identify terms and their definitions I use throughout this dissertation; these are as

follows.

Empirical model — a model that is derived from observed functional relationships
between a dependent variable (response) and one or more independent variables
(factors).

Multi-hop wireless mesh network — a set of topologically-static backhaul mesh
routers, similar to an ad hoc network [1], such that the traffic generated by each mesh
router, M;, is the aggregate traffic of j clients, Ci;, C, . . ., Cj;, that are within the
basic service set (BSS) of M.

Parsimony — given two or more viable solutions or approaches to a problem, the
simpler solution or approach is preferred.

QoS — quality of service; a specification, either by a human administrator or by some
predetermined classification scheme, such that one or more responses (e.g.,
throughput, control overhead, delay) are maintained within certain upper and lower
bounds.

Signal — a response variable whose value changes over time. There are two types of
signals, complete signals and partial signals. Complete signals take on values at each
time instance, whereas partial signals do not. A signal is synonymous with a

response, such as throughput, delay, and so on.



Approach

As my work relies significantly upon empirical observations, the matter of whether to operate
either within an experimental framework or within a simulation framework must be
addressed. The literature provides substantial support for the latter; therefore, my
investigation is done almost entirely by means of simulation. I shall discuss related work in

this area in Chapter 2, which should make lucid my choice of a simulation environment.

Stage |l: Comprehensive Experimental Designs Ristaschi Godl
and Response Surface Methodology

Comprehensive Experimental

Designs Response Surface Methodology

Stage |: Preliminary Experimental Designs

First Design Expanded Design

Figure 1.2: Research Approach

Figure 1.2 illustrates a conceptual view of my approach. As shown in the figure, I
accomplish my work in two stages. In Stage I of my methodology, I develop preliminary

experimental designs, while in Stage II, I develop comprehensive experimental designs and



apply response surface methodology for factor optimization. Moreover, I attain my three

research goals in Stage II.

Stage |

As shown in Figure 1.2, Stage I of my work includes both first and expanded designs, neither
of which is comprehensive. The decision not to begin at the outset with a comprehensive
design is warranted by the so-called “25% Rule,” which says that no more than one-quarter
of an overall design effort should be expended in first designs [4]. The objective of the first
design is to demonstrate how a systematic design of experiments (DOE) strategy can be used
to analyze network system and protocol performance, thus leading to more objective
conclusions valid over a wide range of network conditions and environments [5].

In my expanded design, I begin with a large factor space and use fractional factorial
design to: (1) develop insights about the behavior and performance of multi-hop WMNSs; and
(2) eliminate factors that have little or no impact on responses. Unlike full factorial designs,
which structure experiments such that all combinations of factors and their high and low
values comprise the design matrix (discussed in greater detail in the Methodology chapter),
fractional factorial designs are “abbreviated” forms that highlight main effects of factors
upon responses. This makes for fairly expedient (and efficient) factor elimination, which is

very important in the early part of experimental designs.

Stage II

Completed work in Stage I establishes a foundation upon which I may develop
comprehensive experimental designs and apply response surface methodology; both of these

comprise Stage II of my work. The objective of my comprehensive experimental designs is
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multifaceted: (1) Identify and list potential critical factors and parameters that might impact
multi-hop WMN performance; (2) Evaluate system performance at various factor levels; (3)
Quantify main effects and two-factor interaction effects; (4) Design first-order empirical
models; and (5) Employ response surface methodology, in order to develop second-order

models, if applicable, and to optimize one or more response metrics.

Methodology: Motivation

Statistical design of experiments (DOE) and response surface methodology (RSM)
approaches have been used successfully in a variety of fields and disciplines, as both
approaches are highly systematic and methodical. Application of both these approaches is
intended to develop viable empirical models; there are differences between them, however.
Where first-order models might be considered adequate for the system being evaluated,
statistical DOE is used. In contrast, where second-order or higher-order models are needed,
along with factor optimization, response surface methodology becomes necessary.

As I have already indicated, a considerable amount empirical work in science is done
using the classical one-factor-at-a-time (OFAT) strategy. Unlike the OFAT approach,
statistical DOE offers greater efficiency, improved reliability of measured factor interactions,
and conclusions that are valid over a range of conditions. In sum, comparatively speaking,
statistical DOE should lead to empirical models that are superior to those derived from
OFAT approaches.

Response surface methodology (RSM) is a set of statistical techniques that may be
applied when first-order models are inadequate, thus requiring higher-order empirical
models. Moreover, as I have earlier stated, unlike statistical DOE, RSM may lead to models

for which optimal factor values may be determined, such that a maximum (or minimum)
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response signal may be attained. As with statistical DOE, OFAT approaches are severely

limited in not supporting such outcomes.

State-of-the-Art

A survey of the state-of-the-art in the empirical evaluation of the performance and behavior
of multi-hop wireless infrastructures indicates considerable research activity. I shall now
discuss work done by others that is representative of the state-of-the-art. Additionally, I

describe how my dissertation work compares with these representative works.

IEEE 802.11 Mesh Network Performance

Seo et al. in [6] evaluate the performance of the 802.11 MAC protocol in a wireless mesh
network. My work is similar to that of Seo ef al. in that measurements are made of response
variables such as throughput and delay under a variety of simulation scenarios. Moreover,
factors such as number of gateway nodes, number of users generating data traffic, and ranges
of transmission and carrier sensing are varied, in order to measure the impact of such changes
in factor values upon response variables.

In contrast to my work, for which I employ statistical design of experiments
approaches, Seo et al. use the traditional one-factor-at-a-time (OFAT) approach. That is,
each design point of theirs varies the value of a single factor variable, while maintaining
fixed values for all remaining factors. Results of the work done by Seo et al. in [6]
correspond generally to my Stage I results; that is, network performance degrades with
increasing traffic load, and improved performance may be realized by increasing the number

of gateway nodes.
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Unplanned 802.11b Mesh Network

Bicket et al. in [7] study the performance of an 802.11b wireless mesh network, deployed
with minimal planning or management in an urban environment. Specifically, the target
system of study is Roofnet, a community wireless network deployed in Cambridge,
Massachusetts, which (at the time their paper was published) was comprised of 37 nodes
located over a roughly four to six square kilometer area. An important research goal of their
work in this study is to combine the best characteristics of: (1) well-planned, highly-
coordinated, multi-hop networks; and (2) unplanned, loosely-connected, access point
networks.

Ease-of-deployment features of Roofnet include: use of omni-directional antennas,
self-configuring software, and multi-hop routing that is link-aware [7]. Results of the
evaluation by Bicket ef al. in [7] suggest that performance of an unplanned 802.11b wireless
mesh network is likely acceptable to users. Specific conclusions made by Bicket et al. are as
follows [7]:

¢ Throughput and delay both are comparable to end-to-end characteristics of DSL, with
an average throughput between nodes of 627 kilobits/second;

® As the number of hops increases, throughput decreases; however, eight-hop routes
average 160 kilobits/second;

e Performance of Roofnet is not dependent upon any particular small set of nodes; and

e Irrespective of the number of wired access points, Roofnet’s multi-hop mesh

enhances both connectivity and throughput.

A comparison between my work and the work done by Bicket et al. in [7] highlights

an important similarity. That is, the configurations of the preliminary designs in Stage I of
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my work (see subsection 1.6.1) parallel somewhat the loosely-connected nature of Roofnet.
Unlike the work done by Bicket et al., however, my work includes finding the traffic load

and network size at which a specific performance metric is optimized.

CONTRIBUTION

1 | Comprehensive performance evaluation of multi-hop wireless mesh
networks

2 | Empirical models that characterize the functional relationship between
performance responses and system/network parameters (factors)

3 | Determine the levels of two statistically-significant factor variables at
which four performance responses are optimized

Table 1.1: List of contributions in this dissertation

Two-Tier Urban Mesh Network

Work done by Camp ef al. in [8] offers an interesting contrast both to the work done by
Bicket et al. in [7] and to my own work. Among several research goals, Camp et al. study
node placement, the findings of which suggest that grid placement lead to throughput levels
that are up to 50% higher than randomly placed nodes, which, as I have discussed in
subsection 1.8.2, is the node placement topology used in the MIT Roofnet. This finding is a
result of evaluating performance as impacted by factors such as the density of mesh nodes
and random node placement [8].

In comparing my work in Stage I to the work done by Camp et al. in [8], I employ a
loosely-connected grid node placement, with significant lack of network planning. Stage II

of my work, however, involves a well-planned, highly-organized, node placement strategy.
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Contributions

Table 1.1 lists my contributions to the state-of-the-art. My contributions are as follows: (1)
A comprehensive performance evaluation of multi-hop wireless mesh networks; (2)
Derivation of empirical models that characterize the functional relationship between
performance metrics and system/network parameters; and (3) Determination of the levels of
two statistically-significant factor variables at which four performance responses are
optimized.

It is of special significance that my three research contributions form a “chain” of
sorts, in that, with the exception of my third contribution, each is an antecedent event to
subsequent contributions. Thus, my first contribution leads directly to the starting point for
my second contribution, the results of which set the stage for my third research contribution.
Moreover, my work involves two stages, whereby the first stage is preliminary, with the

second stage leading to the realization of my three research contributions.

Dissertation Organization

The remainder of this dissertation documents the details of my development of empirical
models for and performance evaluation of multi-hop wireless mesh networks. Chapter 2
presents a survey of the literature for each of my contributions and also justifies my
approach. I then describe my use of statistical design of experiments and response surface
methodology in Chapter 3. The results of my dissertation research are discussed in Chapter
4; these results directly address my research goals. Finally, I discuss conclusions and future

work in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

“People think that computer science is the art of geniuses
but the actual reality is the opposite, just many people doing
things that build on each other, like a wall of mini stones.”

—Donald Knuth

In this section, I present a survey of the literature for each of my three contributions
to the state-of-the-art, listed in Table 1.1 of this dissertation. Moreover, I justify my
application of empirical modeling to multi-hop wireless mesh networks.

My first contribution to the state-of-the-art is motivated by the rapid growth and use
of multi-hop wireless mesh networks (WMNs), where performance is expected to
approximate that of wired network infrastructures. In this context, systematic and efficient
approaches are crucial for evaluating behavior and performance of multi-hop WMNS.
Moreover, a comprehensive evaluation—at all levels of the protocol stack—would benefit
the research community.

My second contribution to the state-of-the-art is motivated by the extensive use of
empirical modeling in many areas of science, engineering, and even agriculture. In addition
to my discussion highlighting the use and benefits of empirical modeling in wireless
networks, I call attention to the importance of having insight about the nature and form of
modeling, especially limitations that are inherently a part of all modeling efforts.

My third contribution to the state-of-the-art is motivated by the heterogeneity that

exists among the diverse environments within which multi-hop WMNs are deployed. The



research literature suggests that, at the very least, traffic load impacts significantly network
performance. A set of powerful techniques by which performance response may be

optimized is response surface methodology (RSM).

Comprehensive Performance Evaluation

IEEE 802.11

Because empirical models describe the relationship between response variables and their
factors, one may also glean insights about performance from such models. Fortunately,
considerable work has been done in the area of IEEE 802.11 wireless network performance.
My work is related to, and is an extension of, these performance investigations.

Crow et al. in [9] investigate IEEE 802.11 throughput performance via simulation,
when all mobile stations generate asynchronous data traffic with equal intensity. Simulation
results are as follows: (1) the condition of the channel may negatively impact throughput
performance; (2) RTS_Threshold (a tunable parameter, used to determine when RTS/CTS
should be used) may negatively impact throughput performance due to collisions; (3)
Fragmentation Threshold, which, like RST_Threshold, is a tunable parameter, may be useful
in terms of reducing the effects of poor channel quality; and (4) a longer MAC Service Data
Unit (MSDU) may lead to a more efficient level of throughput performance.

Chhaya and Gupta in [10] evaluate the performance of the Distributed Coordination
Function (DCF), which is the basic access method for the IEEE 802.11 MAC. Specifically,
Chhaya and Gupta examined both the throughput and fairness properties of the DCF in IEEE
802.11 MAC. Moreover, Chhaya and Gupta compared DCF against an RTS/CTS scheme.

Their simulation results showed higher throughput with the DCF scheme than was realized
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using the RTS/CTS scheme, if the load was small. On the other hand, at higher loads, the
RTS/CTS scheme provided higher throughput than did DCF.

Shakkottai and Rappaport in [11] conclude that research strategies which have been
used for wireline networks are inadequate for the unique issues found in wireless networks.
Thus, they emphasize the importance of modeling network performance, particularly with the
objective of understanding mixed traffic and service types over wireless networks. My use of
statistical experimental design increases the likelihood of statistically valid network
performance modeling within certain upper and lower bounds. Moreover, analyses of
variance (ANOVA) figures of merit support my own work in allowing me to compare
objectively the expected performance improvements that result from my proposed adaptive
MAC protocol against the performance of comparable multi-hop WMNs that do not include
my proposed adaptive MAC protocol.

As indicated by Andersen et al. in [12], the properties of radio propagation determine
the physical layer characteristics of most wireless networks; this affects the design and
performance limitations of higher level network layers, including the MAC sublayer. Their
work in modeling radio propagation highlights, among other things, the importance of
factoring in different physical environments (e.g., wireless networks in an urban setting as
opposed to, say, a rural area).

An interesting study was done by Royer et al. in [13], which addressed the question
of whether the choice of MAC protocol has any effect on the performance of routing
protocols. Simulations were done using GloMoSim (a precursor to QualNet), whereby three
routing protocols—Wireless Routing Protocol (WRP), Fisheye State Routing (FSR), and Ad

hoc On-Demand Distance Vector (AODV)—and four MAC protocols—Carrier Sense
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Multiple Access (CSMA), Multiple Access with Collision Avoidance (MACA), Floor
Acquisition Multiple Access (FAMA), and IEEE 802.11 DCF
(CSMA/CA/RTS/CTS/ACK)—are used in the simulations. Their results suggest that
selection of the MAC protocol does indeed impact the performance of the routing protocol;
thus, this should be considered when doing performance comparisons among different
routing protocols.

Royer et al. in [14] attempt to find the optimum node density for ad hoc mobile
networks that leads to maximal delivery of data packets. Their results suggest that such a
global optimum does not exist. Instead, the node density should increase with increasing
node speed.

Broch et al. in [15] present both detailed and summarized performance results of
packet-level simulations for four different multi-hop wireless ad-hoc network routing
protocols: DSDV, TORA, DSR, and AODV. Moreover, these simulations were done using
the popular ns-2 simulator, to which they made “improvements.” The purpose of their work
in this paper was to model the behavior and performance of the aforementioned routing
protocols.

Jun et al. in [16] develop a calculation of the theoretical maximum throughput of
IEEE 802.11 networks, which considered a variety of physical layer and MAC layer
variations. Moreover, Jun et al. apply their results by monitoring the link utilization of a
particular IEEE 802.11 network. An objective of their applying these results to an actual
network is to demonstrate how their calculation of the theoretical maximum throughput of

IEEE 802.11 networks may be generalized to both ad hoc and infrastructure networks.
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Cross-Layering Issues

Corson et al. in [17] make a two-fold claim concerning MANETS: (1) researchers and
scientists should look to the existing fixed (wired) infrastructure as a starting point (or model)
for integrating methods and approaches that actually work; and (2) developers must
acknowledge that the “principle of strict protocol-layer separation” may need to be relaxed,
in order to deploy a viable MANET design that overcomes extreme bandwidth limitations
that are ubiquitous in the wireless medium. As per my work in multi-hop WMN:s, I believe
that Corson et al. make a compelling case for increasing the two-way vertical communication
between upper-layer protocols and lower-layer protocols, so that many of the aforementioned
inefficiencies (as they put it) associated with peer or horizontal requirements can be removed.
While Corson et al. acknowledge potential risks in not following the “traditional layered
design” approach, they seem to do so half-heartedly, which suggests a somewhat strong bias
toward cross-layering.

Shakkottai et al. in [18] address issues that surround what they refer to as the “cross-
layer paradigm shift,” which they claim is well underway. Of relevance to my work is their
acknowledgment of the importance of performance modeling and evaluation of mixed traffic
and service types in wireless networks. Moreover, Shakkottai ef al. recognize that such
networks will likely be deployed in many diverse propagation environments, thereby
supporting the necessity of employing viable techniques and approaches for evaluating these
networks.

Similar to Shakkottai et al. in [18], Kawadia and Kumar in [19] warn against taking
what they refer to as “unbridled cross-layer design,” because the number of cross-layer factor

interactions may potentially be large. Moreover, while some interactions may be intended,
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and therefore exploited, other interactions may be both unexpected and unintended.
Therefore, cross-layer protocol architects should be cognizant of the likelihood of such
interactions, and develop an understanding about their impact on system performance and

behavior.

IEEE 802.11 MAC Layer

The IEEE 802.11 protocol and its related standards (e.g., b, g, e, etc.) dominate the wireless
communications market. This is subject to change, of course, as there is considerable
ongoing work in wireless communications. Still, even with new protocols, designers and
architects should ensure seamless integration of their protocols with existing IEEE 802.11
wireless infrastructures.

Because a multi-hop WMN may be viewed in much the same way as a stationary ad
hoc wireless network, the Distributed Coordination Function (DCF) access method is of
direct relevance to my work; moreover, according to the original IEEE 802.11 standard [20],
the implementation of Point Coordination Function (PCF) is optional. Hence, I shall forgo
any discussion about the PCF access method. I should point out, however, that the literature
has numerous sources that describe in detail the IEEE 802.11 DCF. In particular, the
interested reader may wish to read more about DCF in [20], [21], [22], and [9].

The MAC sublayer is concerned with, among other things, coordination of channel
access among and between multiple wireless hosts. Considerable insight about channel
access methods and related challenges—particularly with respect to minimizing both the
hidden terminal and exposed terminal problems—can be gleaned from Karn in [23] and
Bharghavan et al. in [24]. Specifically, Karn in [23] describes how he extends the use of

RTS and CTS packets in CSMA/CA to better handle the hidden and exposed terminal
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problems, which he accomplishes via his proposed Multiple Access with Collision
Avoidance (MACA) channel access algorithm. Bharghavan et al. in [24] extend Karn’s
MACA RTS-CTS-DATA exchange by means of their proposed MACAW RTS-CTS-DS-
DATA-ACK exchange algorithm. Unlike Karn, who merely proposed the idea of MACA,
but without any sort of implementation, Bharghavan er al. implement both MACA and
MACAW and compare the performances of the two. According to Bharghavan et al. in [24],
even with the additional overhead in MACAW, throughput is increased by over 37% with
MACAW as compared to MACA.

In my simulation work and empirical analyses, I employ an IEEE 802.11b wireless
networking infrastructure. The IEEE 802.11 MAC sublayer notwithstanding, I do not
discuss the IEEE 802.11 protocol in detail (e.g., IEEE 802.11 architecture and physical
layer). There are many useful references concerning the IEEE 802.11 protocol; I would
encourage the interested reader to consult the following, which I have found quite useful: the
IEEE 802.11 Working Group website [20], Pahlavan and Krishnamurthy [25], Toh [26], and
Crow et al. [9].

Slightly more than just a decade ago, Cox in [27] commented about the lack of real
success (at that time) by “an IEEE standards committee, 802.11.” While this sort of insight
might today be considered somewhat laughable, it is not altogether unexpected, given the
chaotic nature of the wireless medium. Fortunately, in the ten-plus years since the formation
of the IEEE 802.11 Working Group, many challenges and obstacles have been overcome,
particularly as regards the IEEE 802.11 MAC sublayer.

An excellent discussion about the IEEE 802.11 MAC sublayer is presented both by

Pahlavan and Krishnamurthy in [25] and Crow et al. in [9]. Chandra et al. in [28] survey the
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literature for discussions about MAC protocols. In addition to describing these protocols,
Chandra et al. compare them based upon three classifications: network architecture,
performance, and support for multimedia traffic. Of particular interest to me is the inclusion
and discussion of performance metrics by Chandra et al. in [28]; two of these are especially

relevant to my work: delay and throughput.

Multi-hop Wireless Mesh Networks

Because my work focuses on the performance evaluation and empirical modeling of multi-
hop WMN:Ss, I include here a discussion about related work in performance studies of such
networks. Interesting work in evaluating both the performance of wireless networks in
general, and wireless mesh networks in particular, is described by Gupta and Kumar in [29]
and Jun and Sichitiu in [30], respectively. The latter work done by Jun and Sichitiu in [30] is
of special significance, since it addresses the problem of determining the exact capacity of a
WMN. Their results show that the throughput for each mesh node decreases as O(1/n),

where 7 1s the total number of nodes in the mesh network.

Solutions

I'include a brief discussion about and examination of currently available (and deployed)
multi-hop wireless mesh network solutions for the purpose of establishing additional context
for my dissertation work. In this section, I discuss multi-hop WMN solutions by Cisco
Systems, Kiyon, Nortel Networks, and Tropos Networks. Along with this, I shall, of course,
describe features that are unique to each of these solution providers’ approaches. A common
thread among these four multi-hop WMN solutions—and one that is crucially important to

their success—is that these networks are designed to integrate seamlessly with existing
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802.11 wireless networks. Examples of such 802.11 wireless networks include those found
in many public venues such as coffeehouses, school and university campuses, apartment

complexes, and residential dwellings, to name a few.

Cisco Wireless Mesh Networking Solution

Cisco Systems is a well-known and highly-respected company that continues to provide the
state-of-the-art in wired and wireless networking solutions. Consistent with its ongoing
design and development of such infrastructures, Cisco Systems (http://www.cisco.com) has
developed a wireless mesh networking solution that exploits the fast-growing (and relatively
inexpensive) Wi-Fi client base [31]. The Cisco Systems Wireless Mesh Networking Solution
purports to integrate well with existing Wi-Fi (802.11) wireless networks. My empirical
work deals exclusively with 802.11b wireless networks. Unlike the dual-radio approach

adopted by Cisco Systems, however, I employ a single-radio approach.

Kiyon Autonomic Network

In contrast to the solution developed by Cisco Systems, Kiyon’s Autonomic Networking
Technology (http://www kiyon.com) is self-managing, which employs a cross-layer design
that includes: (1) a modified MAC protocol that purportedly addresses the problem of
throughput degradation, inherent in most multi-hop wireless networks; and (2) an enhanced
ad hoc on-demand routing protocol that integrates a multiple-attribute metric for both
topology discovery and route selection [32]. Moreover, Kiyon’s cross-layer design facilitates
improved TCP performance, since the modified MAC protocol informs TCP when packet

loss is due to link failure, as opposed to congestion within the channel.
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Kiyon’s entry into the wireless mesh networking market is motivated by the
increasing appeal of interconnecting existing IEEE 802.11 networks, using a wireless
backhaul. It is this interconnection of IEEE 802.11 access points and routers that forms a
mesh. As I have already suggested, however, forming a mesh using a wired infrastructure is

both costly and resource-consuming (both in terms of time and labor requirements).

Kiyon Autonomic Networks—MAC: An unintended consequence of wireless mesh
networks built upon IEEE 802.11 technology is the impact on both throughput and quality
due to multiple hops. Like Cisco Systems, Kiyon exploits high-throughput, self-managing
communications to circumvent throughput and quality problems. Kiyon employs a novel
approach for overcoming the throughput degradation problem usually present in multi-hop
wireless mesh networks. Rather than attempting to work around this problem, Kiyon
exploits the use of available non-overlapped channels by employing them either
simultaneously or alternatively. Specifically, Kiyon has developed a distributed TDMA
MAC protocol that implements an automatic channel selection and fast switching algorithm
in the MAC layer. Kiyon’s multi-channel approach purportedly results in higher link

throughput.

Kiyon Autonomic Networks—Routing: Kiyon Autonomic Networks mesh solution uses a
novel ad hoc on demand routing protocol called Kiyon Wireless Attribute Routing Protocol
(WARP), which, supported by a cross-layer design, uses attributes such as signal strength,
SNR, and round-trip delay, among others, as the basis for routing decisions. Moreover,
WARP works with both WARP-enabled and standard 802.11 clients, which facilitates easy

deployment with existing 802.11 networks.
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Kiyon Autonomic Networks—Cross-layer design: In addition to the purported benefits of
Kiyon’s cross-layer design, a key element is the sharing of information between the MAC
and TCP layers concerning packet losses. Specifically, if packet losses are the result of
channel errors or link failures, the Kiyon MAC informs TCP, in which case the standard TCP
exponential backoff that accompanies congestion detection is not employed. This
information-sharing should, presumably, lead to a much-improved TCP implementation, as

compared to the typical TCP.

Kiyon Autonomic Networks—Architecture: The network architecture of the Kiyon
Autonomic Network is very similar to the architecture illustrated in Figure 1.1 of this
dissertation. The principal difference is that several Kiyon routers form a broadband
backbone of the network. Additionally, each Kiyon router contains both WARP and the
Kiyon MAC, along with a standard IEEE 802.11 radio. According to the available
information posted on Kiyon’s web site, this architecture gives clients several options by

which the network may be accessed.

Nortel Wireless Mesh Network Solution

According to information by Nortel Networks in [33], its Wireless Mesh Network solution
exploits the growing 802.11 wireless network consumer base, bringing existing “hot spots”
together to form a Community Area Network, or CAN. A CAN is a set of wireless access
points (APs) that form a mesh, which is self-organizing, auto-configuring, self-healing, and

uses multi-hop, wireless backhaul from a wired broadband connection point.
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Tropos Networks MetroMesh Architecture

The wireless mesh networking solutions developed by Tropos Networks each build upon the
idea of combining the ubiquitousness of cellular networks with the relative simplicity and
speed of Wi-Fi networks. My discussion of Tropos Networks solutions is based upon

information found in [34].

Tropos Networks MetroMesh Architecture—Throughput: Tropos Networks solutions
purportedly deliver consistent symmetric throughput rates that exceed 1.0 Mbps to Wi-Fi
clients. Tropos Networks accomplishes this using its proprietary Predictive Wireless Routing
Protocol™, or PWRP, implemented as part of its MetroMesh routers, which dynamically
optimizes the data path between client and server. Specifically, PWRP adapts to changes in
the wireless channel conditions, as well as new backhaul routes that come available due to
the addition of MetroMesh routers. This adaptation feature is an important aspect of self-
organization, inherent in the Tropos MetroMesh architecture. A further benefit from PWRP
optimization of the client-server data path is that a constant routing overhead is maintained,
irrespective of the whether the network scales up in size or whether it scales down in size.

Two additional features of PWRP include: (1) the use of predictive algorithms, used
to select the “best” multi-hop paths available from among the myriad paths in the mesh; and
(2) the virtual elimination of all single points of failure, a result of its fully-distributed

architecture.

Confidence in Simulations

In chapter 1, I raised the point concerning the use of computer simulation studies instead of

experimentation. The most probable reason for the wide use of simulators in multi-hop
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WMN and MANET research is that deployment of actual large networks may not be
realizable, particularly if hundreds of nodes are needed [35]. Researchers should not forgo
the ease with which simulators support evaluation of significant changes imposed upon a
network environment [36]. Additionally, I alluded to evidence from the literature which
suggests that the use of simulation studies may in fact be more useful than experimentation,
due mainly to the degree of control over parameters and the environment available in a
simulator. According to Dodig-Crnkovic in [37], modern computing allows researchers to
simulate considerable phenomena, particularly non-linear phenomena. Because my
empirical work relies heavily on results from QualNet simulations, I shall discuss related
work in this area.

Network simulations are often used instead of “live” experimentation, mainly because
testbeds with the necessary configuration are not readily available. (Studies of wireless
networks with several dozen nodes—hundreds, perhaps—come to mind.) Suppose, however,
that an acceptable testbed were available, the issue of experiment repeatability remains.
Unlike experimental “real world” networks, such experiment repeatability is, in theory,
virtually assured in a simulation environment, since the experimenter has “absolute” control
over the system being simulated. Moreover, experimentation with a “live” network is both
expensive and difficult to accomplish [38].

Pawlikowski et al. in [39] discuss the use of simulation studies in telecommunications
networks. They suggest that there is growing concern by many in the scientific community
over the validity of such simulation studies. Using survey results from 2200 published
scientific papers, as well as anecdotal evidence, Pawlikowski et al. in [39] argue that the

question of credibility of simulation studies of telecommunication networks is both valid and
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legitimate. Thus, Pawlikowski et al. in [39] posit two necessary conditions for a credible
telecommunication networks simulation: (1) Appropriate pseudo-random number generators
of independent uniformly distributed numbers must be used; and (2) Analysis of simulation
output data should be based upon an appropriate methodology, as well as identification of
and discussion about the final statistical errors associated with the results.

Kurkowski et al. in [40] extend the work done by Pawlikowski et al. in [39], with a
particular focus on MANET simulation. The goal of the work done by Kurkowski et al. is to
heighten awareness of the apparent lack of credibility of MANET simulation results among
the research community. In their study, Kurkowski et al. in [40] analyze MANET simulation
studies published in the Proceedings of the ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc) from 2000 through 2005, focusing on four areas
of credibility in MANET research: (1) repeatability; (2) lack of bias; (3) rigor; and (4)
statistical reliability. The results of their study suggest that significant deficiencies exist in
MANET simulations for the four areas of credibility on which their work was focused. In
addition to their emphasis on addressing these four areas of credibility for MANET
simulation studies, Kurkowski et al. discuss briefly tools available to researchers that might
aid in the development of credible MANET simulation studies [40].

Kotz et al. in [41] describe their detailed study of wireless assumptions that compared
experimental against simulation results, using the same routing protocols. The purpose of
this study was to show that assumptions used in most MANET simulation studies lead to
results that differ substantially from reality. Moreover, similar to Pawlikowski et al. in [39]
and Kurkowski et al. in [40], Kotz ef al. in [41] surveyed articles over a multi-year period

that involved simulations (MobiCom and MobiHoc proceedings, 1995 through 2003). The
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results of their survey showed that the number of “Simple” and “Flat Earth” models far
exceed the number of “Good” models [41]. Kotz et al. list the following axioms that usually

accompany “Simple” and “Flat Earth” models [41]:

e the world is two dimensional;

¢ the transmission area of a radio is roughly circular;
e all radios have equal range;

e if I can hear you, you can hear me;

e if I can hear you, then I can hear you perfectly; and

e signal strength is a simple function of distance.

In sum, results of the comparison between experimental results and simulation results
offer compelling evidence against the validity these axioms [41].

A study similar to that of Kotz et al. in [41] is a comparative study done by Lucio et
al. in [36], whereby outputs from two popular network simulators, OPNET Modeler and NS-
2, were compared against the output for a network testbed. Their objective in doing so was
to offer researchers a guide in performing packet-level network simulations [36]. If indeed
simulation tools are used by such researchers, then accuracy of simulation relative to a real
network is paramount. It is important to note that Lucio et al. are not comparing between the
two network simulators; rather, they want to determine the accuracy of each. A summary of

their results is as follows:

¢ Both simulators accurately modeled testbed behavior for CBR traffic;
¢ Neither of the simulators accurately modeled testbed behavior for FTP traffic, using

default simulation parameters; and
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¢  When simulation parameters were adjusted, OPNET Modeler seemed to be more

accurate than did NS-2.

One final point emphasized by Lucio et al. in [36] is that configuring the network
simulators and the testbed for such comparisons is indeed complicated.

The literature supports strongly the idea that researchers involved in wireless
communication networks usually decide upon a particular simulator on which to do their
work. That is, because of time and resource constraints, the researcher is unable to compare
among the various discrete event simulation tools available. Cavin et al. in [35] undertake
such an endeavor. They compare simulation results of a flooding algorithm among three
simulators: OPNET Modeler, NS-2, and GloMoSim (the precursor to QualNet). Cavin et al.
measure three performance responses [35]: (1) time delay, which is the average time required
by a packet to reach a node n; (2) success rate, which is the measured difference between the
expected and actual number of messages received at node n; and (3) overhead, which is the
sum of duplicated packets received by node n. Moreover, the parameters were the same for
all three simulation environments. The results collected from the three simulation
environments differed significantly from one another. Cavin et al. identify possible causes of

such differences; these include the following [35]:

¢ Differing physical layer implementations;
¢ Implementation of a new protocol is itself difficult to transpose from one simulator to

another; and
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® @Given that successive releases provide bug fixes, it is reasonable to assume that
MANET simulators still contain errors or incompatibilities to the IEEE 802.11

standard.

Cavin et al. in [35] conclude that a hybrid approach that involves simulation of only
the MAC and physical layers, with the upper layers executed on, say, a cluster of machines,
is preferred.

Despite problems and pitfalls usually associated with network simulations, use of
such simulations is likely to continue. Heidemann et al. in [42] offer guidelines that may
increase the validity of simulation studies. Their guidelines are the result of a workshop held
in May 1999 by the National Institute of Standards and Technology (NIST) and the Defense
Advance Research Projects Agency (DARPA) to discuss network simulation validation.
Heidemann et al. in [42] emphasize the point that validation is required both in simulation
and laboratory (that is, experimental) environments. Moreover, validation as a process is
multi-level, from the standpoint that its degree is a function of the question or questions
being posed by the researcher (see [42] and [43]). A summary of the recommendations made

during the aforementioned workshop is as follows [42]:

e Simulation results should be compared against results from laboratory experiments,
analytical models, and other, independently contrived results;

¢ Visual representations, usually by way of animation, may aid in the identification of
erroneous behavior by the system;

e Because real systems operate in real time, asynchronization (among, say, individual

wireless nodes) should be injected within the simulation runs;
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® Reproducibility of simulations and their results is an imperative;

e Comparative simulation studies are easier to validate than simulation studies that
emphasize absolute system behavior; and

¢ Introducing artificial boundaries into the model (e.g., an artificial physical topology)

may introduce inaccuracies.

Interesting work has been done by Judd and Steenkiste, described in [44], in which
they have developed a wireless network emulation tool that utilizes real MAC and PHY
layers, while supporting real applications. They claim that their emulator allows for realistic
and repeatable wireless experimentation, because their emulator provides accurate wireless
signal transmission, propagation, and reception in an emulated physical space [44]. The
paper by Judd and Steenkiste in [44] focuses on the purported success with which they have
been able to conduct sophisticated wireless experiments that suggest considerable accuracy.

A helpful guide to designing and working with viable simulation experiments is
presented by Kleijnen et al. in [45]. Their focus is on statistical DOE as it may be applied to
simulation studies. Of particular importance is their discussion of a “toolkit” of designs for
experimenters who have limited DOE expertise and experience.

A number of significant challenges remain with the use of network simulation studies.
Indeed, from the foregoing discussion, one might be tempted to concede that results from
network simulation studies are tenuous at best. By extension, it follows that: (1) network
simulation studies should be avoided; and (2) experimentation via wireless network testbeds
should be the only acceptable alternative. Such a conclusion, however, may be both

problematic and incorrect. From my review of the literature, I am confident that simulation
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studies, if done correctly, can provide important insights from analyses of their results;

hence, justification for my use of simulation studies in my own work.

Empirical Models

Scientific Investigation and Empirical Models

The main purpose of scientific investigation is to lead the researcher ever closer to truth
regarding physical reality. This requires observation of the physical phenomena under
investigation. Merely observing these phenomena, however, is insufficient; models—
empirical models, to be more precise—must be developed.

Gauch in [46] states that models describe the reality being investigated; in other
words, models are not the reality being investigated. This point may seem patently obvious
and not worth mentioning; however, I wish to amplify Gauch’s point about models and
reality, as I intend not to succumb to the temptation to place too great an emphasis on the
models. A supporting perspective to Gauch’s assertion is taken from Giere in [47], who
states that representing reality is done by the scientist, not by the model itself.

Berg in [48] claims that the scientist and researcher should remain cognizant of the
inescapable subjectivity in the interpretation of empirical data. Like Giere, Berg’s point
gives rise to the likelihood that divergent empirical models could be developed by different
researchers—even if the same empirical data are used. Thus, the models I develop through
my work: (1) apply to my stated research problem; (2) are within a defined scope; and (3) are
subject to my interpretation of the empirical results.

From the preceding, an important objective for me is to develop empirical models that
correspond to reality, not copy reality—an objective supported by Meadows in [49], who

says that there is a virtual nonexistence of isomorphism between models and the reality they
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describe. From the empirical models I develop, I seek to gain insights about the phenomena
under study—in this case, multi-hop WMNSs.

In my approach to empirical model development, I employ the principle of
parsimony, or simplicity. The literature supports strongly such parsimonious empirical
modeling. A caveat to my development and use of parsimonious empirical models hinges
around a simple but compelling assertion made by George E. P. Box, the noted statistician
and scientist, who claims that all models are wrong, but some may be useful [3].

George E. P. Box is considered by both statisticians and scientists alike as the
intellectual progeny of Sir Ronald A. Fisher, the man credited with conceiving and
developing statistical design of experiments (DOE). It is worth noting that Sir Fisher was the
father-in-law of Box, who was married to Sir Fisher’s daughter. I mention this point merely
to suggest the very real possibility that both Box and Sir Fisher had, on more than one
occasion, various discussions about empirical modeling in general and statistical DOE in
particular. In any case, Box in [3] makes the point that simple but illustrative models are the
signature of a capable scientist; he further amplifies this point by stating that
“overelaboration” and “overparameterization” are the marks of mediocrity in scientific
research. Thus, I avoid the latter category.

Gauch in [50] makes the point that most statisticians understand the increase in both
accuracy and efficiency that result from parsimonious modeling; Gauch goes on to say that,
unfortunately, very few scientists recognize this important opportunity. Feuer in [51] says
that the greatest of scientists hold the view that the laws of nature are fundamentally simple,
which is the main reason for their successful employment of the principle of simplicity

(parsimony). Beck in [52] aligns himself with the idea of parsimonious modeling, but
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cautions against what he calls “an overly conscientious use of the principle of parsimony,” as

this might lead to models that are too narrow.

Statistical Design of Experiments

Factorial design offers the researcher a mechanism by which empirical models may be
developed that provide considerable information with minimal time and resource
requirements. While factorial design approaches have been used for some time, and by
researchers in many different fields, a review of the literature suggests that the vast majority
of empirical model development is done using the “one-factor-at-a-time” approach (OFAT),
which, unfortunately, is inferior to factorial design, both in terms of accuracy and efficiency.
An excellent tutorial on statistical DOE for simulation is given by Kelton and Barton in [53].

Empirical models developed using factorial design techniques present the researcher
with equations that describe the functional relationship between response variables and
factors that affect them. It turns out that the empirical models contrived using factorial
design techniques are in fact least-squares regression models. Insights gleaned from least-
squares regression models are more fruitful when the researcher doing the analysis has some
understanding about the process upon which least-squares regression is based.

Barrett et al. in [54] apply statistical design of experiments and analysis of variance
(ANOVA) to ad-hoc networks, in order to characterize the interaction between routing and
MAC protocols. The results of their simulation studies and statistical analyses suggest that
there is no single MAC/routing protocol combination that outperforms all others. Rather, the
fact that interaction exists suggests that protocol design should consider the combination of
routing and MAC protocols as operating in tandem, in terms of the performance impact on

the system.
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It is one thing to contrive empirical models that describe the relationship between
responses and the factors that affect them, and quite another thing to ascertain such attributes
as validity, accuracy, and reliability of such models. Analysis of variance, or ANOVA,
offers the researcher figures of merit (or merit functions, as they are sometimes called), by
which the aforementioned attributes may be determined. Usually, the ANOVA is presented
as an ANOVA table.

Analysis of variance was developed by Sir R. A. Fisher, whom I have previously
mentioned, and who is generally considered as the “father” of modern experimental design.
Most experimental results exhibit variation among the data, the sources of which come from
variance between treatments and variance within treatments. Analysis of variance helps the
researcher determine whether the variability is statistically significant, or, if not, then perhaps
small enough such that chance is the probable explanation for variability [46].

Application of ANOVA to the study of interaction between network protocols,
topology, and traffic, was done by Barrett ez al. in [55]. Their objective was to empirically
characterize the interaction effect between the routing layer and the MAC layer in wireless
radio networks. The results of their statistical analysis and application of ANOVA led to
their concluding that different combinations of routing and MAC protocols lead to varying
performance under varying topology and traffic conditions. The significance of their work to
my own work is the emphasis on identifying and measuring factor interaction.

Perkins et al. in [56] apply statistical DOE to the study of the behavior and
performance of ad hoc networks. In their study, Perkins et al. evaluated the impact of five
factors—node speed, pause-time, network size, number of traffic sources, and type of routing

(source versus distributed)—on three performance responses—throughput, average routing
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overhead, and power consumption. Their study was the catalyst for my first design, the
details of which are described by Totaro and Perkins in [5], and upon which my discussion
about my first design is based, included in chapter 3 of this dissertation.

A similar study was done by Vadde and Syrotiuk in [57], whereby statistical DOE
was used to study the impact of factors and their interactions on service delivery in mobile ad
hoc networks. Their results suggest that for average delay, the MAC protocol and its
interaction with the routing protocol are the most significant. Of particular relevance to my
work, however, is their conclusion that statistical DOE and ANOVA offer powerful tools by
which simulation results may be analyzed and evaluated, such that main effects and
interaction effects may be identified.

Statistical DOE involves many different techniques; I describe my application of
these tools in chapter 3 of this dissertation. I should add that four sources from the literature
in statistics are especially important to my methodology and results; these sources are: Box

[4], Jain [58], Law [59], and Montgomery [60].

Response Surface Methodology

Response surface methodology (RSM) has been used successfully in various domains, not
the least of which includes agriculture, the chemical industry, and pharmaceutical drug
development. Excellent references that describe these techniques include Myers and
Montgomery in [61], and Box and Draper in [62]. For a brief overview of RSM, see Angun
et al. in [63].

Interestingly, application of RSM to computer communications is relatively new and
sparse. However, a recent paper by Vadde et al. in [64] demonstrates that RSM can be

successfully applied to the domain of networking. Specifically, their work is applied to

38



mobile ad hoc networks (MANETSs), whereby they use RSM to optimize protocol interaction
found by factor screening. Moreover, Vadde et al. employ RSM to optimize multiple
responses, which is similar to my work, described in this dissertation.

Along with [61] and [62], helpful descriptions about RSM can be found in both [4]
and [60]. Moreover, these two references present the use of RSM by way of several

excellent examples. As with statistical DOE, I discuss the application of RSM in chapter 3.
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CHAPTER 3

METHODOLOGY AND DATA ANALYSIS

“For every complex question there is a simple and wrong solution.”

—Albert Einstein

Stage I: Preliminary Designs

In chapter 1 of this dissertation, I included a very brief conceptual description of my work in
Stage I, which involves experimental designs that I view as preliminary to subsequent
comprehensive designs. My decision to employ a two-stage approach is the result of Box’s
“25% Rule,” which says that no more than one-quarter of an overall design effort should be
expended in first designs [4]. Within Stage I, I employ a two-phase approach: (1) first
design; and (2) expanded design.

The “first design” phase has a limited factor space. The motivation for the
experimental design work done in this first phase is to whether a systematic design of
experiments (DOE) strategy can be used to analyze network system and protocol
performance, thereby leading to more objective conclusions valid over a wide range of
network conditions and environments [5]. Results from this first design seem to support the
use of statistical DOE for empirical modeling.

The “expanded design” phase involves a larger factor space than was used in the “first
design.” Moreover, I employ fractional factorial design to: (1) develop insights about the
behavior and performance of multi-hop WMNSs; and (2) eliminate factors that have little or
no impact on responses. Unlike full factorial designs, which structure experiments whereby

all combinations of factors and their high and low values form the design matrix, fractional



factorial designs highlight main effects of factors upon response variables. This leads to
fairly expedient (and efficient) factor elimination, which is very important in the use of
statistical DOE.

Stage I serves as the foundation upon which Stage II shall be built. Indeed, the
motivation to formulate Stage 1l is a direct result of the findings from Stage I work. I have
completed both phases of Stage I, the results of which should prove useful as I employ

comprehensive designs and response surface methodology in Stage II.

Motivation

Scientists and researchers have for years followed what is commonly referred to as
the “one-factor-at-a-time” (OFAT) approach as a means for developing empirical models that
show the functional relationship between a response and one or more factors that affect it.
Suppose, for example, that we wish to quantify the effects of network size and traffic load
upon, say, throughput. The OFAT approach would have us first vary network size, while
holding traffic load constant, and measure the effect upon throughput from doing so. We
would next take this measured effect and use its value for network size, then vary traffic load,
with the objective of measuring its effect upon throughput.

The preceding description of the OFAT approach appears reasonable, and we might
readily accept that the functional relationships indicated are accurate. Unfortunately, while
the OFAT approach may explain main effects by factors upon the response, what this
approach does not do is explain whether two-way factor interaction effects are present. That
is, it is possible that neither factor alone has a statistically-significant impact on the response;
however, varying both factors simultaneously might indeed result in a statistically-significant

effect on the response, which indicates the presence of factor interactions.
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In addition to completely ignoring two-way factor interaction effects, problems with
the OFAT approach are further exacerbated as additional factors are included for analysis. It
goes without saying, then, that applying the OFAT approach becomes increasingly more
confusing as we add factors, since we must run experiments for all possible values of all
factors, while at the same time holding non-varying factors at fixed levels. Today’s scientists
are quite fortunate in that there are a powerful set of techniques that are straightforward and
offer considerable analytical power—these techniques are referred to collectively as 2

factorial designs.

First Design

Most of the material in this subsection comes directly from Totaro and Perkins [5], of which
I was co-author'. Subsequent references to “we” and “our” are intended to highlight the
collaborative nature of our work in [5]. Moreover, our work in [5] served as a significant
starting point for me in applying statistical DOE and response surface methodology to the
empirical study of multi-hop wireless mesh networks. Earlier, I made the point that multi-
hop wireless mesh networks may be viewed as stationary ad-hoc wireless networks. Our
application of statistical DOE to mobile ad-hoc networks as discussed in [5] can be
generalized for subsequent experimental design work I undertake as it relates to my

prospectus.

! This work is based on an earlier work: Using Statistical Design of Experiments for Analyzing Mobile Ad Hoc
Networks, in Proceedings of The 8th ACM International Symposium on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, MSWiM ’05, © ACM, 2005, http://doi.acm.org/10.1145/1089444.1089472.
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Statistical DOE

To yield objective conclusions, an experimental evaluation should comprise two key and
interrelated components: (1) the experimental design, which refers to the process of planning
the experiment so that data can be collected in a manner feasible for statistical analysis; and
(2) the actual statistical analysis of the data [4, 60]. Our aim in [5] was to provide a brief
overview of statistical design of experiments (DOE), while introducing the specific

experimental design and analysis techniques used.

Terminology
Before I discuss our experimental strategy in [5], it would be useful to define several standard

statistical DOE terms used throughout the remainder of my prospectus [58].

e Factors: The variables that affect the response variable. Factors may be classified as
primary, secondary, or constant, depending on their use in an experiment design.

e Levels: The values that a factor can assume are called its levels.

® Response Variable: The measured performance of the protocol or system under study.

e Design: The experimental design specifies the number of experiments, the factor level
combinations for each experiment, and the number of replications of each
experiment.

® Replication: This refers to the process of repeating an experiment or set of
experiments.

®  Main effects: Intuitively, the main effect of a factor refers to the average change in a

response variable produced by a change in the level of the factor.
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Label Factor Level 1 (—) Level 2 (+)

1 Avg. neighbors 7 3
(strongly-connected) | (weakly-connected)

2 Avg. node speed 5 m/sec 30 m/sec

(1-10 m/sec range) | (25-35 m/sec range)

3 Traffic load 10% of no. of nodes | 20% of no. of nodes

4 No. of nodes 100 500

5 MAC layer 802.11b w/ RTS 802.11b w/out RTS

Table 3.1: First Design: Experimental Factors

e [Interaction effects: Two factors interact if the performance response due to factor i at
level m depends on the level of factor j. In other words, the relative change in the

performance response due to varying factor i is dependent on the level of factor j.

Designing the Experiment

Step 1. Defining the experimental objectives. Our underlying goal of the work done in [5]
was to demonstrate the effectiveness of a statistical DOE strategy when evaluating the
performance of mobile ad hoc networking systems or protocols. To this end, the specific
objectives of our experiments were to quantify the main and interactive effects of a subset of
potentially influential factors on the performance of ad hoc networks. Using these effects, we
developed empirical models, which could then be used to predict performance of the ad hoc
network over the range of values examined in our experimental design.

Step 2. Selecting the factors (and their levels). The next step in the experimental design
process is selecting the potentially influential factors. In practice, numerous factors may
impact the performance response of an ad hoc networking system. Since our overarching
goal in [5] was only to illustrate the effectiveness of the statistical DOE strategy, in our
preliminary work, we analyzed only a subset of five factors, while holding all other factors

constant. Table 3.1 shows the factors studied in this first design.
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I next provide our justification for the factor levels (values) used in [5]. Average
number of neighbors is the average number of single-hop nodes within transmission range of
any arbitrary node in the network. This can be considered a measure of network density and
is expected to influence network connectivity, routing overhead, MAC contention, and
source-destination path length, thereby influencing the performance responses. For the
average number of neighbors factor, we considered two levels: strongly connected
(7 neighborsz) and weakly connected (3 neighbors). Node mobility, which is measured as the
average node speed, will impact the frequency of topology changes. We also considered
traffic load, which is measured as the percentage of nodes acting as source traffic generators.
Network size’, measured as the number of nodes in the system, will impact the path length
and route discovery time, which could influence overall system performance. Finally, we
considered the medium access control protocol as a primary factor. We investigated two
levels: the IEEE 802.11 DCF with the optional RTS/CTS handshake and the IEEE 802.11
DCF without RTS/CTS handshake. Research results show that the RTS/CTS handshake is
useful in relatively static one-hop wireless networks. However, it is not clear what effect the
RTS/CTS handshake will have in a multi-hop wireless environment with frequent topology
changes where nodes move in and out of contention areas arbitrarily.

Step 3: Selecting the response variables. We considered two performance responses, each
of which relates directly to the ability of the system to meet specific quality of service
requirements. The packet delivery ratio is defined as the number of packets delivered to a

destination divided by the number of packets actually transmitted. End-to-end delay is the

* It has been suggested by Takagi and Kleinrock in [65] and Royer [66] that throughput performance is optimal
when the average number of neighbors is between six and eight neighbors.
? The terrain size was adjusted appropriately to maintain the required network density or average neightbors.
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Factors Performance
I ] 3 El 5 Metries
Design Factor Avg No Avg. Node Trathe Mumber MAC Packat End-to-End
Pomts Leval of Spead Load of Layer Delivery Delay
Neighbors (mfs) Nodes Eatio (secs)

(] 7 5 107, of Mumber 100 802,11k

of Nodss w/ RTS

(+) 3 30 207 of Number 500 202.11b

of Hodes wiout RTS

1 (=7 (=) & (=) 10 (=) 100 (=) 8202.11bwETS 0.71568 0.86571101
2 (412 (—) & {—1 10 (—) 100 {(—) 202.11bw/ETS 0.11592 1.27650734
3 (=7 (43 a0 (—) 10 (—) 100 (—1 EB0211bwERIS 0.58568 0.9923903
4 (43 (+) 320 (—) 10 (—) 100 (=) B0211bwETS 0.2577 213651797
5 (=37 (—1 5 (+) 20 (=) 100 (=) 20211 bwEIS 0.72484 0. 76530620
& (+)3 (—1 5 (4 20 (—) 100 {(—) 20211 bw/ETS 0.17076 1.41365085
7 (=17 (4330 (+) 20 (—) 100 (—1 EB0211bwERIS 0.563 0.96332324
[ (43 (+) 320 (+) 20 (—) 100 (=) B0211bwETS 0.24554 210732746
E =7 (—) & {—1 50 (+4) 500 (=) 20211 bwEIS 0.305068 1.49277102
10 42 (—) 5 {—1 50 (4] 500 {(—) 20211 bw/ETS 0.002656 0.730543261
11 (=7 (43 a0 (—) 50 (+4) 500 (—1 EB0211bwERIS 0.271504 2.07584805
12 (43 (+) 320 (—) B0 (+) 500 (=) B0211bwETS 0.08344 3.28247214
13 (=17 (—) 5 (+) 100 (4) 500 {—) 802.11bwERTS 0.230824 5.25021359
14 (43 (—) 5 (+) 100 (4 500 (=) 80211bwRETS 0.0997326 1.04019082
15 =7 () 320 (+) 100 (4] 500 (=) 20211 bw/ETS 0.16305 3.11871308
15 42 ()30 (+) 100 (+4) 500 {(— 80211 b w/RTS 0.075658 4.88781012
17 (=17 (—) 5 (—) 10 (—) 100 (4} B02.11 b wiout KTS 0.715658 0.865711017
18 +)2 (=15 (—) 10 (=) 100 (+) 802.11 b w/out RTS 0.11552 1.27650724
IE] =7 () 320 {—1 10 (=) 100 (+) 802.11 b w/out RTS 0.5E8568 0.9923993
2 42 ()30 (—1 10 (—) 100 (+) B02.11 b wiout KTS 0.25776 2.13651797
21 (=17 (—) 5 (+) 20 (—) 100 (4} B02.11 b wiout KTS 0.72454 0. 76820620
22 (413 -1 5 (+) 20 (=) 100 (+) 802.11 b w/out RTS 0.17076 1.41365005
23 =7 (330 (+) 20 (=) 100 (+) 802.11 b w/out RTS 0.562 0.96332324
2 42 (4330 (4 20 (—) 100 (+) B02.11 b wiout KTS 0.245584 2.19733746
25 (=17 (—) & {—) 50 (+4) 500 {4} B02.11 b wiout RTS 0.2050658 1.40277102
26 (+)3 (—) 5 (—) 50 (4) 500 (4} 802.11 b wiout RTS 0.082656 0.78084261
27 (=7 (43320 (—) B0 (+) 500 (+) 802.11 b w/out RT3 0.271504 2.07584805
28 (+)3 (2330 (—) B0 (4 500 (+) B02.11 b wiout RT3 0.058344 3.28247314
29 =7 (—) 5 (+) 100 (4] 500 {4} B02.11 b wiout KTS 0.230524 5.25021359
0 (+)3 (—) 5 (+) 100 (+4) 500 (+) B02.11 b wiout KTS 0.088736 1.04019082
i1 (=7 (43320 (+) 100 (+) 500 (+) 802.11 b w/out RTS 0.16052 2. 11871208
32 (+)3 (+) 30 (+) 100 (4 500 (+) B02.11 b wiout RT3 0.07568 4.98751013

application layer end-to-end delay, which includes all processing, queuing, and transmission

Table 3.2: Design Matrix for 2° Factorial Design

delays at each node along the path.

Step 4. Selecting the appropriate design. We used a 2* r factorial design. The 2*r

factorial design technique considers k factors, where each factor has two distinct levels (or

values). For simplicity and computational purposes, it is often useful to code the factor

levels as a + or — level, as shown in the design matrix in Table 3.2. The design matrix

shows all possible combinations of factor levels (called design points). Each design point

corresponds to a simulation scenario, which is replicated r = 5 times, in our experiments.
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The response values for the performance metrics (i.e., packet delivery ratio and end-to-end
delay) are also included in Table 3.2.

Step 5. Simulation and data collection. Our simulations were carried out using QualNet, a
network modeling tool developed by Scalable Network Technologies. In order to obtain
results that approximate an actual MANET, we ran each of the 32 simulations five times,
after which we computed the average of the five runs for each design point. This results in a
total of 160 simulation runs (32 design points X 5 runs each). Each simulation experiment
was executed for 320 seconds. Formally speaking, our approach is a 2° 5 factorial design,
which implies there are five factors, each at two levels, and the experiment is repeated five
times. In addition to the five aforementioned factors that were measured in this study,
several other potentially influential factors were held constant. All nodes have a transmission
range of 250 meters. The traffic sources were all constant-bit-traffic generators transmitting
512-byte UDP packets at a rate of 2 packets/second. The Location-Aided Routing (LAR)
protocol was used as the routing protocol. The channel propagation model is based on the
free-space model with a channel capacity of 2Mbps. The random waypoint mobility model
is used to model mobility, with a pause-time of 25 seconds.

Step 6: Computing the main and interactive effects. Recall that we are interested in
analyzing the main and interactive effects that factors have on specific response metrics. For
clarity, we illustrate a simple approach for estimating main and two-factor interaction

effects [58]. Let us consider the 2? factorial design shown in Table 3.3, with factors x; and x;
for which we are interested in quantifying their effect on the response metric y. Notice in
experiments 1 and 2 we vary x; from its — level to its + level while holding x; at its — level.

In both cases, we obtain values for the response metric y. Similarly, in experiments 3 and 4
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Experiment T T2 Y
| (=) 5] (—) 10 | 075
2 ()25 | (=) 10 | 0.25
3 (=) 5 | (+)100 | 040
4 (+)25 | (+) 100 | 0.15

Table 3.3: Example Experimental Data

we vary x; from its — level to its + level while holding x; at its + level. As before, we obtain
values for the response metric y. We can express the functional relationship y(x;, x») using

the following effects model:

y = Po+ Bixi + Paxz + Broxix: (3.1)

where fy is the average response over all simulation runs, f; and £, represent the main effects
of x; and x,, respectively, and f;, represents the interactive effect of factors x; and x>,
respectively

Substituting the four response observations y;, y», y3, and y4 (one for each design

point in a 2° design matrix) and the coded values for each factor in Equation 3.1, we have

yi =PBo—PBa—Ps + Pas, (3.2)

y2 = Po+ Pa— B~ Pas (3.3)

y3 = Po = Pa + Bs— Pas, (3.4)
and

v+ = o+ Pa+ Bs + Pas. (3.5)
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Solving Equations 3.2, 3.3, 3.4, and 3.5 for f;’s, we have

Bo=1/4(y; + y2 + y3 + y4), (3.6)

Br=1/4(=y; +y2 = y3 + y4), (3.7)

Bo=1/4(=y; — y2 + y3 + y4), (3.8)
and

B2 = 1/4(y; — y2 = y3 + y4). (3.9

From these results, we see that the main effect of each factor is actually the difference

between two averages:

E=¥v,—-¥ (3.10)

where ¥, is the average response when the factor is at its high level and ¥_ is the average
response when the variable is at its low level. Furthermore, the interactive effect is the
average change in the response metric when the two factors are at the same level (+ or —)
and when they are at different levels. It is important to note that all responses for each

experimental design point is used to determine all main and joint effects [4].

Data Analysis
I shall discuss the results of our statistical DOE, along with an analysis of these results.
Specifically, I shall first provide an intuitive and visual illustration regarding the impact of

the factors on performance. I then quantify this intuition by way of statistical analysis. For
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the discussion which follows, the reader may find it helpful to refer to the design matrix
shown in Table 3.2.

Preliminary Insights. A scatterplot can be used to visualize performance changes as the
factor levels are changed. Each value along the x-axis corresponds to a design point (or
simulation scenario) as shown in Table 3.2. The y-axis is the performance metric under
consideration, and each point on the graph is the average of r = 5 simulations for that
particular design point.

Upon inspection of the scatterplots in Figures 3.1 and 3.2, it is important to note that
the individual points in each of the scatterplots reflect a change in the average number of
neighbors factor from its — to its + level (that is, from 7, or strongly-connected, to 3, or
weakly-connected). Similarly, point-pairs 1-2/3-4, 5-6/7-8, and so on, reflect a change in the
average node speed from its — to its + level (i.e., from 5 m/sec to 30 m/sec). This observable
pattern can help the researcher determine whether or not particular effects are present
between factors and performance metrics.

Before we examine the two scatterplots in detail, it is useful to first glean some
preliminary insights into what these graphs tell the researcher. The most apparent element
when contrasting the two scatterplots is that when end-to-end delay is small, the packet
delivery ratio is large (see run numbers 1 through 9 and run numbers 17 through 25 in
Figures 3.1 and 3.2). Conversely, we observe that the packet delivery ratio is small when
end-to-end delay is large (see run numbers 10 through 16 and run numbers 26 through 32 in
the same two graphs). These observations are reasonable because a smaller end-to-end delay

implies that: (1) a greater number of packets are being received by the receiver per unit time
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when there is very little end-to-end delay; and (2) a smaller number of packets are being
received by the receiver per unit time when the end-to-end delay is large.

Packet Delivery Ratio. Figure 3.1 illustrates the average packet delivery ratio for the
experimental runs. Observe that the same pattern occurs twice. Specifically, experimental
run numbers 17 through 32 exhibit the same general behavior as that of experimental run
numbers 1 through 16. The “shift” at run 17 reflects the change in the MAC layer protocol
from 802.11b with RTS (- level) to 802.11b without RTS (+ level). By inspection, we may
infer that, regarding packet delivery ratio at least, the presence of RTS—or lack thereof—seems
to have little or no effect. Next, we observe how the behavior of the packet delivery ratio
changes, beginning at the 9th and 25th experimental runs. These are the run numbers at
which the number of nodes switches from 100 to 500. Of course, the number of nodes
switches from 500 to 100 at run number 17. As can be seen from Figure 3.1, there is a
decrease in the variation of average packet delivery ratio as the number of nodes increases.
Continuing with our analysis, it appears that varying the traffic load from 10% to 20% has no
effect on average packet delivery ratio, relative to the overall number of nodes. A similar
observation is made regarding node speed, where there seems to be minimal change in
behavior. Finally, when varying the number of neighbors from 7 to 3, the impact on packet
delivery ratio is somewhat striking.

End-to-end Delay. Figure 3.2 illustrates the average end-to-end delay for the 32
experimental runs. Here we see a pattern of repetition that resembles that which was
discussed for Figure 3.1. As before, experimental run numbers 17 through 32 exhibit the
same general behavior as that of experimental run numbers 1 through 16. Again, the “shift”

at run 17 reflects the change in the MAC layer protocol from 802.11b with RTS (- level) to
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802.11b without RTS (+ level). As with packet delivery ratio, we may infer that, regarding
end-to-end delay, the presence of RTS versus its non-presence appears to have little effect.
Next, we observe that the behavior of end-to-end delay changes, beginning at the 10" and
26™ experimental runs. Given that the number of nodes switches from 100 to 500 at
experimental run numbers 9 and 25, there seems to be a slight delay before the effect of this
change actually impacts average end-to-end delay. As before, the number of nodes switches
from 500 to 100 at run number 17. As can be seen in the figure, there is a substantial “spike”
in the variation of average end-to-end delay as the number of nodes increases. Continuing
with our analysis, it seems that varying the traffic load from 10% to 20% has minimal impact
on average end-to-end delay, relative to the overall number of nodes. The impact on end-to-
end delay from varying the node speed between 5 meters/sec and 30 meters/sec appears to be
rather substantial, especially as the speed is increased. Finally, as with the packet delivery
ratio, the impact on end-to-end delay appears to be very prominent when varying the number
of neighbors from 7 to 3.

Main and Interaction Effects. A main effects plot can be used to visualize performance
changes as each individual factor level is changed. Each value along the x-axis corresponds
to a — or + level for a particular factor as shown in Table 3.2. The y-axis is the performance
metric under consideration, and the line shifts connecting the two points illustrate the average
main effect on the performance metric when varying a factor from its — level to its + level.
The slope of the line shift for a performance metric by varying a particular factor from its —
level to its + level indicates the degree to which the particular factor has a main effect on the
performance metric. In short, the greater the slope of a line shift, the greater the average

main effect upon the performance metric by the particular factor. If a line shift exhibits a
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Figure 3.3: Main Effects—Packet Delivery Ratio

small slope (or, for that matter, no slope), then the average main effect upon the performance
metric by the particular factor is negligible (or, in the case of no slope, is nonexistent). It is
important to keep in mind that the insights gleaned from main effects plots are only for the
range of values used for the — and + levels of the factors under consideration.

As can be seen in Figure 3.3, the main effect on packet delivery ratio by varying
average number of neighbors, average speed, traffic load, and number of nodes from
their — levels to their + levels is apparent. Moreover,it appears from Figure 3.3 that both
average number of neighbors and number of nodes markedly impact the packet delivery
ratio, whereas the MAC layer has a negligible impact on packet delivery ratio. For example,
we see that the packet delivery ratio decreases from roughly 0.4 to roughly 0.2 when the
number of nodes is varied from 100 (its — level) to 500 (its + level). In contrast, the packet
delivery ratio remains at around 0.3 when varying the MAC layer protocol from 802.11b

w/RTS (its — level) to 802.11b w/out RTS (its + level).
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Figure 3.4: Main Effects—End-to-End Delay

Figure 3.4 suggests that the main effects of all factors, except for the MAC layer,
impact the end-to-end delay. For example, we see that the end-to-end delay increases from
roughly 1.5 seconds to roughly 2.5 seconds when the average node speed is varied from
5 meters/second (its — level) to 30 meters/second (its + level). In contrast, the end-to-end
delay remains at around 2 seconds when varying the MAC layer protocol from 802.11b
w/RTS (its — level) to 802.11b w/out RTS (its + level).

Comparing Figures 3.3 and 3.4, we observe that as the average neighbors is varied
from “strongly-connected” to “weakly-connected” (that is, when the number of neighbor
nodes changes from 7 to 3), the main effect upon packet delivery ratio is such that it is
dramatically decreased, with a corresponding slight increase in end-to-end delay. This is
likely due to the reduction in the availability of links, since there are fewer neighbor nodes.
We observe similar main effects phenomena when varying the average speed, traffic load,
and number of node factors from their “—" levels to their respective “+” levels. A

particularly significant main effect results from varying the number of nodes from
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100 to 500, whereby the packet delivery ratio is drastically reduced and end-to-end delay
increases substantially. A probable explanation is that the greater number of nodes also leads
to increased network traffic, which results in much greater contention of the channel among
the nodes in the network. A final point of interest is the fact that the MAC layer protocol has
virtually no effect on either performance metric.

Having examined the apparent main effects of each of the factors on the response
metrics, we next turn our attention to interaction effects, which are those combinational
effects that two factors have on the two response metrics. Thus, two-way factor interaction
effects plots can be used to visualize the performance changes that result from the combined
varying of two factors from their — levels to their + levels. This is particularly important,
since such two-way factor interactions are not apparent when using the traditional OFAT
approach. Note that parallel lines suggest a lack of factor interaction, whereas non-parallel
lines suggest the presence of two-way factor interactions.

Figure 3.5 shows the two-way factor interactions on the average packet delivery ratio
metric by varying from low to high levels for each factor. From Figure 3.5, we see that the
following two-way factor interactions have a notable impact on the packet delivery ratio:

(1) average number of neighbors and average node speed; (2) average number of neighbors
and number of nodes; (3) average node speed and traffic load; and (4) number of nodes and
average node speed.

Figure 3.6 shows the two-way factor interactions on the end-to-end delay response
metric by varying from low to high levels for each of the five factors. The following two-
way factor interactions appear to have notable impact on the end-to-end delay: (1) average

number of neighbors and average node speed; (2) average number of neighbors and traffic
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load; (3) average number of neighbors and number of nodes; (4) average node speed and
traffic load; (5) average node speed and number of nodes; and (6) average traffic load and
number of nodes.

These visual observations of two-way factor interactions intuitively correspond with
the aforementioned main effects. Similar to what we observed in the main effects graphs, the
MAC layer protocol appears to have no apparent two-way factor interaction effects. These
observed results are important for researchers when considering new protocol designs, since
it is obvious that varying single factors may lead to undesirable performance results.
However, an awareness of and knowledge about two-way factor interactions may allow
researchers to exploit these interactions in such a way that desirable performance results may

be realized.

Quantifying the Main and Joint Effects. Scatter plots and effects plots offer a graphical
and intuitive way of inferring whether main and interactive effects exists. Such “evidence” is
not sufficient to draw definitive conclusions regarding factors and their impact on the
response metrics. We must go one step further and quantify these effects using statistical
analysis. Using a simplified method called the “sign-table” method, which is based on the
mathematical properties discussed in Subsection 3.1.2, we compute the main and two-way
interaction effects for each factor. Performing an analysis of variance (ANOVA) allows us
to determine the statistical significance of the main and two-way interaction effects.

Table 3.4 shows the effect estimate and the allocation of variation for each factor and
two-way interaction. The allocation of variation indicates the percentage of response
variation contributed to a specific factor or two-way interaction. We see that certain factors

account for a large percentage of the performance change. For example, we see in Table 3.4
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Packet Delivery Ratio E2E Delay

Effect Estimate  Allocation of Estimate  Allocation of

Variation Variation
AVGNEIG —0.3269 55.727 —0.12728 3.031
AVG_SPD —0.049245 1.265 —0.34479 22.171
TRFFC_LD —0.017301 0.156 —0.12024 2.696
NUM_NODS —0.23252 28.193 -0.31514 18.522
MAC_LAYR 5.20417E—18 0.000 —6.245E—17 0.000
AVG_NEIG x AVG_SPD 0.095157 4722 —0.22768 9.668
AVG_NEIG x TRFFC_LD 0.027861 0.401 —0.0042055 0.00329
AVG NEIG x NUM_NODS 0.12283 7.867 0.39482 29.072
AVGNEIG x MAC_LAYR 6.07153E—18 0.000 0 0.000
AVG_SPD x TRFFC_LD —0.018785 0.184 0.058292 0.634
AVG_SPD x NUM_NODS —0.030515 0.486 —0.1002 1.872
AVG_SPD x MAC_LAYR 5.20417E—18 0.000 -1.3878E—17 0.000
TRFFC_LD x NUM_NODS —0.024651 0.317 —0.14219 3771
TRFFC_LD x MAC_LAYR —8.6736E—18 0.000 | 6.93889E—18 0.000
NUM_NODS x MAC_LAYR 5.20417E—18 0.000 | 4.85723E—17 0.000

Table 3.4: Effects Table

that average neighbors and number of nodes together account for almost 85% of the
performance change in packet delivery ratio. A similar observation may be made for end-to-
end delay, where the average speed and number of nodes factors, as well as the average
neighbors and number of nodes two-way interaction, together account for approximately
70% of the performance change.

As shown in Table 3.4, each factor and two-way interaction has an “estimate”
associated with it. This estimate quantifies the change in the performance metric when
varying the factor (or two-way interaction) from its “-" level to its “+” level. For example,
we see that the estimate for average neighbors is —0.3269 with respect to packet delivery
ratio. Since varying the average neighbors factor from its “=" level to its “+” level is a two-
unit change (that is, moving from —1 to +1), we take one-half the value of its estimate,
—-0.3269, which is —0.163452, and say this is the expected change in packet delivery ratio
when average neighbors changes by one unit. Table 3.4 also highlights those factors, as well

as the two-way factor interactions, that are statistically significant for the prediction of end-
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to-end delay. Here we see the following individual factors that are statistically significant
per their impact on end-to-end delay: average number of neighbors, average node speed,
traffic load, and number of nodes. The two-way factor interactions that are statistically
significant include: average number of neighbors and average node speed; average number of

neighbors and number of nodes; and traffic load and number of nodes.

Expanded Design

This expanded experimental design involve three responses and an initial factor space of size
F;= 10. The purpose of this initial experimental design is twofold. First, I wish to gain
preliminary insights into the behavior and performance of a multi-hop WMN; these insights
should prove useful throughout the various stages of my empirical modeling. Second, in
order to reduce the size of Fj, I shall employ a fractional factorial design, a technique by
which such factor space size reduction may be expedited both efficiently and reliably.

An important point to keep in mind is that experimental design methods are by their
very nature iterative. As I shall later show, results from this initial experimental design are
dubious at best. Thus, successive experimental designs usually are required, which involve
not only a smaller factor space, but also high and low factor values that are “fine-tuned”

relative to earlier experimental designs.

1/64 fractional factorial design

I begin with a relatively large factor space, an objective of which, as earlier stated, is to
expedite factor elimination. At this point, only main effects are indicated; that is, because of
the inherent limitations normally found in fractional factorial experimental designs,

interaction effects are not indicated. Subsequent to factor space reduction, I shall apply a
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Response Label Units

THROUGHP Average Throughput bits/second
END2END  Average End-to-End Delay seconds
JITTER Delay Jitter seconds

Table 3.5: 1/64 Fractional Factorial Design: Responses

Factor Label Low High
RTS THRS  MAC 802.11 RTS Threshold 0 512
SHR TRNS  MAC 802.11 Short Pkt Trans Limit 3 11
ILNG_TRNS MAC 802.11 Long Pkt Trans Limit 2 6

TERRAIN Terrain Size (Network Density) 1279 2216
TRAFF_ LD  Traffic Load (Mesh Routers) 10 25
GW_ROUTR Gateway Routers 5 20
IP_FRAG IP Fragmentation 256 2048
PHY RATE PHY 802.11 Data Rate (Mbps) 1.0 5.5
AODV_BUF  AODV Bufter Max Packets 50 150

ITEM _SIZ Application (FTP) Item Size (bytes) 256 1024

Table 3.6: 1/64 Fractional Factorial Design: Factors and Levels

full-factorial design, the results of which should offer information both about main and
interaction effects.

Table 3.5 shows three responses of interest and their units of measure. Selection of
these responses was based on their significance to QoS in both wired and wireless networks.
It is important to note that no single response is considered as the most important; rather,
QoS levels for one or more of these responses usually are indicated.

Table 3.6 lists ten factors with their low and high levels. With ten factors, a two-level
full-factorial design would require 2’ 0=1024 design points. Moreover, with three replicates,
this would involve 1024 x 3 = 3072 experimental runs. Clearly, this would require

considerable computing time and real time.
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Since we are here concerned mainly with factor elimination, only main effects are
relevant; hence, we use a 1/64 fractional factorial design, which, with three replicates,
requires 48 total experimental runs. Moreover, because we are concerned mainly with factor
elimination, examination of two-factor interactions at this point, is both unreliable and
unnecessary. This particular type of factorial design enables us to expedite that which we
hope to gain from the initial factor set, which is factor elimination.

As shown in Table 3.6, most of the factors I have included for this initial
experimental design are representative of the various layers of the protocol stack.
Specifically, AODV_BUF and ITEM_SIZ belong to the application layer; IP_FRAG is a
factor that resides in the network layer; RTS_THRS, SHR_TRNS, and LNG_TRNS all are
part of the MAC layer; and PHY_RATE is at the physical layer. The remaining three
factors—TERRAIN, TRAFF_LD, and GW_ROUTR—are not directly tied to any particular

layer of the protocol stack, but are nonetheless adjustable in a simulation environment.

Experiment Setup. For this Stage I simulation, and all subsequent simulations, I use the
QualNet [67] discrete-event simulator developed by Scalable Network Technologies, Inc.
The communications structure I define for my simulations is a wireless-to-wired mixed
network that includes a wireless subnet with 100 mesh routers, with one or more of these
configured as wireless/wired gateway routers. Node placement of mesh routers in the
wireless subnet is uniform with no mobility, and the MAC protocol used for all simulation
experimental runs is 802.11b. Finally, the simulation time for each experiment is set at 900

seconds (i.e., 15 minutes).
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Figure 3.7: 1/64 Fractional Factorial—Main Effects (Throughput)

Throughput—Main Effects. Figure 3.7 illustrates the main effects for throughput. As
shown in the figure, varying factors in the factor space seems to have some impact on the
throughput response. Still, varying both LNG_TRN and ITEM_SIZ appears to have minimal
impact on the average throughput. Assessments about the significance of these main effects
should be viewed with some skepticism. As Figure 3.7 shows, most of the 95% confidence
intervals are unacceptably large. This should not be cause for discouragement, however, as
these results reflect a 1/64 fractional factorial design, and are not intended to lead to

definitive empirical conclusions.

Throughput—ANOVA. Table 3.7 is an ANOVA (analysis of variance) for throughput.
ANOVA is a useful tool for identifying factors whose main effects upon a response are
statistically significant. The degrees of freedom (DF) is equal to 1 for each factor; the sum of
squares (SS) is the variation; the mean-square (MS) is the variance, or SS/DF ; and F is the
F-ratio, which is MS/Error. The P-value is of particular interest, since it serves as a measure
of “statistical significance,” which indicates the degree to which the value of a factor is
“true.” Factors for which the P-value is small (P < 0.05) are considered significant and
should therefore be included in the prediction, or regression, model. From the ANOVA in

Table 3.7 we observe that RTS_THRS, LNG_TRNS, IP_FRAG, AODV_BUF, and

63



Master Maodel Predictive Model

Source DF S8 MS F Pr>F DF 88 MS F Pr>F
RTS_THRS 1 2153.712 2153.712 2.119357 0.152881
SHR_TRNS 1 34542.39 34542.39 33.99138 0.0001 1 34542.39 24542.39 34.33862 0.0001
LNG_TRNS 1 80.79003 80.7%002 0.079501 0.779546
TERRAIN 1 6538.7& 6528.76 6.434457 0.015543 1 6538.76 6538.76 6.5001% 0.01452¢6
TRAFF_LD 1 5540.739 5540.738 5.452355 0.025075 1 5540.739 5540.739 5.508055 0.02371¢
GW-ROUTR 1 16451.15 1£451.15 1s.18872 0.000272 1 1£451.15 16451.15 16.3541 0.00022
IP_FRAG 1 1814.964 1814.964 1.786012 0.189574
PHY_RATE 1 44931.5 44931.5 44.21478 0.0001 1 44931.5 44931.5 44 .6664¢6 0.0001
RACDV_BUF 1 445.1305 445.1305 0.43803 0.51217¢
ITEM.SIZ 1 154.8475 154.8475 0.152377 0.698512
Model 10 112654 11265.4 11.08E57 0.0001 5 108004.5 21600.91 21.473489 0.0001
Error 327 37598.77 1016.21 42 42249.22 1005.5924

(Lack of fit) 5 18517.1 3703.42 6.210317 0.000395 10 23166.55 2316.655 3.88483 0.001607

(Pure Error) 32 19082.67 596.3335 32 19082.67 596.3335
Total 47 150253 47 150253.8

Table 3.7: 1/64 Fractional Factorial Design: ANOVA for THROUGHP

Table 3.8: 1/64 Fractional Factorial Design: Fit Statistics for THROUGHP

Master Model Predictive Model
Mean 156.3921 156.3921
R-square 74.98% 71.88%
Adj. R-square 68.21% 68.53%
RMSE 31.87805 31.71646
v 20.38342 20.2801

ITEM_SIZ are not statistically significant, and should therefore not be included as part of the

regression model.

Throughput—Fit Statistics. Fit statistics for throughput are indicated in Table 3.8, the

predictive model of which may be interpreted as follows. The mean is the intercept, which,

as shown in Table 3.8, is 156.3921. The quantity R-square is 74.98%, which is the

proportion of total variability explained by the model, where 0 < R2 < 1, with larger values

being more desirable. A related quantity, Adj. R-square, is a variation of the R-square

statistic, whose value decreases as more factors are included within the model. The RMSE,

or root mean square error, is determined by calculating the deviations of points from their

true position, summing up the measurements, and then taking the square root of the sum,
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Master Model Predictive Model

Term Estimate Std Err t Pr > |t| Estimate Std Err t Pr > |t|
RTS_THRS 13.39866 9.202401 1.455801 0.153881
SHR_TRNS 53.651954 9.202401 5.830213 0.0001 <L 53.651954 9.155753 5.859917 0.0001
LNG_TRNS 2.5947067 9.202401 0.28196 0.779546
TERRAIN -23.34302 9.202401 -2.53662 0.015543 < HE -23.34302 9.155753 -2.54055 0.014526
TRAFF LD -21.48786 9.202401 -2.33503 0.025075 < HE -21.48786 9.155753 -2.34692 0.023719
GW_ROUTR 37.026056 9.202401 4.023521 0.000272 < HE 37.026056 9.155753 4.044021 0.00022
IP_FRAG 12.298251 9.202401 1.336418 0.189574
PHY RATE 61.190619 9.202401 6.649419 0.0001 <A 61.190619 9.155753 6.683297 0.0001
AODV_BUF 6.0905014 9.202401 0.661838 0.512176
ITEM_SIZ 3.5022084 9.202401 0.390356 0.698512

< ** Significant at P < 0.05

Table 3.9: 1/64 Fractional Factorial Design: Effect Estimates for THROUGHP

with smaller values being more desirable. Finally, the CV, or coefficient of variation, a
measure of the precision or relative dispersion, is 20.2801. The CV is calculated as the
standard deviation divided by the mean, and is used to compare variation among multiple

data series that have significantly different means.

Throughput—Effect Estimates. The predictive model estimates shown in Table 3.9,
along with the mean for the predictive model indicated in Table 3.8, provide the data

needed to develop a preliminary empirical model for throughput.

Throughput—Preliminary Empirical Model. The SAS application applies automatically a
Box-Cox transformation on the dependent variable—that is, SORT(Y ,oueny)—because the
initial empirical model (not shown here) exhibits heterogeneous, or non-Gaussian, errors.

The transformed preliminary empirical model for throughput is shown in Equation (3.11).

Yinroughp = 156.3921 + 26.82598x, — 11.67151x4 —

—10.74393x5+ 18.51303x5+ 30.59531x5 (3.11)
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Figure 3.8: 1/64 Fractional Factorial—Main Effects (End-to-End Delay).

where x; = RTS_THRS, x, = SHR_TRNS, x; = LNG_TRNS, x; = TERRAIN,
xs= TRAFF_LD, xs = GW_ROUTR, x; = IP_FRAG, xs = PHY_RATE, xg = AODV_BUF,
and x;o = ITEM_SIZ.

The equation for Yiuuenp 18 a function that describes the empirical relationship
between the response Y rougnp and its corresponding factors. In fact, Equation (3.11) is called
a regression equation. The general multiple linear regression model with k regressor

variables is of the form

y=Po+ Pix;+ foaxo+ ...+ Pixi + € (3.12)

The parameters B, j = 0, 1, . . ., k, are called the regression coefficients. The model shown
in Equation (3.12) describes a hyperplane in the k-dimensional space of the regressor
variables {x;}. The parameter f; represents the expected change in response y per unit change

in x; when all the remaining independent variables x; (x # j) are held constant.

End-to-End Delay—Main Effects. Figure 3.8 shows the main effects for end-to-end delay.
Similar to our observations of throughput main effects, we see that main effects upon end-to-

end delay result from varying nearly all variables in the factor space, except for the
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Master Model Predictive Model
Source DF 55 MS ¥ Pr=F DF S8 MS F Pr>F
RTS_THRS 1 0.026996 0.026996 1.246971 0.253242
SHR_TENS 1 0.102959 0.1029589 3.748584 0.06052
LNG_TENS 1 0.008898 0.008898 0.223974 0.572669
TERRAIN 1 0.081945 0.081545 2.983497 0.092458
TRAFF_LD 1 0.648722 0.648782 23.62121 0.0001 1 0.648732 0.648722 22.24548 0.0001
GW_ROUTR 1 0.000079 0.000079 0.002861 0.957632
IP_FRAG 1 0.015274 0.015274 0.556123 0.460528
PHY_RATE 1 0.021229 0.031289 1.1382032 0.292736
AODV_EUF 1 0.01873 0.01873 0.681945 0.414211
ITEM SIZ 1 0.121255 0.131255 4.77883 0.035214 1 0.121255 0.121255 4.500484 0.039427
Model 10 1.076208 0.107621 2.91833 0.001086 z 0.780032 0.390018 13.27298 0.0001
Error 37 1.016242 0.027466 45 1.312412 0.029165
(Lack of fit) 5 0.776877 0.155335 20.74801 0.0001 1 0.008888 0.008898 0.320036 0.586426
(Pure Error) 3z 0.2329565 0.007486 44 1.3202514 0.029625
Total 47 2.09245 47 2.09245

Table 3.10: 1/64 Fractional Factorial Design: ANOVA for END2END

Table 3.11: 1/64 Fractional Factorial Design: Fit Statistics for END2END

Master Model Predictive Model
Mean 0.388402 0.388402
R-square 51.43% 37.28%
Adj. R-square 38.31% 34.49%
RMSE 0.165729 0.170777
cv 42.66932 43.96903

GW_ROUTR factor, where there seems to be virtually no effect on average end-to-end

delay. Since we are concerned mainly with factor elimination at this preliminary stage, we

should not be overly concerned with the significant span of the 95% confidence intervals.

End-to-End Delay—ANOVA. Table 3.10 is an ANOVA table for end-to-end delay. Recall

from our previous discussion, ANOVA is a useful tool for identifying factors whose main

effects upon a response are statistically significant.

End-to-End Delay—Fit Statistics. Fit statistics for end-to-end delay are indicated in

Table 3.11, the predictive model of which may be interpreted as follows. The mean is the

intercept, which, as shown in Table 3.11, is 0.388402. The quantity R-square is 37.27%,
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which is the proportion of total variability explained by the model, where 0 <R2 <1, with
larger values being more desirable. A related quantity, Adj. R-square, is a variation of the
R-square statistic, whose value decreases as more factors are included within the model. The
RMSE, or root mean square error, is determined by calculating the deviations of points from
their true position, summing up the measurements, and then taking the square root of the
sum, with smaller values being more desirable. Finally, the CV, or coefficient of variation, a
measure of the precision or relative dispersion, is 43.96903. The CV is calculated as the
standard deviation divided by the mean.

Unlike the previous predictive model for THROUGHP, the predictive model for
END2END does not explain sufficiently the variability exhibited by the model. Of particular
significance in this case is the very low R-square value for the predictive model. As I have
indicated earlier, an R-square value that is less than 65.00% generally is unacceptable. |
should here again emphasize, however, that my goal at this point is not to derive viable
emprical models; rather, the purpose for a 1/64 fractional factorial design is to expedite factor

elimination.

End-to-End Delay—Preliminary Empirical Model. The predictive model estimates
shown in Table 3.12, along with the mean for the predictive model indicated in Table 3.11,
provide the data needed to develop a preliminary empirical model for end-to-end delay. The

preliminary empirical model for end-to-end delay is shown in Equation (3.13).

Yenazena =0.388402 + 0.11626x5 — 0.052292x¢ (3.13)

where x; = RTS_THRS, x, = SHR_TRNS, x3 = LNG_TRNS, x, = TERRAIN,
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Master Model

Predictive Model

Term Estimate Std Err t Pr > |t] Estimate Std Exr t Pr > |t
RTS_THRS 0.0555247 0.047842 1.160591 0.253242
SHR_TRNS 0.0926277 0.047842 1.936126 0.06052
LNG_TRNS 0.0272309 0.047842 0.569187 0.572669
TERRAIN 0.0826361 0.047842 1.72728 0.092458
TRAFF LD 0.2325193 0.047842 4.860176 0.0001 < 0.2325193 0.049299 4.716511 0.0001
GW_ROUTR -0.002559 0.047842 -0.05349 0.957632
IP_FRAG 0.0356774 0.047842 0.745737 0.460538
PHY RATE -0.051063 0.047842 -1.06733 0.292736
AODV_BUF -0.039508 0.047842 -0.8258 0.414211
ITEM_SIZ 0.1045846 0.047842 2.186054 0.035214 < ok 0.1045846 0.049299 2.121435 0.039427

<** Significant at P < 0.05

Table 3.12: 1/64 Fractional Factorial: Effect Estimates for END2END

Average

delay jitter(seconds)

95% Confidence Intervals

4
] st2 3 "oz 6 1219 216 10 ] 2 25 2008 1 5.5 58 18 25 1824
RTS_THR SHR_TRN LNG_TRN TERRAIN TRAFF_L GW_ROU IP_FRAG PHY_RAT AODV_B ITEM_SIZ

Figure 3.9: 1/64 Fractional Factorial—Main Effects (Jitter)

x5 = TRAFF_LD, xs = GW_ROUTR, x; = IP_FRAG, xs = PHY_RATE, xo = AODV_BUF,

and x;o = ITEM_SIZ.

The equation for Y,,42.nq 1S @ function that describes the empirical relationship

between the response Yeui2enq and its corresponding factors.

Jitter—Main Effects. Much of what we have discussed thus far concerning main effects by

the factor space upon both throughput and end-to-end delay may be similarly applied to jitter,

as shown in Figure 3.9. We observe, as before, what appear to be significant main effects by

factors upon jitter; however, notice, too, the, by now, all too familiar 95% confidence

intervals that are of significant length.

69



Master Model Predictive Model

Source DF SS MS F Pr> F DF SS MS F Pr> F
RTS_THRS 1 16. 66946 16.66946 1.648821 0.2071032
SHR_TRNS 1 11.25789 11.25789 1.113548 0.298154
LNG_TRNS 1 24.40002 24.40002 2.413472 0.128808
TERRAIN 1 80.8735 80.9735 8.009208 0.007478 1 80.9735 80.9735 8.216915 0.00624
TRAFF_LD 1 9.08244 9.08244 0.898369 0.2459369
GW-ROUTR 1 4.429€5 4.42965 0.438149 0.512119
IP_FRAG 1 6.498847 6.498847 0.642819 0.427811
PHY RATE 1 1.920771 1.920771 0.189989 0.665453
AODV_BUF 1 2.897682 2.897¢82 0.286618 0.5956
ITEMSIZ 1 2.082569 2.082569 0.205993 0.652578
Model 10 1le0.2128 le0.2128 1.584703 0.14598207 1 80.9735 80.9735 8.216915 0.00624
Error 37 374.0672 10.10992 46 453 .3065 9.85448
(Lack of fit) 5 49.58218 9.91ec38 0.9779¢ 0.446185
(Pure Error) 32 324.484 10.14012
Total 47 435.28 47 534.28

Table 3.13: 1/64 Fractional Factorial Design: ANOVA for JITTER

Master Model Predictive Model

Mean 2.018852 2.018852
R-square 29.99% 15.16%
Adj. R-square 11.06% 13.31%
RMSE 3.179611 3.139186
Ccv 157.496 155.4936

Table 3.14: 1/64 Fractional Factorial Design: Fit Statistics for JITTER

Jitter—ANOVA. Table 3.13 is an ANOVA table for jitter. Recall from our previous
discussion, ANOVA is a useful tool for identifying factors whose main effects upon a

response are statistically significant.

Jitter—Fit Statistics. Fit statistics for jitter are indicated in Table 3.14, the predictive model
of which may be interpreted as follows. The mean is the intercept, which, as shown in

Table 3.14, 1s 2.018852. The quantity R-square is 15.16%, which is the proportion of total
variability explained by the model, where 0 < R2 < 1, with larger values being more
desirable. A related quantity, Adj. R-square, is a variation of the R-square statistic, whose
value decreases as more factors are included within the model. The RMSE, or root mean

square error, is determined by calculating the deviations of points from their true position,
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Master Model Predictive Model

Term Estimate Std Err t Pr > |t Estimate Std Err t Pr > |¢]
RTS_THRS -1.17861 0.917875 -1.28406 0.253242
SHR_TRNS -0.968585 0.917875 -1.05525 0.06052
LNG_TRNS -1.425051 0.917875 -1.55354 0.572669
TERRAIN 2.5976512 0.917875 2.83002 0.007478 < 2.5976512 0.906205 2.8606516 0.00624
TRAFF LD 0.8699828 0.917875 0.947823 0.349369
GW_ROUTR -0.607567 0.917875 -0.66193 0.512119
IP_FRAG 0.7359148 0.917875 0.80176 0.427811
PHY RATE -0.40008 0.917875 -0.43588 0.665459
AODV_BUF 0.4913996 0.917875 0.535367 0.5956
ITEM_SIZ 0.4165902 0.917875 0.453864 0.652578

#* Significant at P <C 0.05

Table 3.15: 1/64 Fractional Factorial Design: Effect Estimates for JITTER

summing up the measurements, and then taking the square root of the sum, with smaller
values being more desirable. Finally, the CV, or coefficient of variation, a measure of the
precision or relative dispersion, is 155.4936. The CV is calculated as the standard deviation
divided by the mean; thus, a smaller CV is more desirable.

Of the three predictive models we analyze, the predictive model for JITTER explains
very little, if any, of the variability exhibited by the model. Of particular importance in this
case is the exceptionally low R-square value of 15.16% for the predictive model. As I have
indicated earlier, an R-square value less than 65.00% generally is considered poor. Thus, for
all intents and purposes, this model does not explain variability. Still, this is not cause for
significant concern, since my goal at this early stage is not to derive viable emprical models,

but to expedite factor elimination.

Jitter—Effect Estimates. The predictive model estimates shown in Table 3.15, along
with the mean for the predictive model indicated in Table 3.14, provide the data needed to

develop a preliminary empirical model for jitter.
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Jitter—Preliminary Empirical Model. The preliminary empirical model for jitter is shown
in Equation (3.14).

Yjiser = 2.018852 + 1.298826x4 (3.14)

where, for consistency, x; = RTS_THRS, x, = SHR_TRNS, x; = LNG_TRNS,
x4 = TERRAIN, x5 = TRAFF_LD, xs = GW_ROUTR, x; = IP_FRAG, xs = PHY_RATE,
x9 = AODV_BUF,and x;y = ITEM_SIZ.

The equation for Yji4., is a function that describes the empirical relationship between

the response Yjix.- and its corresponding factors.

Full factorial design
Having gleaned some insights into the behavior of our responses of interest, I have
eliminated factors that appear not to have any effect on these responses. Recall that the 1/64
fractional factorial design has allowed for an examination of main effects, using a relatively
small number of design points, although we began with a significant number of factors.
Because we have reduced the number of factors from ten to three, a 2° factorial design
contains only eight design points, which is manageable in most cases, including my current
work. A full factorial design should lead to an analysis both of main effects and two-factor
interaction effects. Moreover, in the case of a full factorial design, I shall “trim” the value
range within which the factors are varied, which should permit formulation of empirical
models that exhibit a reliable fit. The resultant empirical models should lead us directly into
a more penetrating analysis using least-squares regression.

Table 3.16 shows the four responses for a full factorial design—three of the four

responses carry-over from my previous 1/64 fractional factorial design. My inclusion of
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Response Label Units

THROUGHP  Average Throughput bits/second
END2END Average End-to-End Delay seconds
JITTER Delay litter seconds
PDRATIO Packet Delivery Ratio percentage

Table 3.16: Full Factorial Design: Responses

Factor Label Low High

SHR_TRNS MAC 802.11 Short Pkt Trans Limit 3 14
LNG_TRNS MAC 802.11 Long Pkt Trans Limit 2 8
TRAFF_LD Traffic Load (Mesh Routers 10 30

Table 3.17: Full Factorial Design: Factors and Levels

Run SHR_TENS LNG_TRNS TRAFF 1D

1 3 2 10
2 3 2 10
3 3 2 10
4 14 2 10
5 14 2 10
6 14 2 10
7 3 8 10
8 3 8 10
9 3 8 10
10 14 8 10
11 14 8 10
12 14 8 10
13 3 2 30
14 3 2 30
15 3 2 30
16 14 2 30
17 14 2 30
18 14 2 30
19 3 8 30
20 3 8 30
21 3 8 30
22 14 2 30
23 14 2 30
24 14 2 30

Table 3.18: Full Factorial Design Matrix
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packet delivery ratio (PDRATIO) in the response set should provide some context within
which my analysis of throughput (THROUGHP) is made. As important as throughput is, the
ratio of the number of packets sent to the number of packets received is equally important.
My reduced factor space F, shown in Table 3.17, is now of size 3. Notice also that I
have revised the low and high values for the factors. Since this is a full factorial design, and
because there are three factors, this design contains 2° = 8 design points. Moreover, my
design involves point replication; that is, each design point is replicated three times. Thus,
this design is called a 2° 3 factorial design, which requires 24 experimental runs (2° x 3 = 24)
Employment of these preliminary factorial designs has led to a far simpler design,
from which a set of simulations that test the full-factorial design may be devised. This
completes Stage I work, whereby the principle objective was to gain familiarity with the
process of first-design, fractional factorial design, and full factorial design. In Stage 11, I
move forward with a more comprehensive approach, in that I begin with a large factor space,

the size of which I reduce by way of fractional factorial designs.

Stage II: Models and Response Surfaces

My principle objective in Stage I was to gain preliminary insights about the use of statistical
DOE, as well as understand better the behavior and performance of multi-hop WMNs.
Following Box’s recommendation that the resources spent on preliminary designs should not
exceed 25% of the overall design, analysis, and modeling effort, I shall next discuss Stage II
of my methodology. Specifically, I employ statistical DOE to develop viable empirical
models for multi-hop wireless mesh networks. Additionally, I apply response surface
methodology (RSM) to find the levels of traffic load and network size that optimize a single

response metric.
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Statistical Design of Experiments

I begin Stage II of my work by employing fractional factorial design approaches, similar to
my work in Stage I. Recall that fractional factorial design permits fairly expedient
identification of factors in the factor space that do not exhibit statistically-significant effects
on response metrics of interest. Such factors may then be removed from the factor space,
after which subsequent full-factorial designs may be applied. An added benefit is that results
of fractional factorial designs may offer some insight into the behavior of the target system
under study.

As indicated earlier, I used the QualNet Version 3.8 simulator by Scalable Networks
for all Stage I simulation studies. Scalable Networks has since released QualNet Version 4.0.

I use this most recent version of the QualNet simulator for all Stage II simulation studies.

Fractional Factorial Design: Simulation Setup

Figure 3.10 illustrates the terrain within which the wireless mesh routers operate. As shown
in the figure, the terrain size is 3000 meters by 3000 meters for all fractional factorial
simulation experiments. The wireless mesh router nodes form a grid, such that nodes are
spaced 270 meters apart, irrespective of the network size. Propagation pathloss model is
two-ray, which, in the QualNet simulator, translates to free space path loss for near sight and
plane earth path loss for far sight. Moreover, the antenna height is fixed, using this pathloss
model. Simulation time for all experimental runs is 15 minutes.

Each simulation run results in the generation of output files by QualNet, each of
which is named <run#>.stat. Because each of these files tends to be somewhat large, I have

developed several Perl scripts that parse .stat files, calculates average values for response
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Figure 3.10: Multi-hop WMN Terrain
Factor Label Low High
GATEWAYN  Gateway Nodes (% of total nodes) 0.10  0.20
TRAFFLD Tratfic Load (% of total nodes) 020 0.50
I[TEMSIZE Item Size (bytes) 512 1500
BITRATE Bit Rate (Mbps) 1279 2216
ROUTINGP  Routing (AODV, OLSR-Inria) —1 1
NETWRKSZ Network Size (mesh routers) 36 100
TRANSPRT  Transport (UDP, TCP-Lite) —1 1

Table 3.19: Two-Level 1/16 Fractional Design
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variables, and writes these values to .csv (comma separated values) files. I import the .csv

data into SAS, which is the statistics tool I use for data analyses.

Fractional Factorial Designs

I begin with a two-level, 1/16 fractional factorial design, which consists of seven factors
(shown in Table 3.19) and a single response, Throughput (measured in bps). A full factorial
design with seven factors would require 2” = 128 design points, each of which requires a
simulation run. In contrast, a 1/16 fractional design with seven factors requires only eight
design points, a considerable reduction in the number of simulation runs. Each design point
is replicated three times, in order to reduce (and better explain) variability.

With this 1/16 fractional design, main effects by factors are calculable; however, two-
way factor interactions are not. However, at this point, we are interested only in identifying
factors that should be eliminated from the factor space; thus, two-way factor interactions are
of minimal relevance. The expected reduction of the factor space should allow for
subsequent full-factorial designs.

The design matrix (uncoded) is shown in Table 3.20, along with the average values
for the throughput response in each simulation run. The seed value for each simulation is

equal to its run number (e.g., the seed value for the fifteenth simulation run is 15).

1/16 Fractional—Graphical Analysis. Figure 3.11 illustrates main effects on throughput by
varying factors from their —1 levels to their +1 levels. By inspection, it appears that varying
all factors from their —1 levels to their +1 levels has an impact on throughput. Recall from
previous main effects charts that 95% confidence intervals are indicated by vertical bars, with

smaller vertical bars being more desirable. In other words, there is a 95% likelihood that the
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Run GATEWAYN TRAFFLD ITEMSIZE BITRATE ROUTINGP NETWRKSZ TRANSPRT THROUGHP
1 10 20 512 11 OLSR-Inria 100 UDP (CBR) 4095.15
2 10 20 512 11 OLSR-Inria 100 UDP (CBR) 40095.65
3 10 20 512 11 OLSR-Inria 100 UDP (CBR) 4094.05
4 20 20 512 2 AODV 100 TCP-Lite 42081.05
5 20 2 512 2 AODV 100 TCP-Lite 42557.40
6 20 2 512 2 AODV 100 TCP-Lite 42512.65
7 4 18 512 2 OLSR-Inria 36 TCP-Lite 20609.11
8 4 18 512 2 OLSR-Intia 36 TCP-Lite 20732.94
9 4 18 512 2 OLSR-Intia 36 TCP-Lite 20793.56

10 7 18 512 11 AODV 36 UDP (CBR) 4097.00
11 7 18 512 11 AODV 36 UDP (CBR) 4096.67
12 7 18 512 11 AODV 36 UDP (CBR) 4097.33
13 4 7 1500 11 AODV 36 TCP-Lite 56480.57
14 4 7 1500 11 AODV 36 TCP-Lite 56484.57
15 4 7 1500 11 AODV 36 TCP-Lite 56480.00
16 7 7 1500 2 OLSR-Inria 36 UDP (CBR) 7429.86
17 7 7 1500 2 OLSR-Intia 36 UDP (CBR) 7381.57
18 7 7 1500 2 OLSR-Inria 36 UDP (CBR) 7179.29
19 10 50 1500 2 AODV 100 UDP (CBR)
20 10 50 1500 2 AODV 100 UDP (CBR)
21 10 50 1500 2 AODV 100 UDP (CBR)
22 20 50 1500 11 OLSR-Inria 100 TCP-Lite
23 20 50 1500 11 OLSR-Inria 100 TCP-Lite
24 20 50 1500 11 OLSR-Inria 100 TCP-Lite
Table 3.20: 1/16 Fractional Design Matrix
Throughputibps) 95% Confidence Intervals

50885

T—— T _\\\
o
0.1 0.2 0.z 0.5 52 1500 2 il -1 1 ¥ e = 1
GATEWAYN TRAFFLD ITEMSIZE BITRATE ROUTINGP NETWRKSZ TRANSFRT

Figure 3.11: 1/16 Fractional Factorial Design—Main Effects (Throughput)
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average measured response (throughput, in this case) will fall somewhere within the
indicated confidence interval.

From Figure 3.11, we can gain some insight about the behavior of the target system,
as well as begin the process of determining which factors to eliminate for subsequent full-
factorial experimental designs. A reminder that the results of this 1/16 fractional design
provide main effects only, and do not include two-way factor interactions. In the paragraphs
that follow, I shall discuss my visual analysis of Figure 3.11, beginning with the factor that
appears to have the greatest main effect on throughput, and concluding with the factor that
appears to have the least main effect on throughput.

Varying the the traffic type from UDP (CBR traffic) to TCP-Lite appears to have a
significant effect on average throughput, in that average throughput seems to be substantially
higher with TCP-Lite than with UDP. Notice, however, that the confidence interval is
considerably smaller with UDP than with TCP-Lite. Nonetheless, even with the confidence
intervals shown, it is clear that throughput is higher when using TCP-Lite when compared to
using UDP.

Varying the routing protocol from AODV to OLSR-Inria seems to have the next
highest level of main effect on throughput, with the greater level of throughput realized when
using AODV. The 95% confidence intervals associated with varying the routing protocol
suggest, however, that favoring AODV over OLSR-Inria may not always necessarily hold.
As seen in the figure, the 95% confidence interval for AODV spans (vertically) a significant
portion of the measured throughput range.

Varying traffic load from 20% of wireless mesh routers to 50% of wireless mesh

routers suggests measured average throughput similar to what we see when varying the
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routing protocol. What is suggested by the figure is that increasing the traffic load leads to a
reduction in average measured throughput. Similar to what we observed with the routing
protocol, the 95% confidence interval for the lower traffic load spans a substantial segment of
the measured throughput range.

An increase in average measured throughput is indicated by an increase in item size
from 512 bytes to 1500 bytes. This seems hardly surprising, since items of ITEMSIZE are
generated once every second. Thus, in the case of the larger item size, more data is
transmitted per unit time than with the smaller item size. However, there seems to be
considerable overlap in the confidence intervals for the low and high factor values, which
suggests that conclusions about the main effect from varying this factor may be doubtful.

Varying the bit rate from 2 Mbps to 11 Mbps seems to have a relatively small main
effect on throughput. This effect may be further mitigated by the somewhat large 95%
confidence intervals for both the low and high factor values. Indeed, the graphical evidence
here suggests that BITRATE may be a candidate factor for elimination from the factor space.

Both the NETWRKSZ and GATEWAYN factors exhibit highly similar main effects,
when varying their values. In addition to the seemingly small main effect upon throughput
from varying their values, the confidence intervals in both are rather substantial. As with
BITRATE, these factors may also be candidate factors for elimination from the factor space.

The insights gleaned thus far result from graphical inspection; however, this is just
one perspective. Iintroduced analysis of variance (ANOVA) as a useful analytical tool for
Stage I work. Because we wish to identify factors that may be eliminated from the factor
space, ANOVA offers an additional perspective to my simulation studies by which such

identification might occur.
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Master Model Predictive Madel

Source DF SS MS F Pr > F DF S8 MS F Pr>F
GATEWAYN 1 9452974 9452974 770.7233 0.0001 1 9452974 9452974 770.7233 0.0001
TRREFFLD 1 1.0127E9 1.0127E9 82567.07 0.0001 1 1.0127E9 1.0127ES 82567.07 0.0001
ITEMSIZE 1 2.5428E8 2.5428E8 20731.69 0.0001 1 2.5428E8 2.5428E8 20731.69 0.0001
BITRATE 1 97260541 97260541 7929.882 0.0001 1 97260541 97260541 7929.882 0.0001
ROUTINGP 1 8.9922E8 8.9922E8 73315.37 0.0001 1 8.9922E8 8.9922E8 73315.37 0.0001
NETWEKSZ 1 24161427 24161427 1969.938 0.0001 1 24161427 24161427 19689.938 0.0001
TRANSPRT 1 &.002E9 6.002E9 489355.4 0.0001 1 6.002E9 6.002E9 4289355.4 0.0001
Model 7 8.299E9 1.1856E9 96662.86 0.0001 7 8.299E3 1.1856ES 96662.86 0.0001
Error 1& 196241.1 12265.07 18 196241.1 12285.07

Total 23 8.2992E8 23 8.2992E¢

Table 3.21: 1/16 Fractional: ANOVA for THROUGHP

Master Model Predictive Model

Mean 21151.85 21151.85
R-square 100.0% 100.0%
Adj. R-square 100.0% 100.0%
RMSE 110.7478 110.7478
Ccv 0.523584 0.523584

Table 3.22: 1/16 Fractional: Fit Statistics for THROUGHP

1/16 Fractional—Analysis of Variance. Table 3.21 is an ANOVA (analysis of variance)
for throughput. Recall from Stage I that ANOVA is a useful tool for identifying factors
whose main effects upon a response are statistically significant. The degrees of freedom
(DF) is equal to 1 for each factor; the sum of squares (SS) is the variation; the mean-square
(MS) is the variance, or SS/DF ; and F is the F-ratio, which is MS/Error. The P-value is of
particular interest, since it serves as a measure of “statistical significance,” which indicates
the degree to which the value of a factor is “true.” Factors for which the P-value is small
(P < 0.05) are considered significant and should therefore be included in the prediction, or
regression, model. From the ANOVA in Table 3.21 we observe that all factors in the factor

space—that is, GATEWAYN, TRAFFLD, ITEMSIZE, BITRATE, ROUTINGP, NETWRKSZ,
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Master Model Predictive Model

Term Estimate Std Err t Pr > |t] Estimate Std Err t Pr > |t
GATEWAYN -1255.187 45.21259 -277619 0.0001 < -1255.187 45.21259 -277619 0.0001
TRAFFLD -12991.6 45.21259 -287.345 0.0001 < -12991.6 45.21259 -287.345 0.0001
ITEMSIZE 6509.9363 45.21259 143.985 0.0001 << HE 6509.9363 45.21259 143,985 0.0001
BITRATE 4026.1756 45.21259 89.04988 0.0001 < 4026.1756 45.21259 89.04988 0.0001
ROUTINGP -12242.13 45.21259 -270.768 0.0001 << HE -12242.13 45.21259 -270.768 0.0001
NETWRKSZ -2006.715 45.21259 -44.384 0.0001 < -2006.715 45.21259 -44.384 0.0001
TRANSPRT 31627 45.21259 699.5394 0.0001 < 31627 45.21259 699.5394 0.0001

<** Significant at P < 0.05

Table 3.23: 1/16 Fractional Factorial: Effect Estimates for THROUGHP

and TRANSPRT—are statistically significant, and should therefore be included as part of the

regression model.

1/16 Fractional: Throughput—Fit Statistics. Fit statistics for throughput are indicated in
Table 3.22, the predictive model of which may be interpreted as follows. The mean is the
intercept, which, as shown in Table 3.22, is 21151.85. The quantity R-square is 100.0%,
which is the proportion of total variability explained by the model, where 0 <R2 <1, with
larger values being more desirable. A related quantity, Adj. R-square, is a variation of the
R-square statistic, whose value decreases as more factors are included within the model. The
RMSE, or root mean square error, is determined by calculating the deviations of points from
their true position, summing up the measurements, and then taking the square root of the
sum, with smaller values being more desirable. Finally, the CV, or coefficient of variation, a
measure of the precision or relative dispersion, is 0.523584. The CV is calculated as the
standard deviation divided by the mean, and is used to compare variation among multiple

data series that have significantly different means.
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Throughput—Effect Estimates. The predictive model estimates shown in Table 3.23,
along with the mean for the predictive model indicated in Table 3.22, provide the data

needed to develop a preliminary empirical model for throughput.

Throughput—Preliminary Empirical Model. The preliminary empirical model for

throughput (coded levels) is shown in Equation (3.15).

Yirroughy = 21151.85 — 627.5937x; — 6495.802x; + 3254.958x; +

+2013.088x4— 6121.064x5— 1003.357x5+ 15813.99x; (3.15)

where x; = GATEWAYN, x, = TRAFFLD, x; = ITEMSIZE, x, = BITRATE, x5 =
ROUTINGP, xs = NETWRKSZ, and x; = TRANSPRT

Recall from Stage I that the equation for Yy,ougnp 1s a function that describes the
empirical relationship between the response Yp,ougen, and its corresponding factors. In fact,
Equation (3.15) is called a regression equation. The general multiple linear regression model

with k regressor variables is of the form

y:ﬁo+ﬁ1x1 +ﬂ2x2+... +ﬁkxk+8. (3.16)

The parameters B, j = 0, 1, . . ., k, are called the regression coefficients. The model shown
in Equation (3.16) describes a hyperplane in the k-dimensional space of the regressor
variables {x;}. The parameter f; represents the expected change in response y per unit change
in x; when all the remaining independent variables x; (x # j) are held constant. The effect
estimates shown in Table 3.23 reflect a two-unit change in the value of its associated

regressor variable. Thus, the regression coefficients are computed as 72 the effect estimates.
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1/16 Fractional—Preliminary Factor Eliminations. Drawing preliminary conclusions
about factor elimination is difficult at this point, for two reasons. First, although the
information provided in the ANOV A table suggests strongly that all factors in the factor
space are significant at the 0.05 level, the main effects chart seems to indicate otherwise.
Second, this 1/16 fractional factorial design highlights a single response variable, throughput.
As a response, throughput, although very important for any network, should be viewed along
with other related responses, such as end-to-end delays, jitter, and packet delivery ratio.
Therefore, before deciding upon specific factor eliminations from the factor space, it may be
useful to work through an additional set of simulation studies, which consists of many of the
same factors in the current 1/16 fractional factor space, as well as the responses, throughput,

end-to-end delay, jitter, and packet delivery ratio.

1/8 Fractional Design. The design matrix for a 1/8 fractional factorial design is shown in
Table 3.24. Unlike the previous fractional design, which had a factor space of size 7, this
new fractional design has a factor space of size 6. The principal difference between this new
fractional design and the previous one is the fact that only CBR traffic is involved.
Moreover, I measure four average responses, instead of just a single response; these include:
throughput, end-to-end delay, jitter, and packet delivery ratio. The simulation setup for this
fractional factorial design is exactly the same as the setup I used for the 1/16 fractional
design.

Table 3.25 shows the average response values for throughput, end-to-end delay, jitter,
and packet delivery ratio. Recall, however, that we are interested mainly in factor
elimination; that is, we seek to efficiently identify factors whose main effects are not

statistically-significant. Thus, we shall exploit both graphical and ANOV A support, in order
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4096.8333333
40971666667
4096.6666667
12002.142857
11997.571429
11996.285714
7414.1428571
7173.1428571
7053.1428571

0.1446673851
0.1375414326
0.1332025989
0.2319893111
02324964386
0.2564051329
0.2416283279
02422923157
0.2395999631

0.0582909321
0.0479471099

0.040418526
0.0586002406
0.0620709621

0.106439943
1.5167644083
1.5291807876
1.5386357164

0.9997530864
0.9995765432
0.9997530864
0.99963825397
0.9993650794
0.9992063492
0.6138095238
0.5941269841
0.5841269841

583936 05467579643 1.8609375357 0.4358444444
576594 05525030559 1.8853952856 04799111111
579558 05450052118 1.5706480637 0.4823333333
22 1187842 04646265624 04553749912 09837333333
23 1188244 04625282062 04538679087 09838222222
24 11380.96 04660171771 04579143124 0.9835

Fun GATEWAYN TRAFFLD ITEMSIZE BITRATE ROUTINGP NETWREKSZ
1 10 20 512 11  OLSR-Inria 100
2 10 20 512 11 OLSR-Inria 100
3 10 20 512 11  OLSR-Inria 100
4 20 20 512 2 AODV 100
5 20 20 512 2 AODV 100
6 20 20 512 2 AODV 100
7 4 18 512 2 OLSR-Inria 36
3 4 18 512 2 OLSR-Inria 36
9 4 18 512 2 OLSR-Inria 36

10 7 18 512 11 AODV 36
11 7 18 512 11 AODV 36
12 7 18 512 11 AODV 36
13 4 7 1500 11 AODV 36
14 4 7 1500 11 AODV 36
15 4 T 1500 11 AODV 36
16 7 7 1500 2 OLSR-Inria 36
17 7 7 1500 2 OLSR-Inria 36
18 7 7 1500 2 OLSR-Inria 36
19 10 50 1500 2 AODV 100
20 10 50 1500 2 AODV 100
21 10 50 1500 2 AODV 100
22 20 50 1500 11  OLSR-Inria 100
23 20 50 1500 11  OLSR-Inria 100
24 20 50 1500 11  OLSR-Inria 100
Table 3.24: 1/8 Fractional Factorial Design Matrix
Run THROUGHP  EJEDELAY JITTER PDRATIO
1 409515 0.1719954945  0.152275329 0.9930555556
2 39181 0.1420281565 0.1356318355 0.9562222222
3 29611111111 0.1984861615 0.7774051557 0.7175925926
4 3589.9 0.1897799233 03378855327 0.876
5 35574 0192768984 03506078444 08681111111
6 3579.5  0.182723769 0.3359911407 0.8735
7 29557777778 0.1981747149 0.7808030867 0.7166666667
8 29233333333 0.1976961781 0.7890497982 0.7080864198
9 29966111111 0.1973932589 0.7141870077 0.7243209877
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Throeughput(bps) 95% Confidence Intervals
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Figure 3.12: 1/8 Fractional Factorial Design—Main Effects (Throughput)

to make reasonable decisions about which factors should not be included in our first-order
empirical models.

Figure 3.12 illustrates the main effects for the throughput response. Upon
examination, it appears that varying both ITEMSIZE and BITRATE have significant main
effects upon the throughput response. Moreover, the slopes of the other factors (i.e.,
GATEWAYN, TRAFFLD, etc.) seem rather insubstantial, and the 95% confidence intervals
for these have considerable overlap.

Figure 3.13 illustrates the main effects for the end-to-end delay response. In contrast
to the main effects for the throughput response, we observe that TRAFFLD, ITEMSIZE, and
NETWRKSZ appear to be significant.

Figure 3.14 illustrates the main effects for the delay jitter response. As with the main
effects on throughput, it seems from this figure that both ITEMSIZE and BITRATE have

substantial main effects on jitter, with far lesser effects by the other factors.
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End-te-End Delay(secs) 95% Confidence Intervals
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Figure 3.13: 1/8 Fractional Factorial Design—Main Effects (End-to-End Delay)
Delay Jitter(secs) 95% Confidences Intervals

01 0.z 0.z 05 512 1500 14 m -1 1 36 100
GATEWAYN TRAFFLD ITEMSIZE BITRATE ROUTINGP NETWRKSZ

Figure 3.14: 1/8 Fractional Factorial Design—Main Effects (Jitter)
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Figure 3.15: 1/8 Fractional Factorial Design—Main Effects (Packet Delivery Ratio)

Figure 3.15 illustrates the main effects for the packet delivery ratio response.
Examination of this figure again suggests significant main effects by both ITEMSIZE and
BITRATE, with far fewer main effects on packet delivery ratio by varying the remaining

factors.

2% Full Factorial Design

The results of both the 1/16 and 1/8 fractional factorial simulation studies provide important
insight into the behavior and performance of the multi-hop WMN. Moreover, an important
methodological objective was met, which was to retain those factors in the factor space for
which their main effects are statistically-significant. The next step in Stage II is to develop a
full factorial design, from which further simulation experiments may be contrived. Unlike
the two previous fractional factorial design studies, which measured main effects on

responses, full factorial designs measure main effects and two-way factor interaction.
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Factor Label Low Center High

NETWRKSZ Network Size (mesh routers) 36 68 100
TRAFFLD Traffic Load (% of total nodes) 0.20 0.35 0.50
ITEMSIZE Item Size (bytes) 512 1006 1500

Table 3.26: Two-Level Full-Factorial Design

Design Structure

The factor space for my full factorial design is rather small—three, to be exact. From the
two preceding fractional design results, we shall include only NETWRKSZ, TRAFFLD, and
ITEMSIZE factors. The factors and their levels are shown in Table 3.26. A factor space of
size 3 requires 2°= 8 design points in a 2" factorial design. Additionally, there are four
response variables of interest, which include: THROUGHP, E2EDELAY, JITTER, and
PDRATIO.

We have already seen that variability may be reduced through the use of replicates.
Thus, for this particular statistical DOE, I define five point-replicates. As a result, the total
number of simulation runs is 40.

As with the two fractional factorial simulation studies, I used the QualNet 4.0
simulator, where the number of gateway nodes is set at 15% of the network size (a variable
that is itself part of the factor space). The terrain size is 3000 meters2, with a grid node
placement and 270 meter wireless mesh node separation. The bit rate is 11 Mbps. The
pathloss model is two-ray, and traffic is CBR (UDP), generating one packet per second. The
routing protocol used in the simulation experiments is AODV, with each experiment running
15 minutes in time length.

The design matrix for a 2* factorial design is shown in Table 3.27. With five

replicates per design point, runs 1 through 5 reflect design point 1, runs 6 through 10 reflect
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MNETWEESZ TRAFFLD ITEMSIZE

=
B

1 36 7 512
2 36 7 312
3 36 7 512
4 36 7 512
3 36 7 312
& 100 20 312
7 100 20 512
3 100 20 512
9 100 20 512
10 100 20 312
11 36 13 512
12 36 18 512
13 36 18 512
14 36 18 312
15 36 18 312
16 100 50 512
17 100 30 512
13 100 50 312
19 100 50 312
20 100 50 512
21 36 7 1500
22 36 7 1500
23 36 7 1500
4 36 7 1500
25 36 7 1500
16 100 20 1500
27 100 20 1500
28 100 20 1500
29 100 20 1500
i0 100 20 1500
i 36 18 1500
32 36 18 1500
33 36 18 1500
4 36 18 1500
35 36 18 1500
16 100 0 1500
37 100 50 1500
18 100 30 1500
39 100 30 1500
40 100 50 1500

Table 3.27: 2* Factorial Design Matrix

design point 2, and so on. Also, the number of gateway nodes is 15% of the network size;
thus, when the network size is 36, the number of gateway nodes is 5, and when the network
size 1s 100, the number of gateway nodes is 15.

Table 3.28 shows the average response values for throughput, end-to-end delay, jitter,
and packet delivery ratio. I shall rely upon both graphical and quantitative data, in order to

draw inferences about main and interaction effects on the four response variables. From
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Fan THEOUGHF EIXEDELAY JITTER FDEATIO
1 4097.00 0.103%2  0.00710 100000
2 4097.00 0.10673 001433 100000
3 4097.00 0.10652  (0.01452 100000
4 4096.43 0.10881 0.00633 0.95934
3 4096.29 0.10630 0.01212 0.95984
& 4097.05 0.11528  0.02235 100000
7 4097.00 0.11155 0.01453 100000
g 4097.00 0.11344  0.01371 100000
g 4096.95 0.10721  0.00%33 100000

10 4097.05 0.10973  0.00%83 100000
11 409433 0.185315 0.07073 (0.99929
12 409533 0.16478 0.07184 0.99920
13 4096.17 0.16342  0.06347 (0.99957
14 409728 0.16713  0.06707 (.9%981
15 409481 0.17857 0.0823& 0.99920
18 4094.80 0.17761  0.05673 1.99918
17 4096.17 0.16012 0.05348 0.99967
18 4096.22 0.15907  0.0573% (.99933
15 409528 0.15805  0.05590 095960
20 4096.80 0.16080 0.05378 1.99969

21 1199729 0.20000 003273 0.99937
1 11991.57 0.19%91  0.03401 (.95889
3 11593.29 0.1957%  0.03681 0.959035
M4 1159514 0.19%961  0.02902 (.99952
25 11993.29 0.19982 (0.02987 0.95905
26 12005.25 022064 0.04540 100000
17 12003.75 0.21525  0.03757 0.95959
28 12001.80 0.22697 0.0610% 0.99967
i) 12004.60 0.21027  0.03747 1.95954
30 12004.80 0.22320 0.05702 1.95954
il 11895.33 0.547534 0.21328 0.99056
32 1126078 037912 0.16632 0.99605
33 1193839 0.36754  (.18648 199414
34 11958.89 0.38879 (.18393 099574
35 1198528 038650 0.17323 (.959833
36 1198528 0.35820  0.1532% 099764
37 1157256 035483 (.14440 0.95740
38 1152458 040381 0.16728 0.99307
) 1195276 038680 0.15738 1.99336
40 1195560 038965 0.16147 0.99554

Table 3.28: 2* Factorial Design Responses

these results, I develop first-order empirical models that characterize the relationship between

each of the four responses and the factors and their interactions.

Graphical Analysis
Figure 3.16 illustrates a scatterplot for the throughput response. Clearly, some factor change
at run 21 results in a significant increase in throughput. A reexamination of Table 3.27

shows that the item size goes from 512 bytes to 1500 bytes. Because the two other factors
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Figure 3.16: 2’5 Full Factorial—Scatterplot (Throughput)

(that is, network size and traffic load) are varied several times between runs 1 and 20
inclusive, with no discernible change in the throughput response. Thus, from the scatterplot,
we may conclude that varying items size from 512 bytes to 1500 bytes has a significant effect
on the throughput response.

Figure 3.17 illustrates the main effects for the throughput response. From the figure
we see that throughput appears to be mostly unaffected by varying either network size or
traffic load. Varying the item size, however, appears to have a substantial impact on
throughput. This latter observation seems reasonable, considering that increasing the number
of bytes per item at the application layer would indeed result in greater throughput.

Figure 3.18 illustrates two-way factor interaction effects for the throughput response.
Two-way factor interaction is indicated by the presence of non-parallel lines. From this
figure, it appears that two-way factor interaction is not present for throughput, at least not

with the current factor space and the range of low/high values.
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Figure 3.17: 2°5 Full Factorial—Main Effects (Throughput)
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Figure 3.18: 275 Full Factorial—Interaction Effects (Throughput)
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Figure 3.19: 2°5 Full Factorial—Scatterplot (End-to-End Delay)

Figure 3.19 illustrates a scatterplot for the end-to-end delay response. Runs 1 through
10 suggest response signals that are seemingly homogeneous, with a noticeable change
indicated at run 11 and continuing through run 30. This change reflects the shift in traffic
load from 20% of total nodes (as indicated by network size) to 50% of total nodes; thus, in
such a case, increases in both end-to-end delay and jitter are expected. Substantial increases
both in end-to-end delay and jitter occur at runs 31 through 40, due likely to the concurrent
levels of traffic load (50%) and 1500 byte itemsize.

Figure 3.20 illustrates the main effects for the end-to-end delay response. As with
throughput, varying network size seems to have negligible effect on end-to-end delay;
however, varying either traffic load or item size or both leads to a rather significant increase
in end-to-end delay. We observe, too, the somewhat smaller 95% confidence intervals,
which suggests a reliable characterization between end-to-end delay and these two factors.
The observed main effect upon end-to-end delay by (independently) varying these two

factors is not altogether surprising.
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Figure 3.20: 275 Full Factorial—Main Effects (End-to-End Delay)

Figure 3.21 illustrates two-way factor interaction effects for the end-to-end delay
response. Examination of this figure suggests two-way factor interaction between traffic load
and item size. Such two-way factor interaction is indicated by the non-parallel lines shown
in the intersection cells for TRAFFLD and ITEMSIZ. Moreover, some two-way factor
interaction is indicated between traffic load and network size, although to a lesser degree than
the two-way factor interaction indicated for traffic load and item size.

Figure 3.22, which illustrates a scatterplot for the delay jitter response. Runs 1
through 10 suggest response signals that are seemingly homogeneous, with a notable change
indicated at run 11 and continuing through run 30. This notable change reflects the shift in
traffic load from 20% of total nodes (as indicated by network size) to 50% of total nodes;
thus, in such a case, increases in both end-to-end delay and jitter are expected. Substantial
increases both in end-to-end delay and jitter occur at runs 31 through 40, due likely to the
concurrent levels of traffic load (50%) and 1500 byte itemsize.

Figure 3.23 illustrates the main effects for the delay jitter response. The main effects

applied to end-to-end delay may be similarly applied to the main effect for jitter. Again, we
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Figure 3.21: 275 Full Factorial—Interaction Effects (End-to-End Delay)
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Figure 3.22: 25 Full Factorial—Scatterplot (Jitter)
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Figure 3.23: 2°5 Full Factorial—Main Effects (Jitter)

see that varying both traffic load and item size seems to have significant impact on the
response, which, in this case, is jitter.

Figure 3.24 illustrates two-way factor interaction effects for the delay jitter response.
Similar to the two-way factor interaction we described for end-to-end delay, there seems to
be two-way factor interaction between traffic load and item size for jitter. Moreover, two-
way factor interaction between traffic load and network size is suggested by the figure as
well.

Figure 3.25 illustrates a scatterplot for the packet delivery ratio response. As
indicated in the figure, the packet delivery ratio is at acceptable levels (that is, between 0.99
and 1.00) for the entire run set. A somewhat interesting phenomenon seems to occur
between runs 31 through 35. Specifically, runs 31 through 35 exhibit an erratic packet
delivery ratio. This, in spite of the fact that the factor levels remain unchanged within this
run set. A similar scenario is indicated for runs 36 through 40. A plausible explanation for
this seemingly erratic behavior is that the network is likely reaching saturation point,

beginning with run 31 and continuing through run 40.
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Figure 3.24: 275 Full Factorial—Interaction Effects (Jitter)
Ny
0.9975
0.995
0.9925
0.999

01 2 3 4 5 B 7T B 9 1011 12 1314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 3.25: 275 Full Factorial—Scatterplot (Packet Delivery Ratio)
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Figure 3.26: 2°5 Full Factorial—Main Effects (Packet Delivery Ratio)

Figure 3.26 illustrates the main effects for the packet delivery ratio response.
Interesting observations may be gleaned from the main effects for packet delivery ratio, as
illustrated in the figure. At first glance, varying network size seems to have an impact on
packet delivery ratio; however, we must be careful not to overlook the important
consideration of the 95% confidence intervals. In the case of varying network size, the
overlap between the two confidence intervals seems rather substantial. We shall need to
investigate the implications of this—if indeed any such implications really are present.
Varying traffic load or varying item size or varying both seems to lead to a virtually identical
impact on packet delivery ratio. An interesting observation is the fact that the confidence
intervals of both are exceptionally small when the factor values are at their low level;
however, when the factor values are at their high levels, the confidence intervals for both are
substantial.

Figure 3.27 illustrates two-way factor interaction effects for the packet delivery ratio

response. The figure suggests a higher degree of two-way factor interaction between traffic
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Figure 3.27: 275 Full Factorial—Interaction Effects (Jitter)

load and item size than we have seen in previous two-way factor interaction figures.
Moreover, the figure seems to indicate two-way factor interaction between item size and

network size.

Empirical Models

The graphical evidence analyzed and discussed thus far offers important insight into the
performance and behavior of the four response metrics upon which my analyses are focused.
As beneficial as the preceding figures seem to be in my analyses, however, they are
insufficient in terms of developing and measuring first-order empirical models. I shall next
use three analytical tools by which such first-order empirical models may be derived; these

analytical tools include: ANOVA (analysis of variance), fit statistics, and effect estimates.

2’5 Full Factorial: Analysis of Variance—m THROUGHP. Table 3.29 is an ANOVA
(analysis of variance) for throughput. Recall from my previous discussion that ANOVA is a

useful tool for identifying factors whose main effects upon a response are statistically
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Master Madel Predictive Model

Source DF SS MS F Pr > I DF SS MS F Pr> I
NETWRKSZ 1 257.4314 257.4314 1.229011 0.275614
TRAFFLD 1 5481.377 1.0127E3 26.16882 0.0001 1 5481.377 5481.377 26.71107 0.0001
ITEMSIZ 1 6.2098E8 6.2098E8 2964643 0.0001 1 6.2098E8 6.2098E8 3026075 0.0001
NETWRKSZ+TRAFFLD 1 1.423864 1.423864 0.006798 0.934788
NETWRKSZ+ ITEMSIZ 1 216.4502 216.4502 1.033362 0.316766
TRAFFLD*ITEMSIZ 1 5003.335 5002.335 23.88658 0.0001 1 5003.335 5003.335 24.38154 0.0001
Model 3 &.2099E8 1.035E8 49411¢ 0.0001 3 6.2099E8 207E8 1008703 0.0001
Error 33 6912.252 209.4622 E1 7387.587 205.2099

(Lack of fit) 1 0.497891 0.497891 0.002305 0.962005

(Pure Error) 32 6911.754 215.9923
Total 39 6.21E8 ER) 6.21E8

Table 3.29: 2°5 Full Factorial: ANOVA for THROUGHP

Master Madel Predictive Maodel

Mean 8036.471 8036.471
R-square 100.0% 100.0%
Ady. R-square 100.0% 100.0%
RMSE 14.47281 1432515
cv 0.180089 0.178252

Table 3.30: 2°5 Full Factorial: Fit Statistics for THROUGHP

significant. The degrees of freedom (DF) is equal to 1 for each factor; the sum of squares
(SS) is the variation; the mean-square (MS) is the variance, or SS/DF; and F is the F-ratio,
which is M S/Error. The P-value is of particular interest, since it serves as a measure of
“statistical significance,” which indicates the degree to which the value of a factor is “true.”
Factors for which the P-value is small (P < 0.05) are considered significant and should
therefore be included in the prediction, or regression, model. From the ANOVA in Table
3.29 we observe that TRAFFLD and ITEMSIZE are statistically significant, and should
therefore be included as part of the regression model. Moreover, the two-way factor
interaction between TRAFFLD and ITEMSIZE is statistically significant, and should also be

included as part of the regression model.

2’5 Full Factorial: Throughput—Fit Statistics. Fit statistics for throughput are indicated

in Table 3.30, the predictive model of which may be interpreted as follows. The mean is the
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Master Model Predictive Model

Term Estimate Std Err t Pr > || Estimate Std Err t Pr > |t|
NETWRKSZ 5.0737698 4.576704 1.108608 0.275614
TRAFFLD -23.41234 4.576704 -5.11555 0.0001 <L -23.41234 4.530001 -5.16828 0.0001
ITEMSIZE 7880.2326 4.576704 1721.814 0.0001 LHE 7880.2326 4.53001 1739.562 0.0001
NETWREKSZ*TRAFFLD 0.3773413 4.576704 0.082448 0.934788
NETWRKSZ*ITEMSIZ 4.6524206 4.576704 1.016544 0.316766
TRAFFLD*ITEMSIZ -22.36813 4.576704 -4.88739 0.0001 L HF -22.36813 4.53001 -4.93777 0.0001

< ** Significant at P < 0.05

Table 3.31: 2°5 Full Factorial: Effect Estimates for THROUGHP

intercept, which, as shown in Table 3.30, is 8036.471. The quantity R-square is 100.0%,
which is the proportion of total variability explained by the model, where 0 <R2 <1, with
larger values being more desirable. A related quantity, Adj. R-square, is a variation of the R-
square statistic, whose value decreases as more factors are included within the model. The
RMSE, or root mean square error, is determined by calculating the deviations of points from
their true position, summing up the measurements, and then taking the square root of the
sum, with smaller values being more desirable. Finally, the CV, or coefficient of variation, a
measure of the precision or relative dispersion, is 0.180089. The CV is calculated as the
standard deviation divided by the mean, and is used to compare variation among multiple

data series that have significantly different means.

Throughput—Effect Estimates. The predictive model estimates shown in Table 3.31,
along with the mean for the predictive model indicated in Table 3.30, provide the data

needed to develop an empirical model for throughput.

Throughput—Empirical Model. The empirical model for throughput (coded levels) is

shown in Equation (3.17).
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Yinroughp = 8036.471 — 11.70617x; + 3940.116x3 —

— 11.18407x2x;3 (3.17)

where x; = NETWRKSZ, x, = TRAFFLD, and x; = ITEMSIZE.

Recall from my earlier discussion that the equation for Y ougn, is a function that
describes the empirical relationship between the response Y ouen, and its corresponding
factors. Each of the effect estimates shown in Table 3.31 reflects a two-unit change in the
value of its associated regressor variable. Thus, the regression coefficients are computed as
14 the effect estimates. Observe, also, the fact that NETWRKSZ is not part of the model.
From the ANOVA in Table 3.29, we see that NETWRKSZ is not significant at P < 0.05, and

should therefore be excluded from the model.

2’5 Full Factorial: Analysis of Variance—E2EDELAY. Table 3.32 is an ANOVA
(analysis of variance) for end-to-end delay. From the ANOVA in Table 3.32 we observe that
TRAFFLD and ITEMSIZE are statistically significant, and should therefore be included as
part of the regression model. Moreover, the two-way factor interaction between TRAFFLD
and ITEMSIZE is statistically significant, and should also be included as part of the

regression model.

2’5 Full Factorial: End-to-End Delay—Fit Statistics. Fit statistics for end-to-end delay
are indicated in Table 3.33, the predictive model of which may be interpreted as follows.
The mean is 0.220798. The quantity R-square is 93.98%. the CV, or coefficient of variation,

a measure of the precision or relative dispersion, is 12.9949.
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Master Madel

Predictive Model

Source DF SS MS F Pr > F DF S8 MS F Pr > F
NETWRKSZ 1 0.00023 0.00023 0.287909 0.595163
TRAFFLD 1 0.150212 0.150212 187.7892 0.0001 1 0.150212 0.150212 182.4606 0.0001
ITEMSIZ 1 0.271279 0.271279 339.1428 0.0001 1 0.271279 0.271279 329.5194 0.0001
NETWRKSZ+TRAFFLD 1 0.002942 0.002942 3.677542 0.063839
NETWRKSZ+ITEMSIZ 1 0.000069 0.000068 0.085901 0.771289
TRAFFLD+ITEMSTZ 1 0.041101 0.041101 51.38269 0.0001 1 0.041101 0.041101 49.92468 0.0001
Model 6 0.465823 0.077628 97.0&1 0.0001 El 0.462592 0.154197 187.3201¢ 0.0001
Error 33 0.026397 0.0008 E1 0.029637 0.000823

(Lack of fit) 1 0.00105 0.00105 1.326189 0.258016

(Pure Error) 32 0.02534¢ 0.000792
Total 39 0.492229 ER) 0.492229

Table 3.32: 2’5 Full Factorial: ANOVA for E2EDELAY

Master Model Predictive Model
Mean 0.220798 0.220798
R-square 94.64% 93.98%
Adj. R-square 93.66% 93.48%
RMSE 0.028282 0.028692
(&\% 12.8092 12.9949

to-end delay (coded levels) is shown in Equation (3.18).

Table 3.33: 2°5 Full Factorial: Fit Statistics for E2EDELAY

provide the data needed to develop an empirical model for end-to-end delay.

Yeredetay = 0.220798 + 0.06128x, + 0.082353x3 +

+ 0.032055)62)63

where x; = NETWRKSZ, x, =TRAFFLD, and x; = ITEMSIZE.

2’5 Full Factorial: End-to-End Delay—Effect Estimates. The predictive model estimates

shown in Table 3.34, along with the mean for the predictive model indicated in Table 3.33,

2°5 Full Factorial: End-to-End Delay—Empirical Model. The empirical model for end-

(3.18)

Recall from my earlier discussion that the equation for Yeoeqeiqy 1 @ function that
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Master Model Predictive Model

Term Estimate Std Err t Pr > |t| Estimate Std Err t Pr > |t
NETWRKSZ -0.004799 0.008944 -0.53657 0.595163
TRATTLD 0.122561 0.008944 13.70362 0.0001%* 0.122561 0.009073 13.5078 0.0001
ITEMSIZE 0.1647056 0.008944 18.41583 0.0001%# 0.1647056 0.009073 18.15267 0.0001
NETWRKSZ*TRATFFLD -0.017151 0.008944 -1.91769 0.063839
NETWRKSZ*ITEMSIZ -0.002621 0.008944 -0.29309 0.771289
TRAFFLD*ITEMSIZ 0.0641099 0.008944 7.168172 0.0001%* 0.0641099 0.009073 7.06574 0.0001

** Significant at P <C 0.05

Table 3.34: 2°5 Full Factorial: Effect Estimates for E2EDELAY

value of its associated regressor variable. Thus, the regression coefficients are computed as

15 the effect estimates.

2°5 Full Factorial: Analysis of Variance—JITTER. Table 3.35 is an ANOVA (analysis of
variance) for jitter. From the ANOVA in Table 3.32 we observe that NETWRKSZ,
TRAFFLD, and ITEMSIZE all are statistically significant, and should therefore be included as
part of the regression model. Moreover, the two-way factor interactions between
NETWRKSZ and TRAFFLD, as well as TRAFFLD and ITEMSIZE, are statistically

significant, and should also be included as part of the regression model.

2’5 Full Factorial: Jitter—Fit Statistics. Fit statistics for jitter are indicated in Table 3.36,
the predictive model of which may be interpreted as follows. The mean is 0.072036. The
quantity R-square is 98.14%, which is the proportion of total variability explained by the
model, where 0 < R2< 1, with larger values being more desirable. The CV, or coefficient of

variation, a measure of the precision or relative dispersion, is 12.61512.

Jitter—Effect Estimates. The predictive model estimates shown in Table 3.37, along with
the mean for the predictive model indicated in Table 3.36, provide the data needed to develop

an empirical model for jitter.
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Master Model Predictive Model

Source DF s MS F Pr> F DF S8 MS F Pr> F
NETWREKSZ 1 0.000448 0.000448 5.261478 0.0283205 1 0.000448 0.000448 5.420811 0.025982
TRAFFLD 1 0.0832075 0.083075 976.4081 0.0001 1 0.083075 0.083075 1005.977 0.0001
ITEMSIZ 1 0.046041 0.045041 541.13086 0.0001 1 0.046041 0.046041 557.5179 0.0001
NETWRESZ+TRAFFLD 1 0.002637 0.002637 30.99343 0.0001 1 0.002637 0.002637 31.83202 0.0001
NETWRKSZ+«ITEMSIZ 1 5.362E-8 5.362E-8 0.00063 0.980123
TRAFFLD+ITEMSIZ 1 0.015821 0.015821 185.5488 0.0001 1 0.015821 0.015821 191.58 0.0001
Modsl [ 0.148021 0.02487 289.9572 0.0001 5 0.148021 0.029604 358.4855 0.0001
Error 33 0.002808 0.000085 34 0.002808 0.0000832
(Lack of fit) 1 0.000409 0.000408% 5.460514 0.025871 2 000409 0.000205 2.730665 0.080365
(Pure Error) 3z 0.002398 0.000075 32 0.002388 0.000075
Total 29 0.1508289 39 0.150829
3 .
Table 3.35: 2°5 Full Factorial: ANOVA for JITTER
Master Model Predictive Model
Mean 0.072036 0.072036
R-square 98.14% 98.14%
Adj. R-square 97.80% 97.86%
RMSE 0.009224 0.009087
cv 12.80471 12.61512
. A3 -1 ..
Table 3.36: 2°5 Full Factorial: Fit Statistics for JITTER
Master Model Predictive Model
Term Estimate Std Err t Pr > |t Estimate Std Err t Pr > |t
NETWRKSZ -0.006691  0.002017  -2.20379  0.028305 -0.006691  0.002874  -2.32826  0.025982
TRAFFLD 0.0011455 0.002917 31.24753 0.0001 < HE 0.0911455 0.002874 31.71714 0.0001
ITEMSIZE 0.0678532  0.002017  23.26221 0.0001  <*F 00678532  0.002874  23.61182 0.0001
NETWRKSZ*TRAFFLD -0.016239  0.002017  -5.56717 0.0001  <**  -0.016239  0.002874  -5.65084 0.0001
NETWRKSZ*ITEMSIZ 0.0000732 0.002917 0.025104 0.980123
TRAFFLD*ITEMSIZ 0.0397756  0.0029017  13.63631 0.0001  <*F 00397756  0.002874  13.84124 0.0001

< ** Significant at P < 0.05

Table 3.37: 2°5 Full Factorial: Effect Estimates for JITTER

Jitter—Empirical Model. The empirical model for jitter (coded levels) is shown in

Equation (3.19).

Yiirer = 0.072036 — 0.003345x; + 0.045573x, + 0.0033927x3 +

+ 0.008119x;x2. + 0.019888x2x3 (3.19)

where x; = NETWRKSZ, x, =TRAFFLD, and x; = ITEMSIZE.
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Master Model Predictive Madel

Source DF SS MS F Pr>F DF S8 MS F Pr>F
NETWRKSZ 1 2.11E-& 2.11E-& 1.458432 0.235764
TRAFFLD 1 0.000053 0.000053 36.75142 0.0001 1 0.000053 0.000053 37.39441 0.0001
ITEMSIZ 1 0.00005 0.00005 34.62992 0.0001 1 0.00005 0.00005 35.23579 0.0001
NETWRKSZ+«TRAFFLD 1 4.969E-8 4.969E-8 0.034343 0.854113
NETWRKSZ«ITEMSIZ 1 1.285E-6 1.285E-6 0.888213 0.352811
TRAFFLD*ITEMSIZ 1 0.000022 0.000032 22.44105 0.0001 1 0.000032 0.000022 22.832¢6 0.0001
Model 6 0.000139 0.000023 16.0339 0.0001 3 0.000136 0.000045 31.82129 0.0001
Error 33 0.00004¢8 1.447E-¢€ e 0.000051 1.447E-¢

(Lack of fit) 1 1.096E-8 1.096E-8 0.007346 0.932233

(Pure Error) 32 0.000048 1.492E-6
Total 39 0.0001e7 39 0.000187

Table 3.38: 2°5 Full Factorial: ANOVA for PDRATIO

Recall from my earlier discussion that the equation for Yj., is a function that
describes the empirical relationship between the response Y. and its corresponding factors.
The effect estimates shown in Table 3.37 reflect a two-unit change in the value of its
associated regressor variable. Thus, the regression coefficients are computed as 72 the effect

estimates.

2’5 Full Factorial: Analysis of Variance—PDRATIO. Table 3.38 is an ANOVA (analysis
of variance) for packet delivery ratio. From the ANOVA in Table 3.38 we observe that
TRAFFLD and ITEMSIZE are statistically significant, and should therefore be included as
part of the regression model. Moreover, the two-way factor interaction between TRAFFLD
and ITEMSIZE is statistically significant, and should also be included as part of the

regression model.

2’5 Full Factorial: Packet Delivery Ratio—Fit Statistics. Fit statistics for packet delivery
ratio are indicated in Table 3.39, the predictive model of which may be interpreted as
follows. The mean is the intercept, which, as shown in Table 3.39, is 0.998597. The

quantity R-square is 72.62%, which is the proportion of total variability explained by the
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Master Model Predictive Model

Mean 0.998597 0.998597
R-square 74.46% 72.62%
Adj. R-square 69.82% 70.33%
RMSE 0.001203 0.001193
CVv 0.12046 0.119419

Table 3.39: 2°5 Full Factorial: Fit Statistics for PDRATIO

model, where 0 < R2< 1, with larger values being more desirable. The CV, or coefficient of

variation, a measure of the precision or relative dispersion, is 0.119419.

Packet Delivery Ratio—Effect Estimates. The predictive model estimates shown in Table
3.40, along with the mean for the predictive model indicated in Table 3.39, provide the data

needed to develop an empirical model for packet delivery ratio.

Packet Delivery Ratio—Empirical Model. The empirical model for packet delivery ratio

(coded levels) is shown in Equation (3.20).

Yydraio = 0.998597 —0.001153x, — 0.001119x3 —

—0.000901x2x3 (3.20)

where x; = NETWRKSZ, x, = TRAFFLD, and x; = ITEMSIZE.

Recall from my earlier discussion that the equation for Y44, 1s a function that
describes the empirical relationship between the response Y440 and its corresponding
factors. Each of the effect estimates shown in Table 3.40 reflects a two-unit change in the
value of its associated regressor variable. Thus, the regression coefficients are computed as

75 the effect estimates.
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Master Model Predictive Model

Term Estimate Std Err t Pr > |t Estimate Std Err t Pr > |¢]
NETWRKSZ 0.0004594 0.00038 1.207656 0.235764
TRAFFLD -0.002306 0.00038 -6.06229 0.0001 < FE -0.002306 0.00037 -6.1151 0.0001
ITEMSIZE -0.002239 0.00038 -5.88472 0.0001 < FE -0.002239 0.00038 -5.93597 0.0001
NETWRKSZ*TRAFFLD 0.0000705 0.00038 0.185319 0.854113
NETWRKSZ*ITEMSIZ 0.0003585 0.00038 0.942451 0.352811
TRAFFLD*ITEMSIZ -0.001802 0.00038 -4.7372 0.0001 <R -0.001802 0.000377 -4.77846 0.0001

< #* Significant at P < 0.05

Table 3.40: 2°5 Full Factorial: Effect Estimates for PDRATIO

Response Surface Methodology

Results from the 2°5 full-factorial simulation studies suggest that first-order models may be
inadequate; thus, the development of second-order models should be considered. If such
models could be shown to adequately characterize the relationship between the responses of
interest and their factors, an extension to this would also include numerical optimization of
responses. Response surface designs are intended to identify and develop both second-order

models and numerical optimization of responses.

Response Surface Design Setup. The response surface design setup involves a central
composite, uniform precision design, which includes axial scaling, center blocking. A factor
space of size 2 involves 22=4 design points; however, a central composite, uniform
precision design also includes 9 center points. This type of design lends itself to the
identification of both factor interaction (which we have observed previously) and quadratic
effects (which usually indicate curvature of the response surface).

The simulation environment involves a 64 wireless mesh node subnet, with a grid
node placement scheme (8x8 matrix) and a 270 meter node separation factor. The terrain
size 1s 2500 x 2500 meters. Ten of the 64 mesh nodes serve as gateway nodes to a wired

subnet. The bit rate is 11 Mbps, with CBR traffic at one packet per second. As before, along
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with AODV routing, a two-ray pathloss model is employed. All traffic generated is sent to
the same destination node, thereby exploiting the routing protocol, since multiple paths are
possible.

The response surface design involves the four response metrics of interest, used in the
previous fractional and full-factorial experimental designs: THROUGHP, E2EDELAY,
JITTER, and PDRATIO. Results of the full-factorial design experiments suggest two factors
in particular: TRAFFLD and ITEMSIZE. The design points for a response surface design is
shown in Table3.41. With five replicates, runs 1 through 13 reflect the first replicate, runs 14
through 26 reflect the second replicate, and so on

The average response values for throughput, end-to-end delays, jitter, and packet
delivery ratio, are shown in Table 3.42, with ANOVA (analysis of variance) for throughput
shown in Table 3.43. Recall from my previous discussion that ANOVA is a useful tool for
identifying factors whose main effects upon a response are statistically significant. The
degrees of freedom (DF) is equal to 1 for each factor; the sum of squares (SS) is the
variation; the mean-square (MS) is the variance, or SS/DF ; and F is the F-ratio, which is
MS/Error. The P-value is of particular interest, since it serves as a measure of “statistical
significance,” which indicates the degree to which the value of a factor is “true.” Factors for
which the P-value is small (P < 0.05) are considered significant and should therefore be
included in the prediction, or regression, model. From the ANOVA in Table 3.43 we
observe that TRAFFLD and ITEMSIZE are statistically significant, and should therefore be
included as part of the second-order model. Additionally, quadratic effects (which suggest

curvature) are indicated (by way of TRAFFLD*TRAFFLD and ITEMSIZE*ITEMSIZE).
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Moreover, the two-way factor interaction between TRAFFLD and ITEMSIZE 1is statistically

significant, and should also be included as part of the second-order model.

Response Surfaces: Throughput—Fit Statistics. Fit statistics for throughput are indicated
in Table 3.44, the predictive model of which may be interpreted as follows. The mean is the
intercept, which, as shown in Table 3.44, is 8044.128. The quantity R-square is 100.0%,
which is the proportion of total variability explained by the model, where 0 <R2 <1, with
larger values being more desirable. A related quantity, Adj. R-square, is a variation of the R-
square statistic, whose value decreases as more factors are included within the model. The
RMSE, or root mean square error, is determined by calculating the deviations of points from
their true position, summing up the measurements, and then taking the square root of the
sum, with smaller values being more desirable. Finally, the CV, or coefficient of variation, a
measure of the precision or relative dispersion, is 0.064022. The CV is calculated as the
standard deviation divided by the mean and is used to compare variation among multiple data

series that have significantly different means.

Throughput—Effect Estimates. The predictive model estimates shown in Table 3.45,
along with the mean for the predictive model indicated in Table 3.44, provide the data

needed to develop a second-order model for throughput.

Throughput—Second-Order Model. The second-order empirical model for throughput

(coded levels) is shown in Equation (3.21).

Yinroughp = 8047.929 — 13.14258x; + 3938.635x; —

— 12.35312(x;)* - 13.14648x,x, (3.21)
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where x;= TRAFFLD, and x,= ITEMSIZE.

Recall from my earlier discussion that the equation for Y, ougn, is a function that
describes the empirical relationship between the response Y ouen, and its corresponding
factors. The effect estimates shown in Table 3.45 reflect a one-unit change in the value of its

associated regressor variable.

Response Surfaces: Analysis of Variance—E2EDELAY. Table 3.46 is an ANOVA
(analysis of variance) for end-to-end delay. Recall from my previous discussion that
ANOVA is a useful tool for identifying factors whose main effects upon a response are
statistically significant. The degrees of freedom (DF) is equal to 1 for each factor; the sum of
squares (SS) is the variation; the mean-square (MS) is the variance, or SS/DF ; and F is the F’
-ratio, which is MS/Error. The P-value is of particular interest, since it serves as a measure
of “statistical significance,” which indicates the degree to which the value of a factor is
“true.” Factors for which the P-value is small (P < 0.05) are considered significant and
should therefore be included in the prediction, or regression, model. From the ANOVA in
Table 3.46 we observe that TRAFFLD and ITEMSIZE are statistically significant, and should
therefore be included as part of the second-order model. Additionally, quadratic effects
(which suggest curvature) are indicated (by way of TRAFFLD*TRAFFLD and
ITEMSIZE*ITEMSIZE). Moreover, the two-way factor interaction between TRAFFLD and
ITEMSIZE is statistically significant and should also be included as part of the second-order

model.

Response Surfaces: End-to-End Delay—Fit Statistics. Fit statistics for end-to-end delay

are indicated in Table 3.47, the predictive model of which may be interpreted as follows.
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The mean is the intercept, which, as shown in Table 3.47, is 0.209038. The quantity R-
square 1s 93.98%, which is the proportion of total variability explained by the model, where
0 <R2 <1, with larger values being more desirable. A related quantity, Adj. R-square, is a
variation of the R-square statistic, whose value decreases as more factors are included within
the model. The RMSE, or root mean square error, is determined by calculating the
deviations of points from their true position, summing up the measurements, and then taking
the square root of the sum, with smaller values being more desirable. Finally, the CV, or
coefficient of variation, a measure of the precision or relative dispersion, is 8.099644. The
CV is calculated as the standard deviation divided by the mean, and is used to compare

variation among multiple data series that have significantly different means.

End-to-End Delay—Effect Estimates. The predictive model estimates shown in Table
3.48, along with the mean for the predictive model indicated in Table 3.47, provide the data

needed to develop a second-order model for end-to-end delay.

End-to-End Delay—Second-Order Model. The second-order model for end-to-end delay

(coded levels) is shown in Equation (3.22).

Yeoedelay = 0.206855 + 0.060222x; + 0.08479x; —

+0.007095(x;)* + 0.039888x;x; (3.22)

where x;= TRAFFLD, and x,= ITEMSIZE.
Recall from my earlier discussion that the equation for Yeoeqeiqy 1 @ function that

describes the empirical relationship between the response Y2414y and its corresponding
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factors. Each of the effect estimates shown in Table 3.51 reflects a one-unit change in the

value of its associated regressor variable.

Response Surfaces: Analysis of Variance—JITTER. Table 3.49 is an ANOVA (analysis
of variance) for JITTER. Recall from my previous discussion that ANOVA is a useful tool
for identifying factors whose main effects upon a response are statistically significant. The
degrees of freedom (DF) is equal to 1 for each factor; the sum of squares (SS) is the
variation; the mean-square (MS) is the variance, or SS/DF ; and F is the F-ratio, which is
MS/Error. The P-value is of particular interest, since it serves as a measure of “statistical
significance,” which indicates the degree to which the value of a factor is “true.” Factors for
which the P-value is small (P < 0.05) are considered significant and should therefore be
included in the prediction, or second-order, model. From the ANOVA in Table 3.49 we
observe that TRAFFLD and ITEMSIZE are statistically significant, and should therefore be
included as part of the second-order model. Additionally, quadratic effects (which suggest
curvature) are indicated (by way of TRAFFLD*TRAFFLD and ITEMSIZE*ITEMSIZE).
Moreover, the two-way factor interaction between TRAFFLD and ITEMSIZE is statistically

significant, and should also be included as part of the second-order model.

Response Surfaces: Jitter—Fit Statistics. Fit statistics for jitter are indicated in Table 3.50,
the predictive model of which may be interpreted as follows. The mean is the intercept,
which, as shown in Table 3.50, is 0.05398. The quantity R-square is 86.49%, which is the
proportion of total variability explained by the model, where 0 < R2 < 1, with larger values
being more desirable. A related quantity, Adj. R-square, is a variation of the R-square

statistic, whose value decreases as more factors are included within the model. The RMSE,
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or root mean square error, is determined by calculating the deviations of points from their
true position, summing up the measurements, and then taking the square root of the sum,
with smaller values being more desirable. Finally, the CV, or coefficient of variation, a
measure of the precision or relative dispersion, is 21.27506. The CV is calculated as the
standard deviation divided by the mean, and is used to compare variation among multiple

data series that have significantly different means.

Jitter—Effect Estimates. The predictive model estimates shown in Table 3.51, along with
the mean for the predictive model indicated in Table 3.50, provide the data needed to develop

a second-order model for jitter.

Jitter—Empirical Model. The second-order model for jitter (coded levels) is shown in

Equation (3.23).

Yjiner = 0.055197 + 0.038355x; + 0.025064x; —

—0.003957(x;)* + 0.019237xx; (3.23)

where x;= TRAFFLD, and x,= ITEMSIZE.

Recall from my earlier discussion that the equation for Y., 1s a function that
describes the empirical relationship between the response Yji,. and its corresponding factors.
The effect estimates shown in Table 3.51 reflect a one-unit change in the value of its

associated regressor variable.

Response Surfaces: Analysis of Variance—PDRATIO. Table 3.52 is an ANOVA
(analysis of variance) for packet delivery ratio. Recall from my previous discussion that

ANOVA is a useful tool for identifying factors whose main effects upon a response are

115



statistically significant. The degrees of freedom (DF) is equal to 1 for each factor; the sum of
squares (SS) is the variation; the mean-square (MS) is the variance, or SS/DF ; and F is the
F-ratio, which is MS/Error. The P-value is of particular interest, since it serves as a measure
of “statistical significance,” which indicates the degree to which the value of a factor is
“true.” Factors for which the P-value is small (P < 0.05) are considered significant and
should therefore be included in the prediction, or regression, model. From the ANOVA in
Table 3.52 we observe that TRAFFLD and ITEMSIZE are statistically significant, and should
therefore be included as part of the second-order model. Moreover, the two-way factor
interaction between TRAFFLD and ITEMSIZE is statistically significant, and should also be

included as part of the second-order model.

Response Surfaces: Packet Delivery Ratio—Fit Statistics. Fit statistics for packet delivery
ratio are indicated in Table 3.53, the predictive model of which may be interpreted as
follows. The mean is the intercept, which, as shown in Table 3.53, is 0.999201. The
quantity R-square is 88.14%, which is the proportion of total variability explained by the
model, where 0 <R2 < 1, with larger values being more desirable. A related quantity, Adj.
R-square, is a variation of the R-square statistic, whose value decreases as more factors are
included within the model. The RMSE, or root mean square error, is determined by
calculating the deviations of points from their true position, summing up the measurements,
and then taking the square root of the sum, with smaller values being more desirable.

Finally, the CV, or coefficient of variation, a measure of the precision or relative dispersion,
is 0.046874. The CV is calculated as the standard deviation divided by the mean, and is used

to compare variation among multiple data series that have significantly different means.
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Packet Delivery Ratio—Effect Estimates. The predictive model estimates shown in Table
3.54, along with the mean for the predictive model indicated in Table 3.53, provide the data

needed to develop an second-order model for packet delivery ratio.

Packet Delivery Ratio—Empirical Model. The second-order model for packet delivery

ratio (coded levels) is shown in Equation (3.24).

Ypdraio = 0.999482 — 0.001189x; — 0.00124x; —

—0.000915(x;)* = 0.001117x;x, (3.23)

where x;= TRAFFLD, and x,= ITEMSIZE

Recall from my earlier discussion that the equation for Y4, 1S a function that
describes the empirical relationship between the response Y,4,aii0 and its corresponding
factors. The effect estimates shown in Table 3.54 reflect a one-unit change in the value of its

associated regressor variable.
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Fun  TEAFFLD [TEMEIZE
1 I 313
2 1 1300
3 3k 3l
2 1 1300
5 2 1006
g Ak 1006
1 Al 1006
] Ak 1006
el 2 1006
11 Ak 1006
11 Ak 1006
12 Ak 1006
13 2k 1006

2 3 5l
15 3 1300
14 3k 51
17 1 1500
18 A 1006
12 Ak 1006
20 21 10404
el 21 1006
a2 A 1006
23 21 10404
24 21 1006
25 21 1006
£l 21 10404
FY 1 512
28 1 1500
29 3k 3l
30 1 1300
3l 21 1004
£ Al 1005
33 Al 1006
3= 2 1006
35 Ak 1006
E ] Al 1006
37 21 1006
38 2 1006
3 Al 1006
40 3 51
41 3 1300
42 3k 512
43 3 1300
4= Ak 1006
45 2k 1006
46 21 1006
47 A 1006
48 Ak 1006
49 21 1006
50 21 1006
51 A 1006
52 22 1006

Table 3.41: Response Surface Design Points
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17 1192819 042745 011872 090333
18 2040 50 020703 0UOETI2 180870
] 2048 54 0.20337  0L05664 120250
10 304555 032349 007284 Jaoale
| 204000 018757 0.03855 000063
1 204582 022810 007413 Jagale
13 204436 010013 005444 090000
1z 2048 85 025305 006354 Joa00gs
15 204234 021174 0.0G32% Ja0Rse
14 204503 019783 005129 Jaoase
n 4007 08 010509 001002 100000
18 L0025 019707 002391 180043
] 400681 012060 003708 090071
30 1124172 041366 014758 Ja04=g
il 2040 55 030701 0.06171 Je0as0
32 204636 020369 005694 Jaga2e
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3= 2045010 020183 004630 Jaoase
35 204805 019167 004819 000063
3 2042 41 021032 0.05723 120250
Y 2045 .6 021020 005814 Joaoazn
38 2040010 0.207EE 00§90 180473
39 2050.82 019386 002091 090080
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42 4006 84 01874 [0=623 190276
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45 2048 32 021176 006247 090020
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Table 3.42: Response Surface Design Responses Values
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Master Model

Predictive Model

Source DF ss MS F P>F DF ss MS F P>F
TRAFFLD 1 2763.638 2763.638 104.199%9 0.0001 1 2763.638 27€3.6388 104.1999 0.0001
ITEMSIZ 1 2.4821E8 2.4821E8 $358310 0.0001 1 2.4821E8 2.4821E8 $358310 0.0001
TRAFFLD+TRAFFLD 0 0 0.0001 1 1690.234 1690.334 63.73215 0.0001
TRAFFLD+ITEMSIZ 1 2765.281 2765.281 104.2618 0.0001 1 2785.281 2765.281 104.2618 0.0001
ITEMSIZ+ITEMSIZ 0 0 0.0001
Model 4 2.4821E8 62053180 2339646 0.0001 4 2.4821E8 62053180 2339646 0.0001
(Linear) 2 2.4821E8 1.241E8 4679207 0.0001
(Quadratic) 1 1650.3324 1590.3234 63.73215 0.0001
(Cross Product) 1 2765.281 2765.281 104.2618 0.0001
Error 47 1246.556 26.52247 a7 1246.556 26.52247
Total 51 2.4821E8 51 2.4821E8
Table 3.43: Response Surfaces: ANOVA for THROUGHP
Master Model Predictive Model
Mean 8044.128 8044.128
R-square 100.0% 100.0%
Adj. R-square 100.0% 100.0%
RMSE 5.149997 5.149997
Ccv 0.064022 0.064022
Table 3.44: Response Surfaces: Fit Statistics for THROUGHP
Master Mpdel Predictive Model
Term Estimate Std Err t Pr > |t] Estimate Std Err t Pr > |t
TRAFFLD -13.14258 -10.2078 0.0001  <**  -13.14258  1.287499  -10.2078 0.0001
ITEMSIZE 3938.6348 3059.136 0.0001  <**  3038.6348  1.287499  3059.136 0.0001
TRAFFLD*TRAFFLD -12.35312 -7.98324 0.0001
TRAFFLD*ITEMSIZ -13.14648 -10.2109 0.0001 < _13.14648  1.287499  -10.2109 0.0001
<** Significant at P < 0.05
Table 3.45: Response Surfaces: Effect Estimates for THROUGHP
Master Model Predictive Model
Source DF S8 MS F Pr>F DF 55 MS F Pr>F
TRAFFLD 1 0.0658027 0.058027 20z.4191 0.0001 1 0.058027 0.058027 202.4191 0.0001
ITEMEIZ 1 0.11504 0.11504 401.2984 0.0001 1 0.11504 0.11504 401.2984 0.0001
TEAFFLD+ TRAFFLD 0 ] 0.0001 1 0 0.0001
TRAFFLD+ITEMEIZ 1 0.025457 0.025457 88.80203 0.000L1 1 0.025457 0.025457 28.80203 0.0001
ITEMSIZ+ITEMEIZ 4] 0 0.000L1
Model 4 0.195082 0.043771 172.6162 0.0001 4 0.1935022 0.048771 172 .6162 0.0001
{Linear) 2 0.173068 0.086534 201.8588 0.0001 2 0.172068 0.088534 201.85688 0.0001
(Quadratiec) 1 0.000558 0.000558 1.945074 0.169676 1 0.000558 0.000558 1.945074 0.16%676
{Cross Product) 1 0.025457 0.025457 88.80203 0.000L1 1 0.025457 0.025457 248.80203
Error 47 0.013473 0.000287 47 0.0134732 0.000287
Total 51 0.212556 51 0.212556

Table 3.46: Response Surfaces: ANOVA for E2EDELAY
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Master Model Predictive Model
Mean 0.209038 0.209038
R-square 93.66% 93.66%
Adj. R-square 93.12% 93.12%
RMSE 0.016931 0.016931
cv 8.099644 8.099644

Table 3.47: Response Surfaces: Fit Statistics for E2EDELAY

Master Model

Predictive Model

Term Estimate Std Exr t Pr > |i] Estimate Std Err t Pr > |t]
TRAFFLD 0.0602222 0.004233 14.22741 0.0001 < 0.0602222 0.004233 14.22741 0.0001
ITEMSIZE 0.004233 20.03243 0.0001 << HE 0.0847939 0.004233 20.03243 0.0001
TRAFFLD*TRAFFLD 0.005087 1.394659 0.169676 0.007095 0.005087 1.394659 0.169676
TRAFFLD*ITEMSIZE 0.004233 0.423483 0.0001 << HE 0.039888 0.004233 9.423483 0.0001
<** Significant at P < 0.05
Table 3.48: Response Surfaces: Effect Estimates for E2EDELAY
Master Model Predictive Model
Source DF SS MS F Pr=F DF Ss MS F Pr= F
TRAFFLD 1 0.023538 0.023538 178.4671 0.0001 1 0.023538 0.023538 178.4671 0.0001
ITEMSIZ 1 0.010051 0.010051 76.20957 0.0001 1 0.010051 0.010051 76.20957 0.0001
TRAFFLD+TRAFFLD o] s} 0.0001 1 4] 0.0001
TRAFFLD+ITEMSIZ 1 0.005921 0.005921 44 .89511 0.0001 1 0.005921 0.005921 44.89511 0.0001
ITEMSIZ+ITEMSIZ o] [} 0.0001
Model 4 0.039683 0.009921 75.22187 0.0001 4 0.035683 0.009921 75.22167 0.0001
(Linear) 2 0.033589 0.016794 127.3383 0.0001 2 0.03358¢9 0.016794 127.3383 0.0001
(Quadratic) 1 0.000173 0.0001732 1.214858 0.257321 1 0.000173 0.000172 1.3214858 0.257321
(Cross Product) 1 0.005921 0.005921 44 ,88511 0.0001 1 0.005921 0.005921 44.88511 0.0001
Error 47 0.006198 0.000132 47 0.0068199 0.000132
Total 51 0.045882 51 0.045882

Table 3.49: Response Surfaces: ANOVA for JITTER

Master Model Predictive Model
Mean 0.05398 0.05398
R-square 86.49% 86.49%
Adj. R-square 85.34% 85.34%
RMSE 0.011484 0.011484
CV 21.27506 21.27506

Table 3.50: Response Surfaces: Fit Statistics for JITTER
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Master Model

Predictive Model

Term Estimate Std Err t Pr > || Estimate Std Err t Pr > |i]
TRAFFLD 0.038355 0.002871 13.35916 0.0001 < 0.038355 0.002871 13.35916 0.0001
ITEMSIZE 0.0250638 0.002871 8.729809 0.0001 << H* 0.0250638 0.002871 8.729809 0.0001
TRAFFLD*TRAFFLD -0.003957 0.003451 -1.14667 0.257321 -0.003957 0.003451 -1.14667 0.257321
TRAFFLD*ITEMSIZE 0.0192372 0.002871 6.600381 0.0001 < 0.0192372 0.002871 6.600381 0.0001
< ** Significant at P < 0.05
Table 3.51: Response Surfaces: Effect Estimates for JITTER
Master Model Predictive Model
Source DF SS MS F Pr> F DF SS MS F Pr>F
TRAFFLD 1 0.000023 0.000023 103.1549 0.0001 1 0.000022 0.000023 103.1549 0.0001
ITEMSIZ 1 0.000025 0.000025 112.9128 0.0001 1 0.000025 0.000025 112.9128 0.0001
TRAFFLD«TRAFFLD 0 0 0.0001 1 0 0.0001
TRAFFLD+ITEMSIZ 1 0.00002 0.00002 90.98731 0.0001 1 0.00002 0.00002 90.98731 0.0001
ITEMSIZ«ITEMSIZ 0 o] 0.0001
Model 4 0.000077 0.0000192 87.32288 0.0001 4 0.000077 0.000019 87.32288 0.0001
(Linear) 2 0.000047 0.000024 108.0338 0.0001 2 0.000047 0.000024 108.03238 0.0001
(Quadratic) 1 9.266E-6 9.266E-6 42.24053 0.0001 1 9.266E-6 9.266E-6 42.24053 0.0001
(Cross Product) 1 0.00002 0.00002 90.98731 0.0001 1 0.00002 0.00002 90.98721 0.0001
Error 47 0.00001 2.194E-7 47 2.1894E-7
Total 51 0.000087 51 0.000087
Table 3.52: Response Surfaces: ANOVA for PDRATIO
Master Model Predictive Model
Mean 0.999201 0.999201
R-square 88.14% 88.14%
Adj. R-square 87.13% 87.13%
RMSE 0.000468 0.000468
cv 0.046874 0.046874
Table 3.53: Response Surfaces: Fit Statistics for PDRATIO
Master Model Predictive Model
Term Estimate Std Err t Pr > |t] Estimate Std Err t Pr > |t
TRAFFLD -0.001189 0.000117 -10.1565 0.0001 < -0.001189 0.000117 -10.1565 0.0001
ITEMSIZE -0.001244 0.000117 -10.626 0.0001 <k -0.001244 0.000117 -10.626 0.0001
TRAFFLD*TRAFFLD -0.000915 0.000141 -6.49927 0.0001 < B -0.000915 0.000141 -6.49927 0.0001
TRAFFLD*ITEMSIZE -0.000117 0.000117 -9.53873 0.0001 < -0.000117 0.000117 -0.53873 0.0001

< ** Significant at P < 0.05

Table 3.54: Response Surfaces: Effect Estimates for PDRATIO
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CHAPTER 4

RESULTS

“There is no better high than discovery.”

—E. O. Wilson

Figure 4.1 shows the response surface of THROUGHP for the local region, with
optimization results for the maximization of THROUGHP for the local response region
indicated in Table 4.1. The data in Table 4.1 are shown in decreasing order of THROUGHP.
From the table we see that 12 generating mesh routers with an item size of 1500 bytes should
lead to an average throughput of 12000.5 bps. At the other extreme, we see that 12
generating mesh routers with an item size of 512 bytes results in an expected THROUGHP
of 4096.9 bps.

These optimization results for the maximization of THROUGHP are shown
graphically in Figure 4.2. Observe that the levels of traffic load are indicated on the x axis,
with a similar representation of item size indicated on the y axis. The overlays reflect the
expected values for the THROUGHP response for each factor combination traffic load—item
size.

Figure 4.3 shows the response surface of E2EDELAY for the local region, with
optimization results for the minimization of E2EDELAY for the local response region
indicated in Table 4.2. The data in Table 4.2 are shown in decreasing order of E2EDELAY.
From the table we see that 12 generating mesh routers with an item size of 512 bytes should

lead to an average end-to-end delay of roughly 0.104 seconds, or 104 milliseconds. At the
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Figure 4.1: Response Surface: THROUGHP

THROUGHP Traffic Load Item Size
(bits/sec) (generating mesh routers) (bytes)
120005 12 1500
11996.6 17 1500
11986.6 22 1500
119703 27 1500
119479 32 1500
100246 12 1253
100240 17 1253
100172 22 1253
100042 27 1253
9985.2 32 1253
80514 17 1006
8058.7 12 1006
80479 22 1006
8038.3 27 1006
80224 32 1006
G078.8 17 759
G078.6 22 759
60728 12 759
60722 27 759
6059.7 32 759
4109.3 22 512
41062 27 512
41062 17 512
40969 32 512
40969 12 512

Table 4.1: Optimization Results: (THROUGHP is Maximized)
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Figure 4.2: Contour Chart: THROUGHP

other extreme, we see that 32 generating mesh routers with an item size of 1500 bytes results
in an expected E2ZEDELAY of about 0.394 seconds, or 394 milliseconds.

These optimization results for the minimization of E2EDELAY are shown
graphically in Figure 4.4. Observe again that the levels of traffic load are indicated on the x
axis, with a similar representation of item size indicated on the y axis. The overlays reflect
the expected values for the E2EDELAY response for each factor combination traffic load—
item size.

Figure 4.5 shows the response surface of JITTER for the local region, with
optimization results for the minimization of JITTER for the local response region indicated
in Table 4.3. The data in Table 4.3 are shown in decreasing order of JITTER. From the table

we see that 12 generating mesh routers with an item size of 512 bytes should lead to an

125



035

EZEDELAY S S

05— |

ic Load
1400

Item Size 600

Figure 4.3: Response Surface: E2ZEDELAY

E2EDELAY Traffic Load Item Size
(seconds) {generating mesh routers) (bytes)
0.1039 12 512
01141 17 512
0.1242 22 512
0.1264 12 759
0.1344 27 512
0.1446 32 512
0.1465 17 759
0.1488 12 1006
0.1666 22 759
01713 12 1253
0.1789 17 1006
0.1668 27 759
0.1937 12 1500
0.2069 32 759
0.2020 22 1006
02114 17 1253
0.2301 27 1006
0.2438 17 1500
02514 22 1253
0.2693 32 1006
0.2915 27 1253
0.2938 22 1500
03316 32 1253
0.3439 27 1500
0.3939 32 1500

Table 4.2: Optimization Results: (E2ZEDELAY is Minimized)
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average jitter of roughly 0.010 seconds, or 110 milliseconds. At the other extreme, we see
that 32 generating mesh routers with an item size of 1500 bytes results in an expected
JITTER of about 0.137 seconds, or 137 milliseconds.

These optimization results for the minimization of JITTER are shown graphically in
Figure 4.6. Observe again that the levels of traffic load are indicated on the x axis, with a
similar representation of item size indicated on the y axis. The overlays reflect the expected
values for the JITTER response for each factor combination traffic load—item size.

Figure 4.7 shows the response surface of PDRATIO for the local region, with
optimization results for the maximization of PDRATIO for the local response region
indicated in Table 4.4. The data in Table 4.4 are shown in decreasing order of PDRATIO.
From the table we see that 22 generating mesh routers with an item size of 512 bytes should

lead to an average packet delivery ratio of roughly 1.0007. At the other extreme, we see that
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Figure 4.5: Response Surface: JITTER
32 generating mesh routers with an item size of 1500 bytes results in an expected PDRATIO
of approximately 0.9950.
These optimization results for the maximization of PDRATIO are shown graphically
in Figure 4.8. Observe that the levels of traffic load are indicated on the x axis, with a similar
representation of item size indicated on the y axis. The overlays reflect the expected values

for the PDRATIO response for each factor combination traffic load—item size.
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JITTER.  Traffic Load Item Size
(seconds) (generating mesh routers) (bytes)

0.0098 12 512
0.0127 12 759
0.0156 12 1006
0.0185 12 1253
0.0194 17 512
0.0215 12 1500
0.0271 17 759
0.0289 12 512
0.0348 17 1006
0.0385 27 512
0.0414 22 759
0.0425 17 1253
0.0460 32 512
0.0502 17 1500
0.0540 22 1006
0.0558 27 759
0.0665 22 1253
0.0702 32 759
0.0732 27 1006
0.0790 22 1500
0.0905 27 1253
0.0923 32 1006
0.1078 27 1500
0.1145 32 1253
0.1366 32 1500

Table 4.3: Optimization Results: (JITTER is Minimized)
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Figure 4.7: Response Surface: PDRATIO
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PDRATIO Traffic Load Item Size

(generating mesh routers) (bytes)

1.0007 22 512
1.0005 17 512
1.0005 27 512
1.0002 17 739
1.0001 22 739
0.9999 12 512
0.9998 17 1006
0.9998 12 739
0.9998 12 1006
0.9997 32 512
0.9996 12 1500
0.9996 27 739
0.9995 17 1253
0.9995 22 1006
0.9992 17 1500
0.9989 22 1253
0.9987 27 1006
0.9986 32 739
0.9082 22 1500
0.9978 27 1253
0.9974 32 1006
0.9969 27 1500
0.9962 32 1253
0.9950 32 1500

Table 4.4: Optimization Results: (PDRATIO is Maximized)
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

“A journey of a thousand miles begins with a single step.”

—Confucius

Statistical design of experiments (DOE) and response surface methodology (RSM)
may be useful to researchers and scientists for evaluating the performance of existing and
future multi-hop wireless mesh networks. The stepwise use of fractional and full factorial
designs should lead to viable first-order empirical models. Where first-order empirical
models are deemed inadequate, response surface methodology may lead the researcher to
develop viable second-order empirical models. Moreover, RSM facilitates response
optimization for a local region of interest.

Future work might include application of statistical DOE and RSM for a small-scale
multi-hop WMN testbed, where the results of such an experimental environment may be
compared against comparable simulation studies. Reconciling differences in results of the
two might offer a useful starting point for developing viable first-order and second-order
models, as well as the use of response optimization, for deployed multi-hop WMNS.
Assuming that the preceding is done successfully, first-order and second-order models could
conceivably be developed for small-scale, medium-scale, and large-scale multi-hop WMN:ss.
The end result of such work might be the development of a vast “library” of pre-determined
first-order, second-order, and optimization models, which should be of interest to protocol

and network architects. Additionally, such a “library” would mitigate the need to employ



time-consuming and expensive simulation studies, since the appropriate factor levels for a

particular response are predetermined.
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empirical models; (3) response surface methodology may lead the researcher to viable
second-order empirical models where first-order empirical models are deemed inadequate;
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