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CHAPTER 1 

INTRODUCTION 
 

“All models are wrong, but some are useful.” 

—George E. P. Box 

 
I shall begin by considering three hypothetical scenarios.  The first scenario involves 

the deployment by a military peacekeeping force of multiple, possibly heterogeneous, 

wireless networks.  Moreover, these wireless networks might collectively span a distance of 

several miles within the theater of operations.  There is the added requirement of integrating 

these disparate wireless networks, such that both intra- and inter-network communications, 

along with backhaul access to the wired Internet, are supported.  Given the presumed danger 

to both military and non-military personnel in such a potentially hostile environment, a 

network deployment such as this must be done both quickly and efficiently, and with 

minimal risk of serious injury to personnel or even loss of human life.  Finally, the deployed 

network must be reliable, robust, and easy to maintain. 

The second scenario centers around an ambulance company that services a large 

metropolitan area—Dallas, Texas, for example.  Such a large-scale deployment should 

support reliable wide-area, high-speed, wireless voice and data communications.  In an effort 

to maintain a fiduciary responsibility to all stakeholders, there should be relatively low 

deployment costs associated with this scenario.  Similar to the first scenario described earlier, 

easy maintenance, reliability, and robustness, are all essential. 

The third scenario involves the development of a wireless community network, such 

that residents of homes and apartments have reliable high-speed backhaul access to the  
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Figure 1.1: 802.11b Multi-hop Wireless Mesh Network 

 
wired Internet.  Although less serious in nature than the two preceding scenarios, subscribers 

to such a wireless community network would presumably expect QoS levels that are 

somewhat comparable to QoS levels expected of the wired Internet.  Irrespective of whether 

a wireless community network such as I have described it is owned and operated by a for-

profit organization or is operated by a governmental entity (in which case, it is owned by 

taxpayers), this infrastructure must be relatively inexpensive and easy to deploy, in order to 

be considered affordable by prospective subscribers. 

The three scenarios just described differ with respect to their operating conditions, 

scope, and scale; however, there also are requirements common among them.  These might 

include simple deployment at low-cost, reliability, robustness, and easy maintenance, to 

name a few.  Current advances in the state-of-the-art in multi-hop wireless mesh networks 

(WMNs) suggest that such infrastructures might conceivably satisfy such requirements. 
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Figure 1.1 illustrates a conceptual view of a multi-hop WMN, around which my 

dissertation work is centered.  As shown in the figure, an 802.11b multi-hop WMN is a set of 

topologically-static backhaul mesh routers, similar to an ad hoc network [1].  The traffic 

generated by each mesh router, Mi, is the aggregate traffic of j clients, Ci1, Ci2, . . . , Cij, that 

are within the basic service set (BSS) of Mi. 

There is considerable research activity in the design of algorithms, protocols, 

techniques, and architectures for multi-hop WMNs.  Such research activity is not unexpected, 

given the ever-increasing demand by end users for anywhere-anytime connectivity.  

Moreover, unlike many of the hybrid wired-wireless infrastructures already in use, multi-hop 

WMNs may be deployed with comparative ease. 

An important objective of multi-hop WMN deployment, as suggested in the literature, 

is to provide for the wireless domain what has been until now a hybrid wired-wireless 

scheme.  Achieving this is no small accomplishment, however.  Unlike wired networks, the 

wireless channel entails an environment that may be hostile, chaotic, and unpredictable. 

Multi-hop WMN research is still in its relative infancy; however, a survey of the 

literature suggests that much has been accomplished thus far.  This is due in no small 

measure to continued improvements in IEEE 802.11-based wireless networks, which are 

considered by some researchers as a subset of multi-hop WMNs [2].  If we accept this 

premise, then many of the same problems, challenges, and opportunities associated with 

IEEE 802.11 networks might indeed apply to multi-hop WMNs. 
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Research Problem 
 
Let us again consider the diverse conditions under which the three hypothetical scenarios 

described earlier might operate.  The environment with which a military peacekeeping force 

must contend may be, depending upon the particular area of the world in which it occurs, a 

region fraught with mountains and valleys.  In contrast, the metropolitan area serviced by our 

hypothetical ambulance company might be comprised of a variety and multitude of small, 

medium, and large buildings, all located in a rather large urban environment.  Finally, the 

wireless community network scenario might possibly be developed in a rural area that is flat, 

topologically speaking. 

The foregoing discussion of these three, very diverse, operating environments is 

intended to highlight the point that a “one-size-fits-all” deployment of a multi-hop wireless 

mesh network is not likely to work for all three scenarios.  Depending upon the particular 

environment in which the network is to be deployed, factors such as routing protocol, traffic 

load, network size, number and placement of gateways, and so on, will probably differ 

among the different deployments.  Thus, an understanding about how to evaluate the 

behavior and performance of multi-hop wireless mesh networks might prove useful to 

network system/protocol designers and developers. 

 

Research Goals 
 

In light of the research problem described in the previous section, I intend to accomplish the 

following three research goals: 
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1. Develop a better understanding of fundamental performance, scaling properties, 

and trade-offs of mesh networks; 

2. Conduct a comprehensive evaluation of network performance over a large design 

space; and 

3. Characterize the functional relationship between performance metrics and 

relevant factors. 

 
My third research goal requires some elaboration.  Realization of this research goal 

suggests three questions.  First, how is system performance affected by various combinations 

of factor settings?  Second, which combination of factor settings achieves specific 

performance requirements over a specified region of interest?  Third, which combination of 

factor settings produces the optimal response or set of responses? 

 

Motivation 
 

My dissertation work has a threefold purpose.  First, such an evaluation should facilitate an 

understanding about: (1) performance responses (i.e., throughput, delay, jitter, and packet 

delivery ratio); (2) particular system/network parameters that may affect performance 

responses; and (3) the degree to which performance responses are affected when varying 

system/network parameters.  Second, results of my work should provide insight about 

performance issues to system and protocol architects.  Third, a holistic approach such as 

mine expresses a chain of analyses, the result of which leads to response optimization.   

I anticipate the following benefits from the results of my work:  

1. The development of generalized empirical models of multi-hop wireless mesh 

networks; 
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2. Characterization of cause/effect functional relationships between performance 

responses and their factors and factor interactions; 

3. Prediction of system performance and behavior, based upon factor variables and 

their  levels; and 

4. Optimization for four response metrics—throughput, delay, jitter, and packet 

delivery overhead.  

Most scientific endeavors involve making observations and inductively drawing 

inferences about the phenomena under study.  These inferences can then be generalized in 

such a way that predictions about the system may be deductively estimated.  Characterizing 

the functional relationships between performance responses and their factors and factor 

interactions may be useful to system designers and developers when, for instance, deciding 

upon the routing protocol that should lead to a desired performance level, given the 

environment within which the wireless network will operate. 

Prediction is one of the most important objectives of scientific research. In the case of 

multi-hop wireless mesh networks, reliable empirical models, along with particular factor 

levels, may lead to accurate predictions about performance of the system, even before 

deployment actually takes place.  This predictive aspect may lead to greater efficiency and 

higher cost-effectiveness, since resources would not be depleted in real-time, as the network 

is tuned to operate at a certain level of performance. 

The aforementioned benefits highlight what I believe are important strengths of 

empirical modeling.  Basically, empirical modeling characterizes the “How” mechanism of a 

system, but does not offer very much about the “Why.”  Such “why” questions are the locus 



 

7 

of analytical models.  Even though my work does not involve such models, empirical models 

may offer a useful starting point from which analytical models might then be developed. 

Empirical modeling 
 

Performance of a target system is contingent upon the environment within which it operates; 

this operating environment is comprised of possibly numerous variables, some of which are 

controllable, and others over which there is little or no control.  Empirical modeling provides 

a framework by which a functional relationship between the target system and its factors may 

be formed.  Thus, observations of the interaction between a target system and its 

environmental factors are the foundation upon which empirical modeling may take place. 

Derivation of viable empirical models is both interesting and challenging.  It is 

interesting in that the researcher expands his knowledge about the world around him; and it is 

challenging because the process usually involves considerable experimentation and 

observation.  The upshot, according to George E. P. Box, is that “all models are wrong, but 

some are useful” [3]. 

At first glance, Box’s statement might seem to suggest that most, or perhaps all, 

attempts at empirical modeling are less than worthwhile.  However, because empirical 

modeling has been used for centuries, it is difficult not to concede that there is both merit and 

significant utility in developing and using empirical models.  The literature in general 

scientific principles, statistics, and philosophy of science contains significant support for the 

“principle of simplicity” (also labeled as the “principle of parsimony”), which posits that 

simpler models are preferred to more complex models, so long as they provide a reliable 

representation of the phenomena under study.  Because this principle has been applied 

successfully in many different research contexts, I intend to abide by it as well. 
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Terms and Definitions 
 

I shall next identify terms and their definitions I use throughout this dissertation; these are as 

follows.  

• Empirical model — a model that is derived from observed functional relationships 

between a dependent variable (response) and one or more independent variables 

(factors). 

• Multi-hop wireless mesh network — a set of topologically-static backhaul mesh 

routers, similar to an ad hoc network [1], such that the traffic generated by each mesh 

router, Mi, is the aggregate traffic of j clients, Ci1, Ci2, . . . , Cij, that are within the 

basic service set (BSS) of Mi. 

• Parsimony — given two or more viable solutions or approaches to a problem, the 

simpler solution or approach is preferred. 

• QoS — quality of service; a specification, either by a human administrator or by some 

predetermined classification scheme, such that one or more responses (e.g., 

throughput, control overhead, delay) are maintained within certain upper and lower 

bounds. 

• Signal — a response variable whose value changes over time.  There are two types of 

signals, complete signals and partial signals.  Complete signals take on values at each 

time instance, whereas partial signals do not.  A signal is synonymous with a 

response, such as throughput, delay, and so on. 
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Approach  
 

As my work relies significantly upon empirical observations, the matter of whether to operate 

either within an experimental framework or within a simulation framework must be 

addressed.  The literature provides substantial support for the latter; therefore, my 

investigation is done almost entirely by means of simulation.  I shall discuss related work in 

this area in Chapter 2, which should make lucid my choice of a simulation environment. 

 

 

Figure 1.2: Research Approach 

 

Figure 1.2 illustrates a conceptual view of my approach.  As shown in the figure, I 

accomplish my work in two stages.  In Stage I of my methodology, I develop preliminary 

experimental designs, while in Stage II, I develop comprehensive experimental designs and 
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apply response surface methodology for factor optimization.  Moreover, I attain my three 

research goals in Stage II. 

Stage I  
 

As shown in Figure 1.2, Stage I of my work includes both first and expanded designs, neither 

of which is comprehensive.  The decision not to begin at the outset with a comprehensive 

design is warranted by the so-called “25% Rule,” which says that no more than one-quarter 

of an overall design effort should be expended in first designs [4].  The objective of the first 

design is to demonstrate how a systematic design of experiments (DOE) strategy can be used 

to analyze network system and protocol performance, thus leading to more objective 

conclusions valid over a wide range of network conditions and environments [5]. 

In my expanded design, I begin with a large factor space and use fractional factorial 

design to: (1) develop insights about the behavior and performance of multi-hop WMNs; and 

(2) eliminate factors that have little or no impact on responses.  Unlike full factorial designs, 

which structure experiments such that all combinations of factors and their high and low 

values comprise the design matrix (discussed in greater detail in the Methodology chapter), 

fractional factorial designs are “abbreviated” forms that highlight main effects of factors 

upon responses.  This makes for fairly expedient (and efficient) factor elimination, which is 

very important in the early part of experimental designs. 

Stage II  
 

Completed work in Stage I establishes a foundation upon which I may develop 

comprehensive experimental designs and apply response surface methodology; both of these 

comprise Stage II of my work.  The objective of my comprehensive experimental designs is 



 

11 

multifaceted: (1) Identify and list potential critical factors and parameters that might impact 

multi-hop WMN performance; (2) Evaluate system performance at various factor levels; (3) 

Quantify main effects and two-factor interaction effects; (4) Design first-order empirical 

models; and (5) Employ response surface methodology, in order to develop second-order 

models, if applicable, and to optimize one or more response metrics. 

Methodology: Motivation  
 

Statistical design of experiments (DOE) and response surface methodology (RSM) 

approaches have been used successfully in a variety of fields and disciplines, as both 

approaches are highly systematic and methodical.  Application of both these approaches is 

intended to develop viable empirical models; there are differences between them, however.  

Where first-order models might be considered adequate for the system being evaluated, 

statistical DOE is used.  In contrast, where second-order or higher-order models are needed, 

along with factor optimization, response surface methodology becomes necessary. 

As I have already indicated, a considerable amount empirical work in science is done 

using the classical one-factor-at-a-time (OFAT) strategy.  Unlike the OFAT approach, 

statistical DOE offers greater efficiency, improved reliability of measured factor interactions, 

and conclusions that are valid over a range of conditions. In sum, comparatively speaking, 

statistical DOE should lead to empirical models that are superior to those derived from 

OFAT approaches. 

Response surface methodology (RSM) is a set of statistical techniques that may be 

applied when first-order models are inadequate, thus requiring higher-order empirical 

models.  Moreover, as I have earlier stated, unlike statistical DOE, RSM may lead to models 

for which optimal factor values may be determined, such that a maximum (or minimum) 
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response signal may be attained.  As with statistical DOE, OFAT approaches are severely 

limited in not supporting such outcomes. 

State-of-the-Art  
 
A survey of the state-of-the-art in the empirical evaluation of the performance and behavior 

of multi-hop wireless infrastructures indicates considerable research activity.  I shall now 

discuss work done by others that is representative of the state-of-the-art.  Additionally, I 

describe how my dissertation work compares with these representative works. 

IEEE 802.11 Mesh Network Performance  
 

Seo et al. in [6] evaluate the performance of the 802.11 MAC protocol in a wireless mesh 

network.  My work is similar to that of Seo et al. in that measurements are made of response 

variables such as throughput and delay under a variety of simulation scenarios.  Moreover, 

factors such as number of gateway nodes, number of users generating data traffic, and ranges 

of transmission and carrier sensing are varied, in order to measure the impact of such changes 

in factor values upon response variables. 

In contrast to my work, for which I employ statistical design of experiments 

approaches, Seo et al. use the traditional one-factor-at-a-time (OFAT) approach.  That is, 

each design point of theirs varies the value of a single factor variable, while maintaining 

fixed values for all remaining factors.  Results of the work done by Seo et al. in [6] 

correspond generally to my Stage I results; that is, network performance degrades with 

increasing traffic load, and improved performance may be realized by increasing the number 

of gateway nodes.  
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Unplanned 802.11b Mesh Network  
 
Bicket et al. in [7] study the performance of an 802.11b wireless mesh network, deployed 

with minimal planning or management in an urban environment.  Specifically, the target 

system of study is Roofnet, a community wireless network deployed in Cambridge, 

Massachusetts, which (at the time their paper was published) was comprised of 37 nodes 

located over a roughly four to six square kilometer area.  An important research goal of their 

work in this study is to combine the best characteristics of: (1) well-planned, highly-

coordinated, multi-hop networks; and (2) unplanned, loosely-connected, access point 

networks. 

Ease-of-deployment features of Roofnet include: use of omni-directional antennas, 

self-configuring software, and multi-hop routing that is link-aware [7].  Results of the 

evaluation by Bicket et al. in [7] suggest that performance of an unplanned 802.11b wireless 

mesh network is likely acceptable to users.  Specific conclusions made by Bicket et al. are as 

follows [7]: 

• Throughput and delay both are comparable to end-to-end characteristics of DSL, with 

an average throughput between nodes of 627 kilobits/second; 

• As the number of hops increases, throughput decreases; however, eight-hop routes 

average 160 kilobits/second; 

• Performance of Roofnet is not dependent upon any particular small set of nodes; and 

• Irrespective of the number of wired access points, Roofnet’s multi-hop mesh 

enhances both connectivity and throughput. 

 
A comparison between my work and the work done by Bicket et al. in [7] highlights 

an important similarity.  That is, the configurations of the preliminary designs in Stage I of 
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my work (see subsection 1.6.1) parallel somewhat the loosely-connected nature of Roofnet.  

Unlike the work done by Bicket et al., however, my work includes finding the traffic load 

and network size at which a specific performance metric is optimized. 

 

 CONTRIBUTION 

1 Comprehensive performance evaluation of multi-hop wireless mesh 
networks 

2 Empirical models that characterize the functional relationship between 
performance responses and system/network parameters (factors) 

3 Determine the levels of two statistically-significant factor variables at 
which four performance responses are optimized 

 
Table 1.1: List of contributions in this dissertation 

 

Two-Tier Urban Mesh Network 
 
Work done by Camp et al. in [8] offers an interesting contrast both to the work done by 

Bicket et al. in [7] and to my own work.  Among several research goals, Camp et al. study 

node placement, the findings of which suggest that grid placement lead to throughput levels 

that are up to 50% higher than randomly placed nodes, which, as I have discussed in 

subsection 1.8.2, is the node placement topology used in the MIT Roofnet.  This finding is a 

result of evaluating performance as impacted by factors such as the density of mesh nodes 

and random node placement [8]. 

In comparing my work in Stage I to the work done by Camp et al. in [8], I employ a 

loosely-connected grid node placement, with significant lack of network planning.  Stage II 

of my work, however, involves a well-planned, highly-organized, node placement strategy. 
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Contributions  
 

Table 1.1 lists my contributions to the state-of-the-art.  My contributions are as follows: (1) 

A comprehensive performance evaluation of multi-hop wireless mesh networks; (2) 

Derivation of empirical models that characterize the functional relationship between 

performance metrics and system/network parameters; and (3) Determination of the levels of 

two statistically-significant factor variables at which four performance responses are 

optimized. 

It is of special significance that my three research contributions form a “chain” of 

sorts, in that, with the exception of my third contribution, each is an antecedent event to 

subsequent contributions.  Thus, my first contribution leads directly to the starting point for 

my second contribution, the results of which set the stage for my third research contribution. 

Moreover, my work involves two stages, whereby the first stage is preliminary, with the 

second stage leading to the realization of my three research contributions. 

Dissertation Organization 
 
The remainder of this dissertation documents the details of my development of empirical 

models for and performance evaluation of multi-hop wireless mesh networks.  Chapter 2 

presents a survey of the literature for each of my contributions and also justifies my 

approach.  I then describe my use of statistical design of experiments and response surface 

methodology in Chapter 3.  The results of my dissertation research are discussed in Chapter 

4; these results directly address my research goals.  Finally, I discuss conclusions and future 

work in Chapter 5. 

 



 

 

CHAPTER 2 

LITERATURE REVIEW 
 

“People think that computer science is the art of geniuses 

but the actual reality is the opposite, just many people doing 

things that build on each other, like a wall of mini stones.” 

—Donald Knuth 

 
In this section, I present a survey of the literature for each of my three contributions 

to the state-of-the-art, listed in Table 1.1 of this dissertation.  Moreover, I justify my 

application of empirical modeling to multi-hop wireless mesh networks. 

My first contribution to the state-of-the-art is motivated by the rapid growth and use 

of multi-hop wireless mesh networks (WMNs), where performance is expected to 

approximate that of wired network infrastructures. In this context, systematic and efficient 

approaches are crucial for evaluating behavior and performance of multi-hop WMNs.  

Moreover, a comprehensive evaluation—at all levels of the protocol stack—would benefit 

the research community. 

My second contribution to the state-of-the-art is motivated by the extensive use of 

empirical modeling in many areas of science, engineering, and even agriculture.  In addition 

to my discussion highlighting the use and benefits of empirical modeling in wireless 

networks, I call attention to the importance of having insight about the nature and form of 

modeling, especially limitations that are inherently a part of all modeling efforts. 

My third contribution to the state-of-the-art is motivated by the heterogeneity that 

exists among the diverse environments within which multi-hop WMNs are deployed.  The 
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research literature suggests that, at the very least, traffic load impacts significantly network 

performance.  A set of powerful techniques by which performance response may be 

optimized is response surface methodology (RSM). 

Comprehensive Performance Evaluation 

IEEE 802.11  
 
Because empirical models describe the relationship between response variables and their 

factors, one may also glean insights about performance from such models.  Fortunately, 

considerable work has been done in the area of IEEE 802.11 wireless network performance.  

My work is related to, and is an extension of, these performance investigations. 

Crow et al. in [9] investigate IEEE 802.11 throughput performance via simulation, 

when all mobile stations generate asynchronous data traffic with equal intensity.  Simulation 

results are as follows: (1) the condition of the channel may negatively impact throughput 

performance; (2) RTS_Threshold (a tunable parameter, used to determine when RTS/CTS 

should be used) may negatively impact throughput performance due to collisions; (3) 

Fragmentation Threshold, which, like RST_Threshold, is a tunable parameter, may be useful 

in terms of reducing the effects of poor channel quality; and (4) a longer MAC Service Data 

Unit (MSDU) may lead to a more efficient level of throughput performance. 

Chhaya and Gupta in [10] evaluate the performance of the Distributed Coordination 

Function (DCF), which is the basic access method for the IEEE 802.11 MAC.  Specifically, 

Chhaya and Gupta examined both the throughput and fairness properties of the DCF in IEEE 

802.11 MAC.  Moreover, Chhaya and Gupta compared DCF against an RTS/CTS scheme.  

Their simulation results showed higher throughput with the DCF scheme than was realized 
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using the RTS/CTS scheme, if the load was small.  On the other hand, at higher loads, the 

RTS/CTS scheme provided higher throughput than did DCF. 

Shakkottai and Rappaport in [11] conclude that research strategies which have been 

used for wireline networks are inadequate for the unique issues found in wireless networks.  

Thus, they emphasize the importance of modeling network performance, particularly with the 

objective of understanding mixed traffic and service types over wireless networks.  My use of 

statistical experimental design increases the likelihood of statistically valid network 

performance modeling within certain upper and lower bounds.  Moreover, analyses of 

variance (ANOVA) figures of merit support my own work in allowing me to compare 

objectively the expected performance improvements that result from my proposed adaptive 

MAC protocol against the performance of comparable multi-hop WMNs that do not include 

my proposed adaptive MAC protocol. 

As indicated by Andersen et al. in [12], the properties of radio propagation determine 

the physical layer characteristics of most wireless networks; this affects the design and 

performance limitations of higher level network layers, including the MAC sublayer.  Their 

work in modeling radio propagation highlights, among other things, the importance of 

factoring in different physical environments (e.g., wireless networks in an urban setting as 

opposed to, say, a rural area). 

An interesting study was done by Royer et al. in [13], which addressed the question 

of whether the choice of MAC protocol has any effect on the performance of routing 

protocols.  Simulations were done using GloMoSim (a precursor to QualNet), whereby three 

routing protocols—Wireless Routing Protocol (WRP), Fisheye State Routing (FSR), and Ad 

hoc On-Demand Distance Vector (AODV)—and four MAC protocols—Carrier Sense 
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Multiple Access (CSMA), Multiple Access with Collision Avoidance (MACA), Floor 

Acquisition Multiple Access (FAMA), and IEEE 802.11 DCF 

(CSMA/CA/RTS/CTS/ACK)—are used in the simulations.  Their results suggest that 

selection of the MAC protocol does indeed impact the performance of the routing protocol; 

thus, this should be considered when doing performance comparisons among different 

routing protocols. 

Royer et al. in [14] attempt to find the optimum node density for ad hoc mobile 

networks that leads to maximal delivery of data packets.  Their results suggest that such a 

global optimum does not exist.  Instead, the node density should increase with increasing 

node speed. 

Broch et al. in [15] present both detailed and summarized performance results of 

packet-level simulations for four different multi-hop wireless ad-hoc network routing 

protocols: DSDV, TORA, DSR, and AODV.  Moreover, these simulations were done using 

the popular ns-2 simulator, to which they made “improvements.”  The purpose of their work 

in this paper was to model the behavior and performance of the aforementioned routing 

protocols. 

Jun et al. in [16] develop a calculation of the theoretical maximum throughput of 

IEEE 802.11 networks, which considered a variety of physical layer and MAC layer 

variations.  Moreover, Jun et al. apply their results by monitoring the link utilization of a 

particular IEEE 802.11 network.  An objective of their applying these results to an actual 

network is to demonstrate how their calculation of the theoretical maximum throughput of 

IEEE 802.11 networks may be generalized to both ad hoc and infrastructure networks. 
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Cross-Layering Issues 
 
Corson et al. in [17] make a two-fold claim concerning MANETs: (1) researchers and 

scientists should look to the existing fixed (wired) infrastructure as a starting point (or model) 

for integrating methods and approaches that actually work; and (2) developers must 

acknowledge that the “principle of strict protocol-layer separation” may need to be relaxed, 

in order to deploy a viable MANET design that overcomes extreme bandwidth limitations 

that are ubiquitous in the wireless medium.  As per my work in multi-hop WMNs, I believe 

that Corson et al. make a compelling case for increasing the two-way vertical communication 

between upper-layer protocols and lower-layer protocols, so that many of the aforementioned 

inefficiencies (as they put it) associated with peer or horizontal requirements can be removed.  

While Corson et al. acknowledge potential risks in not following the “traditional layered 

design” approach, they seem to do so half-heartedly, which suggests a somewhat strong bias 

toward cross-layering. 

Shakkottai et al. in [18] address issues that surround what they refer to as the “cross-

layer paradigm shift,” which they claim is well underway.  Of relevance to my work is their 

acknowledgment of the importance of performance modeling and evaluation of mixed traffic 

and service types in wireless networks.  Moreover, Shakkottai et al. recognize that such 

networks will likely be deployed in many diverse propagation environments, thereby 

supporting the necessity of employing viable techniques and approaches for evaluating these 

networks. 

Similar to Shakkottai et al. in [18], Kawadia and Kumar in [19] warn against taking 

what they refer to as “unbridled cross-layer design,” because the number of cross-layer factor 

interactions may potentially be large.  Moreover, while some interactions may be intended, 
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and therefore exploited, other interactions may be both unexpected and unintended.  

Therefore, cross-layer protocol architects should be cognizant of the likelihood of such 

interactions, and develop an understanding about their impact on system performance and 

behavior. 

 
IEEE 802.11 MAC Layer  
 
The IEEE 802.11 protocol and its related standards (e.g., b, g, e, etc.) dominate the wireless 

communications market.  This is subject to change, of course, as there is considerable 

ongoing work in wireless communications.  Still, even with new protocols, designers and 

architects should ensure seamless integration of their protocols with existing IEEE 802.11 

wireless infrastructures. 

Because a multi-hop WMN may be viewed in much the same way as a stationary ad 

hoc wireless network, the Distributed Coordination Function (DCF) access method is of 

direct relevance to my work; moreover, according to the original IEEE 802.11 standard [20], 

the implementation of Point Coordination Function (PCF) is optional.  Hence, I shall forgo 

any discussion about the PCF access method.  I should point out, however, that the literature 

has numerous sources that describe in detail the IEEE 802.11 DCF.  In particular, the 

interested reader may wish to read more about DCF in [20], [21], [22], and [9]. 

The MAC sublayer is concerned with, among other things, coordination of channel 

access among and between multiple wireless hosts.  Considerable insight about channel 

access methods and related challenges—particularly with respect to minimizing both the 

hidden terminal and exposed terminal problems—can be gleaned from Karn in [23] and 

Bharghavan et al. in [24].  Specifically, Karn in [23] describes how he extends the use of 

RTS and CTS packets in CSMA/CA to better handle the hidden and exposed terminal 
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problems, which he accomplishes via his proposed Multiple Access with Collision 

Avoidance (MACA) channel access algorithm. Bharghavan et al. in [24] extend Karn’s 

MACA RTS-CTS-DATA exchange by means of their proposed MACAW RTS-CTS-DS-

DATA-ACK exchange algorithm.  Unlike Karn, who merely proposed the idea of MACA, 

but without any sort of implementation, Bharghavan et al. implement both MACA and 

MACAW and compare the performances of the two.  According to Bharghavan et al. in [24], 

even with the additional overhead in MACAW, throughput is increased by over 37% with 

MACAW as compared to MACA.  

In my simulation work and empirical analyses, I employ an IEEE 802.11b wireless 

networking infrastructure.  The IEEE 802.11 MAC sublayer notwithstanding, I do not 

discuss the IEEE 802.11 protocol in detail (e.g., IEEE 802.11 architecture and physical 

layer).  There are many useful references concerning the IEEE 802.11 protocol; I would 

encourage the interested reader to consult the following, which I have found quite useful: the 

IEEE 802.11 Working Group website [20], Pahlavan and Krishnamurthy [25], Toh [26], and 

Crow et al. [9]. 

Slightly more than just a decade ago, Cox in [27] commented about the lack of real 

success (at that time) by “an IEEE standards committee, 802.11.”  While this sort of insight 

might today be considered somewhat laughable, it is not altogether unexpected, given the 

chaotic nature of the wireless medium.  Fortunately, in the ten-plus years since the formation 

of the IEEE 802.11 Working Group, many challenges and obstacles have been overcome, 

particularly as regards the IEEE 802.11 MAC sublayer.  

An excellent discussion about the IEEE 802.11 MAC sublayer is presented both by 

Pahlavan and Krishnamurthy in [25] and Crow et al. in [9]. Chandra et al. in [28] survey the 



 

23 

literature for discussions about MAC protocols.  In addition to describing these protocols, 

Chandra et al. compare them based upon three classifications: network architecture, 

performance, and support for multimedia traffic.  Of particular interest to me is the inclusion 

and discussion of performance metrics by Chandra et al. in [28]; two of these are especially 

relevant to my work: delay and throughput. 

Multi-hop Wireless Mesh Networks  
 
Because my work focuses on the performance evaluation and empirical modeling of multi-

hop WMNs, I include here a discussion about related work in performance studies of such 

networks. Interesting work in evaluating both the performance of wireless networks in 

general, and wireless mesh networks in particular, is described by Gupta and Kumar in [29] 

and Jun and Sichitiu in [30], respectively.  The latter work done by Jun and Sichitiu in [30] is 

of special significance, since it addresses the problem of determining the exact capacity of a 

WMN.  Their results show that the throughput for each mesh node decreases as O(1/n), 

where n is the total number of nodes in the mesh network. 

 
Solutions 
 
I include a brief discussion about and examination of currently available (and deployed) 

multi-hop wireless mesh network solutions for the purpose of establishing additional context 

for my dissertation work.  In this section, I discuss multi-hop WMN solutions by Cisco 

Systems, Kiyon, Nortel Networks, and Tropos Networks.  Along with this, I shall, of course, 

describe features that are unique to each of these solution providers’ approaches.  A common 

thread among these four multi-hop WMN solutions—and one that is crucially important to 

their success—is that these networks are designed to integrate seamlessly with existing 
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802.11 wireless networks.  Examples of such 802.11 wireless networks include those found 

in many public venues such as coffeehouses, school and university campuses, apartment 

complexes, and residential dwellings, to name a few. 

 
Cisco Wireless Mesh Networking Solution 
 
Cisco Systems is a well-known and highly-respected company that continues to provide the 

state-of-the-art in wired and wireless networking solutions.  Consistent with its ongoing 

design and development of such infrastructures, Cisco Systems (http://www.cisco.com) has 

developed a wireless mesh networking solution that exploits the fast-growing (and relatively 

inexpensive) Wi-Fi client base [31].  The Cisco Systems Wireless Mesh Networking Solution 

purports to integrate well with existing Wi-Fi (802.11) wireless networks.  My empirical 

work deals exclusively with 802.11b wireless networks.  Unlike the dual-radio approach 

adopted by Cisco Systems, however, I employ a single-radio approach. 

 
Kiyon Autonomic Network 
 
In contrast to the solution developed by Cisco Systems, Kiyon’s Autonomic Networking 

Technology (http://www.kiyon.com) is self-managing, which employs a cross-layer design 

that includes: (1) a modified MAC protocol that purportedly addresses the problem of 

throughput degradation, inherent in most multi-hop wireless networks; and (2) an enhanced 

ad hoc on-demand routing protocol that integrates a multiple-attribute metric for both 

topology discovery and route selection [32].  Moreover, Kiyon’s cross-layer design facilitates 

improved TCP performance, since the modified MAC protocol informs TCP when packet 

loss is due to link failure, as opposed to congestion within the channel. 
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Kiyon’s entry into the wireless mesh networking market is motivated by the 

increasing appeal of interconnecting existing IEEE 802.11 networks, using a wireless 

backhaul.  It is this interconnection of IEEE 802.11 access points and routers that forms a 

mesh.  As I have already suggested, however, forming a mesh using a wired infrastructure is 

both costly and resource-consuming (both in terms of time and labor requirements). 

 
Kiyon Autonomic Networks—MAC: An unintended consequence of wireless mesh 

networks built upon IEEE 802.11 technology is the impact on both throughput and quality 

due to multiple hops.  Like Cisco Systems, Kiyon exploits high-throughput, self-managing 

communications to circumvent throughput and quality problems.  Kiyon employs a novel 

approach for overcoming the throughput degradation problem usually present in multi-hop 

wireless mesh networks.  Rather than attempting to work around this problem, Kiyon 

exploits the use of available non-overlapped channels by employing them either 

simultaneously or alternatively.  Specifically, Kiyon has developed a distributed TDMA 

MAC protocol that implements an automatic channel selection and fast switching algorithm 

in the MAC layer.  Kiyon’s multi-channel approach purportedly results in higher link 

throughput. 

 
Kiyon Autonomic Networks—Routing: Kiyon Autonomic Networks mesh solution uses a 

novel ad hoc on demand routing protocol called Kiyon Wireless Attribute Routing Protocol 

(WARP), which, supported by a cross-layer design, uses attributes such as signal strength, 

SNR, and round-trip delay, among others, as the basis for routing decisions.  Moreover, 

WARP works with both WARP-enabled and standard 802.11 clients, which facilitates easy 

deployment with existing 802.11 networks. 
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Kiyon Autonomic Networks—Cross-layer design: In addition to the purported benefits of 

Kiyon’s cross-layer design, a key element is the sharing of information between the MAC 

and TCP layers concerning packet losses.  Specifically, if packet losses are the result of 

channel errors or link failures, the Kiyon MAC informs TCP, in which case the standard TCP 

exponential backoff that accompanies congestion detection is not employed.  This 

information-sharing should, presumably, lead to a much-improved TCP implementation, as 

compared to the typical TCP. 

 
Kiyon Autonomic Networks—Architecture: The network architecture of the Kiyon 

Autonomic Network is very similar to the architecture illustrated in Figure 1.1 of this 

dissertation.  The principal difference is that several Kiyon routers form a broadband 

backbone of the network.  Additionally, each Kiyon router contains both WARP and the 

Kiyon MAC, along with a standard IEEE 802.11 radio.  According to the available 

information posted on Kiyon’s web site, this architecture gives clients several options by 

which the network may be accessed. 

 
Nortel Wireless Mesh Network Solution  
 
According to information by Nortel Networks in [33], its Wireless Mesh Network solution 

exploits the growing 802.11 wireless network consumer base, bringing existing “hot spots” 

together to form a Community Area Network, or CAN.  A CAN is a set of wireless access 

points (APs) that form a mesh, which is self-organizing, auto-configuring, self-healing, and 

uses multi-hop, wireless backhaul from a wired broadband connection point. 
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Tropos Networks MetroMesh Architecture  
 
The wireless mesh networking solutions developed by Tropos Networks each build upon the 

idea of combining the ubiquitousness of cellular networks with the relative simplicity and 

speed of Wi-Fi networks.  My discussion of Tropos Networks solutions is based upon 

information found in [34]. 

 
Tropos Networks MetroMesh Architecture—Throughput: Tropos Networks solutions 

purportedly deliver consistent symmetric throughput rates that exceed 1.0 Mbps to Wi-Fi 

clients.  Tropos Networks accomplishes this using its proprietary Predictive Wireless Routing 

Protocol™, or PWRP, implemented as part of its MetroMesh routers, which dynamically 

optimizes the data path between client and server.  Specifically, PWRP adapts to changes in 

the wireless channel conditions, as well as new backhaul routes that come available due to 

the addition of MetroMesh routers.  This adaptation feature is an important aspect of self-

organization, inherent in the Tropos MetroMesh architecture.  A further benefit from PWRP 

optimization of the client-server data path is that a constant routing overhead is maintained, 

irrespective of the whether the network scales up in size or whether it scales down in size. 

Two additional features of PWRP include: (1) the use of predictive algorithms, used 

to select the “best” multi-hop paths available from among the myriad paths in the mesh; and 

(2) the virtual elimination of all single points of failure, a result of its fully-distributed 

architecture. 

Confidence in Simulations  
 
In chapter 1, I raised the point concerning the use of computer simulation studies instead of 

experimentation.  The most probable reason for the wide use of simulators in multi-hop 
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WMN and MANET research is that deployment of actual large networks may not be 

realizable, particularly if hundreds of nodes are needed [35].  Researchers should not forgo 

the ease with which simulators support evaluation of significant changes imposed upon a 

network environment [36].  Additionally, I alluded to evidence from the literature which 

suggests that the use of simulation studies may in fact be more useful than experimentation, 

due mainly to the degree of control over parameters and the environment available in a 

simulator.  According to Dodig-Crnkovic in [37], modern computing allows researchers to 

simulate considerable phenomena, particularly non-linear phenomena.  Because my 

empirical work relies heavily on results from QualNet simulations, I shall discuss related 

work in this area. 

Network simulations are often used instead of “live” experimentation, mainly because 

testbeds with the necessary configuration are not readily available. (Studies of wireless 

networks with several dozen nodes—hundreds, perhaps—come to mind.)  Suppose, however, 

that an acceptable testbed were available, the issue of experiment repeatability remains.  

Unlike experimental “real world” networks, such experiment repeatability is, in theory, 

virtually assured in a simulation environment, since the experimenter has “absolute” control 

over the system being simulated.  Moreover, experimentation with a “live” network is both 

expensive and difficult to accomplish [38]. 

Pawlikowski et al. in [39] discuss the use of simulation studies in telecommunications 

networks.  They suggest that there is growing concern by many in the scientific community 

over the validity of such simulation studies.  Using survey results from 2200 published 

scientific papers, as well as anecdotal evidence, Pawlikowski et al. in [39] argue that the 

question of credibility of simulation studies of telecommunication networks is both valid and 
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legitimate.  Thus, Pawlikowski et al. in [39] posit two necessary conditions for a credible 

telecommunication networks simulation: (1) Appropriate pseudo-random number generators 

of independent uniformly distributed numbers must be used; and (2) Analysis of simulation 

output data should be based upon an appropriate methodology, as well as identification of 

and discussion about the final statistical errors associated with the results. 

Kurkowski et al. in [40] extend the work done by Pawlikowski et al. in [39], with a 

particular focus on MANET simulation.  The goal of the work done by Kurkowski et al. is to 

heighten awareness of the apparent lack of credibility of MANET simulation results among 

the research community.  In their study, Kurkowski et al. in [40] analyze MANET simulation 

studies published in the Proceedings of the ACM International Symposium on Mobile Ad 

Hoc Networking and Computing (MobiHoc) from 2000 through 2005, focusing on four areas 

of credibility in MANET research: (1) repeatability; (2) lack of bias; (3) rigor; and (4) 

statistical reliability.  The results of their study suggest that significant deficiencies exist in 

MANET simulations for the four areas of credibility on which their work was focused.  In 

addition to their emphasis on addressing these four areas of credibility for MANET 

simulation studies, Kurkowski et al. discuss briefly tools available to researchers that might 

aid in the development of credible MANET simulation studies [40]. 

Kotz et al. in [41] describe their detailed study of wireless assumptions that compared 

experimental against simulation results, using the same routing protocols.  The purpose of 

this study was to show that assumptions used in most MANET simulation studies lead to 

results that differ substantially from reality.  Moreover, similar to Pawlikowski et al. in [39] 

and Kurkowski et al. in [40], Kotz et al. in [41] surveyed articles over a multi-year period 

that involved simulations (MobiCom and MobiHoc proceedings, 1995 through 2003).  The 
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results of their survey showed that the number of “Simple” and “Flat Earth” models far 

exceed the number of “Good” models [41].  Kotz et al. list the following axioms that usually 

accompany “Simple” and “Flat Earth” models [41]: 

 
• the world is two dimensional; 

• the transmission area of a radio is roughly circular; 

• all radios have equal range; 

• if I can hear you, you can hear me; 

• if I can hear you, then I can hear you perfectly; and 

• signal strength is a simple function of distance. 

 
In sum, results of the comparison between experimental results and simulation results 

offer compelling evidence against the validity these axioms [41]. 

A study similar to that of Kotz et al. in [41] is a comparative study done by Lucio et 

al. in [36], whereby outputs from two popular network simulators, OPNET Modeler and NS-

2, were compared against the output for a network testbed.  Their objective in doing so was 

to offer researchers a guide in performing packet-level network simulations [36].  If indeed 

simulation tools are used by such researchers, then accuracy of simulation relative to a real 

network is paramount.  It is important to note that Lucio et al. are not comparing between the 

two network simulators; rather, they want to determine the accuracy of each.  A summary of 

their results is as follows: 

 
• Both simulators accurately modeled testbed behavior for CBR traffic; 

• Neither of the simulators accurately modeled testbed behavior for FTP traffic, using 

default simulation parameters; and 
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• When simulation parameters were adjusted, OPNET Modeler seemed to be more 

accurate than did NS-2. 

 
One final point emphasized by Lucio et al. in [36] is that configuring the network 

simulators and the testbed for such comparisons is indeed complicated. 

The literature supports strongly the idea that researchers involved in wireless 

communication networks usually decide upon a particular simulator on which to do their 

work.  That is, because of time and resource constraints, the researcher is unable to compare 

among the various discrete event simulation tools available.  Cavin et al. in [35] undertake 

such an endeavor.  They compare simulation results of a flooding algorithm among three 

simulators: OPNET Modeler, NS-2, and GloMoSim (the precursor to QualNet).  Cavin et al. 

measure three performance responses [35]: (1) time delay, which is the average time required 

by a packet to reach a node n; (2) success rate, which is the measured difference between the 

expected and actual number of messages received at node n; and (3) overhead, which is the 

sum of duplicated packets received by node n.  Moreover, the parameters were the same for 

all three simulation environments.  The results collected from the three simulation 

environments differed significantly from one another.  Cavin et al. identify possible causes of 

such differences; these include the following [35]: 

 
• Differing physical layer implementations; 

• Implementation of a new protocol is itself difficult to transpose from one simulator to 

another; and 
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• Given that successive releases provide bug fixes, it is reasonable to assume that 

MANET simulators still contain errors or incompatibilities to the IEEE 802.11 

standard. 

 
Cavin et al. in [35] conclude that a hybrid approach that involves simulation of only 

the MAC and physical layers, with the upper layers executed on, say, a cluster of machines, 

is preferred. 

Despite problems and pitfalls usually associated with network simulations, use of 

such simulations is likely to continue.  Heidemann et al. in [42] offer guidelines that may 

increase the validity of simulation studies.  Their guidelines are the result of a workshop held 

in May 1999 by the National Institute of Standards and Technology (NIST) and the Defense 

Advance Research Projects Agency (DARPA) to discuss network simulation validation.  

Heidemann et al. in [42] emphasize the point that validation is required both in simulation 

and laboratory (that is, experimental) environments.  Moreover, validation as a process is 

multi-level, from the standpoint that its degree is a function of the question or questions 

being posed by the researcher (see [42] and [43]).  A summary of the recommendations made 

during the aforementioned workshop is as follows [42]: 

 
• Simulation results should be compared against results from laboratory experiments, 

analytical models, and other, independently contrived results; 

• Visual representations, usually by way of animation, may aid in the identification of 

erroneous behavior by the system; 

• Because real systems operate in real time, asynchronization (among, say, individual 

wireless nodes) should be injected within the simulation runs; 
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• Reproducibility of simulations and their results is an imperative; 

• Comparative simulation studies are easier to validate than simulation studies that 

emphasize absolute system behavior; and 

• Introducing artificial boundaries into the model (e.g., an artificial physical topology) 

may introduce inaccuracies. 

 
Interesting work has been done by Judd and Steenkiste, described in [44], in which 

they have developed a wireless network emulation tool that utilizes real MAC and PHY 

layers, while supporting real applications.  They claim that their emulator allows for realistic 

and repeatable wireless experimentation, because their emulator provides accurate wireless 

signal transmission, propagation, and reception in an emulated physical space [44].  The 

paper by Judd and Steenkiste in [44] focuses on the purported success with which they have 

been able to conduct sophisticated wireless experiments that suggest considerable accuracy. 

A helpful guide to designing and working with viable simulation experiments is 

presented by Kleijnen et al. in [45].  Their focus is on statistical DOE as it may be applied to 

simulation studies.  Of particular importance is their discussion of a “toolkit” of designs for 

experimenters who have limited DOE expertise and experience. 

A number of significant challenges remain with the use of network simulation studies. 

Indeed, from the foregoing discussion, one might be tempted to concede that results from 

network simulation studies are tenuous at best.  By extension, it follows that: (1) network 

simulation studies should be avoided; and (2) experimentation via wireless network testbeds 

should be the only acceptable alternative.  Such a conclusion, however, may be both 

problematic and incorrect.  From my review of the literature, I am confident that simulation 
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studies, if done correctly, can provide important insights from analyses of their results; 

hence, justification for my use of simulation studies in my own work. 

Empirical Models 

Scientific Investigation and Empirical Models 
 
The main purpose of scientific investigation is to lead the researcher ever closer to truth 

regarding physical reality.  This requires observation of the physical phenomena under 

investigation.  Merely observing these phenomena, however, is insufficient; models—

empirical models, to be more precise—must be developed. 

Gauch in [46] states that models describe the reality being investigated; in other 

words, models are not the reality being investigated.  This point may seem patently obvious 

and not worth mentioning; however, I wish to amplify Gauch’s point about models and 

reality, as I intend not to succumb to the temptation to place too great an emphasis on the 

models.  A supporting perspective to Gauch’s assertion is taken from Giere in [47], who 

states that representing reality is done by the scientist, not by the model itself. 

Berg in [48] claims that the scientist and researcher should remain cognizant of the 

inescapable subjectivity in the interpretation of empirical data.  Like Giere, Berg’s point 

gives rise to the likelihood that divergent empirical models could be developed by different 

researchers—even if the same empirical data are used.  Thus, the models I develop through 

my work: (1) apply to my stated research problem; (2) are within a defined scope; and (3) are 

subject to my interpretation of the empirical results. 

From the preceding, an important objective for me is to develop empirical models that 

correspond to reality, not copy reality—an objective supported by Meadows in [49], who 

says that there is a virtual nonexistence of isomorphism between models and the reality they 
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describe.  From the empirical models I develop, I seek to gain insights about the phenomena 

under study—in this case, multi-hop WMNs. 

In my approach to empirical model development, I employ the principle of 

parsimony, or simplicity.  The literature supports strongly such parsimonious empirical 

modeling.  A caveat to my development and use of parsimonious empirical models hinges 

around a simple but compelling assertion made by George E. P. Box, the noted statistician 

and scientist, who claims that all models are wrong, but some may be useful [3].  

George E. P. Box is considered by both statisticians and scientists alike as the 

intellectual progeny of Sir Ronald A. Fisher, the man credited with conceiving and 

developing statistical design of experiments (DOE).  It is worth noting that Sir Fisher was the 

father-in-law of Box, who was married to Sir Fisher’s daughter.  I mention this point merely 

to suggest the very real possibility that both Box and Sir Fisher had, on more than one 

occasion, various discussions about empirical modeling in general and statistical DOE in 

particular.  In any case, Box in [3] makes the point that simple but illustrative models are the 

signature of a capable scientist; he further amplifies this point by stating that 

“overelaboration” and “overparameterization” are the marks of mediocrity in scientific 

research.  Thus, I avoid the latter category. 

Gauch in [50] makes the point that most statisticians understand the increase in both 

accuracy and efficiency that result from parsimonious modeling; Gauch goes on to say that, 

unfortunately, very few scientists recognize this important opportunity.  Feuer in [51] says 

that the greatest of scientists hold the view that the laws of nature are fundamentally simple, 

which is the main reason for their successful employment of the principle of simplicity 

(parsimony).  Beck in [52] aligns himself with the idea of parsimonious modeling, but 
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cautions against what he calls “an overly conscientious use of the principle of parsimony,” as 

this might lead to models that are too narrow. 

Statistical Design of Experiments  
 
Factorial design offers the researcher a mechanism by which empirical models may be 

developed that provide considerable information with minimal time and resource 

requirements.  While factorial design approaches have been used for some time, and by 

researchers in many different fields, a review of the literature suggests that the vast majority 

of empirical model development is done using the “one-factor-at-a-time” approach (OFAT), 

which, unfortunately, is inferior to factorial design, both in terms of accuracy and efficiency.  

An excellent tutorial on statistical DOE for simulation is given by Kelton and Barton in [53]. 

Empirical models developed using factorial design techniques present the researcher 

with equations that describe the functional relationship between response variables and 

factors that affect them.  It turns out that the empirical models contrived using factorial 

design techniques are in fact least-squares regression models.  Insights gleaned from least-

squares regression models are more fruitful when the researcher doing the analysis has some 

understanding about the process upon which least-squares regression is based. 

Barrett et al. in [54] apply statistical design of experiments and analysis of variance 

(ANOVA) to ad-hoc networks, in order to characterize the interaction between routing and 

MAC protocols.  The results of their simulation studies and statistical analyses suggest that 

there is no single MAC/routing protocol combination that outperforms all others.  Rather, the 

fact that interaction exists suggests that protocol design should consider the combination of 

routing and MAC protocols as operating in tandem, in terms of the performance impact on 

the system. 
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It is one thing to contrive empirical models that describe the relationship between 

responses and the factors that affect them, and quite another thing to ascertain such attributes 

as validity, accuracy, and reliability of such models.  Analysis of variance, or ANOVA, 

offers the researcher figures of merit (or merit functions, as they are sometimes called), by 

which the aforementioned attributes may be determined.  Usually, the ANOVA is presented 

as an ANOVA table.  

Analysis of variance was developed by Sir R. A. Fisher, whom I have previously 

mentioned, and who is generally considered as the “father” of modern experimental design.  

Most experimental results exhibit variation among the data, the sources of which come from 

variance between treatments and variance within treatments.  Analysis of variance helps the 

researcher determine whether the variability is statistically significant, or, if not, then perhaps 

small enough such that chance is the probable explanation for variability [46]. 

Application of ANOVA to the study of interaction between network protocols, 

topology, and traffic, was done by Barrett et al. in [55].  Their objective was to empirically 

characterize the interaction effect between the routing layer and the MAC layer in wireless 

radio networks.  The results of their statistical analysis and application of ANOVA led to 

their concluding that different combinations of routing and MAC protocols lead to varying 

performance under varying topology and traffic conditions.  The significance of their work to 

my own work is the emphasis on identifying and measuring factor interaction. 

Perkins et al. in [56] apply statistical DOE to the study of the behavior and 

performance of ad hoc networks.  In their study, Perkins et al. evaluated the impact of five 

factors—node speed, pause-time, network size, number of traffic sources, and type of routing 

(source versus distributed)—on three performance responses—throughput, average routing 
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overhead, and power consumption.  Their study was the catalyst for my first design, the 

details of which are described by Totaro and Perkins in [5], and upon which my discussion 

about my first design is based, included in chapter 3 of this dissertation. 

A similar study was done by Vadde and Syrotiuk in [57], whereby statistical DOE 

was used to study the impact of factors and their interactions on service delivery in mobile ad 

hoc networks.  Their results suggest that for average delay, the MAC protocol and its 

interaction with the routing protocol are the most significant.  Of particular relevance to my 

work, however, is their conclusion that statistical DOE and ANOVA offer powerful tools by 

which simulation results may be analyzed and evaluated, such that main effects and 

interaction effects may be identified. 

Statistical DOE involves many different techniques; I describe my application of 

these tools in chapter 3 of this dissertation.  I should add that four sources from the literature 

in statistics are especially important to my methodology and results; these sources are: Box 

[4], Jain [58], Law [59], and Montgomery [60]. 

Response Surface Methodology  
 
Response surface methodology (RSM) has been used successfully in various domains, not 

the least of which includes agriculture, the chemical industry, and pharmaceutical drug 

development.  Excellent references that describe these techniques include Myers and 

Montgomery in [61], and Box and Draper in [62]. For a brief overview of RSM, see Angun 

et al. in [63]. 

Interestingly, application of RSM to computer communications is relatively new and 

sparse.  However, a recent paper by Vadde et al. in [64] demonstrates that RSM can be 

successfully applied to the domain of networking.  Specifically, their work is applied to 
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mobile ad hoc networks (MANETs), whereby they use RSM to optimize protocol interaction 

found by factor screening.  Moreover, Vadde et al. employ RSM to optimize multiple 

responses, which is similar to my work, described in this dissertation. 

Along with [61] and [62], helpful descriptions about RSM can be found in both [4] 

and [60].  Moreover, these two references present the use of RSM by way of several 

excellent examples.  As with statistical DOE, I discuss the application of RSM in chapter 3. 

 



 

 

CHAPTER 3 

METHODOLOGY AND DATA ANALYSIS 
 

“For every complex question there is a simple and wrong solution.” 

—Albert Einstein 

 

Stage I: Preliminary Designs 
 
In chapter 1 of this dissertation, I included a very brief conceptual description of my work in 

Stage I, which involves experimental designs that I view as preliminary to subsequent 

comprehensive designs.  My decision to employ a two-stage approach is the result of Box’s 

“25% Rule,” which says that no more than one-quarter of an overall design effort should be 

expended in first designs [4].  Within Stage I, I employ a two-phase approach: (1) first 

design; and (2) expanded design.  

The “first design” phase has a limited factor space.  The motivation for the 

experimental design work done in this first phase is to whether a systematic design of 

experiments (DOE) strategy can be used to analyze network system and protocol 

performance, thereby leading to more objective conclusions valid over a wide range of 

network conditions and environments [5].  Results from this first design seem to support the 

use of statistical DOE for empirical modeling. 

The “expanded design” phase involves a larger factor space than was used in the “first 

design.”  Moreover, I employ fractional factorial design to: (1) develop insights about the 

behavior and performance of multi-hop WMNs; and (2) eliminate factors that have little or 

no impact on responses.  Unlike full factorial designs, which structure experiments whereby 

all combinations of factors and their high and low values form the design matrix, fractional 
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factorial designs highlight main effects of factors upon response variables.  This leads to 

fairly expedient (and efficient) factor elimination, which is very important in the use of 

statistical DOE. 

Stage I serves as the foundation upon which Stage II shall be built.  Indeed, the 

motivation to formulate Stage II is a direct result of the findings from Stage I work.  I have 

completed both phases of Stage I, the results of which should prove useful as I employ 

comprehensive designs and response surface methodology in Stage II. 

Motivation 
 

Scientists and researchers have for years followed what is commonly referred to as 

the “one-factor-at-a-time” (OFAT) approach as a means for developing empirical models that 

show the functional relationship between a response and one or more factors that affect it.  

Suppose, for example, that we wish to quantify the effects of network size and traffic load 

upon, say, throughput.  The OFAT approach would have us first vary network size, while 

holding traffic load constant, and measure the effect upon throughput from doing so.  We 

would next take this measured effect and use its value for network size, then vary traffic load, 

with the objective of measuring its effect upon throughput. 

The preceding description of the OFAT approach appears reasonable, and we might 

readily accept that the functional relationships indicated are accurate.  Unfortunately, while 

the OFAT approach may explain main effects by factors upon the response, what this 

approach does not do is explain whether two-way factor interaction effects are present.  That 

is, it is possible that neither factor alone has a statistically-significant impact on the response; 

however, varying both factors simultaneously might indeed result in a statistically-significant 

effect on the response, which indicates the presence of factor interactions. 
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In addition to completely ignoring two-way factor interaction effects, problems with 

the OFAT approach are further exacerbated as additional factors are included for analysis.  It 

goes without saying, then, that applying the OFAT approach becomes increasingly more 

confusing as we add factors, since we must run experiments for all possible values of all 

factors, while at the same time holding non-varying factors at fixed levels.  Today’s scientists 

are quite fortunate in that there are a powerful set of techniques that are straightforward and 

offer considerable analytical power—these techniques are referred to collectively as 2k 

factorial designs. 

First Design 
 

Most of the material in this subsection comes directly from Totaro and Perkins [5], of which 

I was co-author1.  Subsequent references to “we” and “our” are intended to highlight the 

collaborative nature of our work in [5].  Moreover, our work in [5] served as a significant 

starting point for me in applying statistical DOE and response surface methodology to the 

empirical study of multi-hop wireless mesh networks.  Earlier, I made the point that multi-

hop wireless mesh networks may be viewed as stationary ad-hoc wireless networks.  Our 

application of statistical DOE to mobile ad-hoc networks as discussed in [5] can be 

generalized for subsequent experimental design work I undertake as it relates to my 

prospectus. 

                                                 
1 This work is based on an earlier work: Using Statistical Design of Experiments for Analyzing Mobile Ad Hoc 
Networks, in Proceedings of The 8th ACM International Symposium on Modeling, Analysis and Simulation of 
Wireless and Mobile Systems, MSWiM ’05, © ACM, 2005, http://doi.acm.org/10.1145/1089444.1089472. 
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Statistical DOE  

To yield objective conclusions, an experimental evaluation should comprise two key and 

interrelated components: (1) the experimental design, which refers to the process of planning 

the experiment so that data can be collected in a manner feasible for statistical analysis; and 

(2) the actual statistical analysis of the data [4, 60].  Our aim in [5] was to provide a brief 

overview of statistical design of experiments (DOE), while introducing the specific 

experimental design and analysis techniques used. 

 
Terminology  

Before I discuss our experimental strategy in [5], it would be useful to define several standard 

statistical DOE terms used throughout the remainder of my prospectus [58]. 

 
• Factors: The variables that affect the response variable. Factors may be classified as 

primary, secondary, or constant, depending on their use in an experiment design. 

• Levels: The values that a factor can assume are called its levels. 

• Response Variable: The measured performance of the protocol or system under study. 

• Design: The experimental design specifies the number of experiments, the factor level 

combinations for each experiment, and the number of replications of each 

experiment. 

• Replication: This refers to the process of repeating an experiment or set of 

experiments. 

• Main effects: Intuitively, the main effect of a factor refers to the average change in a 

response variable produced by a change in the level of the factor. 
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Table 3.1: First Design: Experimental Factors 

 
• Interaction effects: Two factors interact if the performance response due to factor i at 

level m depends on the level of factor j. In other words, the relative change in the 

performance response due to varying factor i is dependent on the level of factor j. 

 
Designing the Experiment 

Step l.  Defining the experimental objectives.  Our underlying goal of the work done in [5] 

was to demonstrate the effectiveness of a statistical DOE strategy when evaluating the 

performance of mobile ad hoc networking systems or protocols.  To this end, the specific 

objectives of our experiments were to quantify the main and interactive effects of a subset of 

potentially influential factors on the performance of ad hoc networks.  Using these effects, we 

developed empirical models, which could then be used to predict performance of the ad hoc 

network over the range of values examined in our experimental design. 

Step 2.  Selecting the factors (and their levels).  The next step in the experimental design 

process is selecting the potentially influential factors.  In practice, numerous factors may 

impact the performance response of an ad hoc networking system. Since our overarching 

goal in [5] was only to illustrate the effectiveness of the statistical DOE strategy, in our 

preliminary work, we analyzed only a subset of five factors, while holding all other factors 

constant.  Table 3.1 shows the factors studied in this first design. 
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I next provide our justification for the factor levels (values) used in [5].  Average 

number of neighbors is the average number of single-hop nodes within transmission range of 

any arbitrary node in the network.  This can be considered a measure of network density and 

is expected to influence network connectivity, routing overhead, MAC contention, and 

source-destination path length, thereby influencing the performance responses.  For the 

average number of neighbors factor, we considered two levels: strongly connected 

(7 neighbors2) and weakly connected (3 neighbors).  Node mobility, which is measured as the 

average node speed, will impact the frequency of topology changes.  We also considered 

traffic load, which is measured as the percentage of nodes acting as source traffic generators.  

Network size3, measured as the number of nodes in the system, will impact the path length 

and route discovery time, which could influence overall system performance.  Finally, we 

considered the medium access control protocol as a primary factor.  We investigated two 

levels: the IEEE 802.11 DCF with the optional RTS/CTS handshake and the IEEE 802.11 

DCF without RTS/CTS handshake.  Research results show that the RTS/CTS handshake is 

useful in relatively static one-hop wireless networks.  However, it is not clear what effect the 

RTS/CTS handshake will have in a multi-hop wireless environment with frequent topology 

changes where nodes move in and out of contention areas arbitrarily. 

Step 3: Selecting the response variables.  We considered two performance responses, each 

of which relates directly to the ability of the system to meet specific quality of service 

requirements.  The packet delivery ratio is defined as the number of packets delivered to a 

destination divided by the number of packets actually transmitted.  End-to-end delay is the  

                                                 
2 It has been suggested by Takagi and Kleinrock in [65] and Royer [66] that throughput performance is optimal 
when the average number of neighbors is between six and eight neighbors. 
3 The terrain size was adjusted appropriately to maintain the required network density or average neightbors.�
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Table 3.2: Design Matrix for 25 Factorial Design 

 
application layer end-to-end delay, which includes all processing, queuing, and transmission 

delays at each node along the path. 

Step 4.  Selecting the appropriate design.  We used a 2k r factorial design.  The 2k r 

factorial design technique considers k factors, where each factor has two distinct levels (or 

values).  For simplicity and computational purposes, it is often useful to code the factor 

levels as a + or − level, as shown in the design matrix in Table 3.2.  The design matrix  

shows all possible combinations of factor levels (called design points).  Each design point 

corresponds to a simulation scenario, which is replicated r = 5 times, in our experiments.  
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The response values for the performance metrics (i.e., packet delivery ratio and end-to-end 

delay) are also included in Table 3.2. 

Step 5.  Simulation and data collection.  Our simulations were carried out using QualNet, a 

network modeling tool developed by Scalable Network Technologies.  In order to obtain 

results that approximate an actual MANET, we ran each of the 32 simulations five times, 

after which we computed the average of the five runs for each design point.  This results in a 

total of 160 simulation runs (32 design points × 5 runs each).  Each simulation experiment 

was executed for 320 seconds.  Formally speaking, our approach is a 25 5 factorial design, 

which implies there are five factors, each at two levels, and the experiment is repeated five 

times.  In addition to the five aforementioned factors that were measured in this study, 

several other potentially influential factors were held constant.  All nodes have a transmission 

range of 250 meters.  The traffic sources were all constant-bit-traffic generators transmitting 

512-byte UDP packets at a rate of 2 packets/second.  The Location-Aided Routing (LAR) 

protocol was used as the routing protocol.  The channel propagation model is based on the 

free-space model with a channel capacity of 2Mbps.  The random waypoint mobility model 

is used to model mobility, with a pause-time of 25 seconds. 

Step 6: Computing the main and interactive effects.  Recall that we are interested in 

analyzing the main and interactive effects that factors have on specific response metrics.  For 

clarity, we illustrate a simple approach for estimating main and two-factor interaction 

effects [58].  Let us consider the 22 factorial design shown in Table 3.3, with factors x1 and x2 

for which we are interested in quantifying their effect on the response metric y.  Notice in 

experiments 1 and 2 we vary x1 from its − level to its + level while holding x2 at its − level.  

In both cases, we obtain values for the response metric y.  Similarly, in experiments 3 and 4  
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Table 3.3: Example Experimental Data 

 
we vary x1 from its − level to its + level while holding x2 at its + level.  As before, we obtain 

values for the response metric y.  We can express the functional relationship y(x1, x2) using 

the following effects model: 

 
y = �0 + �1x1 + �2x2 + �12x1x2                        (3.1) 

 
where �0 is the average response over all simulation runs, �1 and �2 represent the main effects 

of x1 and x2, respectively, and �12 represents the interactive effect of factors x1 and x2, 

respectively 

Substituting the four response observations y1, y2, y3, and y4 (one for each design 

point in a 22 design matrix) and the coded values for each factor in Equation 3.1, we have  

 
y1 = �0 − �A – �B + �AB,                         (3.2)  

 
y2 = �0 + �A – �B – �AB,                        (3.3)  

 
y3 = �0 − �A + �B – �AB,                         (3.4) 

 
and  

 
y4 = �0 + �A + �B + �AB.                         (3.5)  
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Solving Equations 3.2, 3.3, 3.4, and 3.5 for �i’s, we have  

 
�0 = 1/4(y1 + y2 + y3 + y4),                        (3.6) 

 

�1 = 1/4(−y1 + y2 − y3 + y4),                        (3.7) 

�2 = 1/4(−y1 − y2 + y3 + y4),                        (3.8) 

 
and 

�12 = 1/4(y1 − y2 − y3 + y4).                               (3.9) 

 
 

From these results, we see that the main effect of each factor is actually the difference 

between two averages:  

 
+ − −                        (3.10) 

 
 
where + is the average response when the factor is at its high level and − is the average 

response when the variable is at its low level.  Furthermore, the interactive effect is the 

average change in the response metric when the two factors are at the same level (+ or −) 

and when they are at different levels.  It is important to note that all responses for each 

experimental design point is used to determine all main and joint effects [4]. 

 
Data Analysis  

I shall discuss the results of our statistical DOE, along with an analysis of these results.  

Specifically, I shall first provide an intuitive and visual illustration regarding the impact of 

the factors on performance. I then quantify this intuition by way of statistical analysis.  For  
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the discussion which follows, the reader may find it helpful to refer to the design matrix 

shown in Table 3.2. 

Preliminary Insights.  A scatterplot can be used to visualize performance changes as the 

factor levels are changed.  Each value along the x-axis corresponds to a design point (or 

simulation scenario) as shown in Table 3.2.  The y-axis is the performance metric under 

consideration, and each point on the graph is the average of r = 5 simulations for that 

particular design point. 

Upon inspection of the scatterplots in Figures 3.1 and 3.2, it is important to note that 

the individual points in each of the scatterplots reflect a change in the average number of 

neighbors factor from its − to its + level (that is, from 7, or strongly-connected, to 3, or 

weakly-connected).  Similarly, point-pairs 1-2/3-4, 5-6/7-8, and so on, reflect a change in the 

average node speed from its − to its + level (i.e., from 5 m/sec to 30 m/sec).  This observable 

pattern can help the researcher determine whether or not particular effects are present 

between factors and performance metrics. 

Before we examine the two scatterplots in detail, it is useful to first glean some 

preliminary insights into what these graphs tell the researcher.  The most apparent element 

when contrasting the two scatterplots is that when end-to-end delay is small, the packet 

delivery ratio is large (see run numbers 1 through 9 and run numbers 17 through 25 in 

Figures 3.1 and 3.2).  Conversely, we observe that the packet delivery ratio is small when 

end-to-end delay is large (see run numbers 10 through 16 and run numbers 26 through 32 in 

the same two graphs).  These observations are reasonable because a smaller end-to-end delay 

implies that: (1) a greater number of packets are being received by the receiver per unit time  
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Figure 3.1: Scatterplot—Packet Delivery Ratio 

 

 

Figure 3.2: Scatterplot—End-to-End Delay 
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when there is very little end-to-end delay; and (2) a smaller number of packets are being 

received by the receiver per unit time when the end-to-end delay is large. 

Packet Delivery Ratio.  Figure 3.1 illustrates the average packet delivery ratio for the  

experimental runs.  Observe that the same pattern occurs twice.  Specifically, experimental 

run numbers 17 through 32 exhibit the same general behavior as that of experimental run 

numbers 1 through 16.  The “shift” at run 17 reflects the change in the MAC layer protocol 

from 802.11b with RTS (− level) to 802.11b without RTS (+ level).  By inspection, we may 

infer that, regarding packet delivery ratio at least, the presence of RTS–or lack thereof–seems 

to have little or no effect.  Next, we observe how the behavior of the packet delivery ratio 

changes, beginning at the 9th and 25th experimental runs.  These are the run numbers at 

which the number of nodes switches from 100 to 500.  Of course, the number of nodes 

switches from 500 to 100 at run number 17.  As can be seen from Figure 3.1, there is a 

decrease in the variation of average packet delivery ratio as the number of nodes increases.  

Continuing with our analysis, it appears that varying the traffic load from 10% to 20% has no 

effect on average packet delivery ratio, relative to the overall number of nodes.   A similar 

observation is made regarding node speed, where there seems to be minimal change in 

behavior.  Finally, when varying the number of neighbors from 7 to 3, the impact on packet 

delivery ratio is somewhat striking. 

End-to-end Delay.  Figure 3.2 illustrates the average end-to-end delay for the 32 

experimental runs.  Here we see a pattern of repetition that resembles that which was 

discussed for Figure 3.1.  As before, experimental run numbers 17 through 32 exhibit the 

same general behavior as that of experimental run numbers 1 through 16. Again, the “shift” 

at run 17 reflects the change in the MAC layer protocol from 802.11b with RTS (− level) to 
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802.11b without RTS (+ level).  As with packet delivery ratio, we may infer that, regarding 

end-to-end delay, the presence of RTS versus its non-presence appears to have little effect.  

Next, we observe that the behavior of end-to-end delay changes, beginning at the 10th and 

26th experimental runs.  Given that the number of nodes switches from 100 to 500 at 

experimental run numbers 9 and 25, there seems to be a slight delay before the effect of this 

change actually impacts average end-to-end delay.  As before, the number of nodes switches 

from 500 to 100 at run number 17.  As can be seen in the figure, there is a substantial “spike” 

in the variation of average end-to-end delay as the number of nodes increases.  Continuing 

with our analysis, it seems that varying the traffic load from 10% to 20% has minimal impact 

on average end-to-end delay, relative to the overall number of nodes.  The impact on end-to-

end delay from varying the node speed between 5 meters/sec and 30 meters/sec appears to be 

rather substantial, especially as the speed is increased.  Finally, as with the packet delivery 

ratio, the impact on end-to-end delay appears to be very prominent when varying the number 

of neighbors from 7 to 3. 

Main and Interaction Effects.  A main effects plot can be used to visualize performance 

changes as each individual factor level is changed.  Each value along the x-axis corresponds 

to a − or + level for a particular factor as shown in Table 3.2.  The y-axis is the performance 

metric under consideration, and the line shifts connecting the two points illustrate the average 

main effect on the performance metric when varying a factor from its − level to its + level.  

The slope of the line shift for a performance metric by varying a particular factor from its − 

level to its + level indicates the degree to which the particular factor has a main effect on the 

performance metric.  In short, the greater the slope of a line shift, the greater the average 

main effect upon the performance metric by the particular factor.  If a line shift exhibits a  
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Figure 3.3: Main Effects—Packet Delivery Ratio 

 
small slope (or, for that matter, no slope), then the average main effect upon the performance 

metric by the particular factor is negligible (or, in the case of no slope, is nonexistent).  It is 

important to keep in mind that the insights gleaned from main effects plots are only for the 

range of values used for the − and + levels of the factors under consideration. 

As can be seen in Figure 3.3, the main effect on packet delivery ratio by varying 

average number of neighbors, average speed, traffic load, and number of nodes from 

their − levels to their  +  levels is apparent.  Moreover,it appears from Figure 3.3 that both 

average number of neighbors and number of nodes markedly impact the packet delivery 

ratio, whereas the MAC layer has a negligible impact on packet delivery ratio.  For example, 

we see that the packet delivery ratio decreases from roughly 0.4 to roughly 0.2 when the 

number of nodes is varied from 100 (its − level) to 500 (its + level).  In contrast, the packet 

delivery ratio remains at around 0.3 when varying the MAC layer protocol from 802.11b 

w/RTS (its − level) to 802.11b w/out RTS  (its + level). 
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Figure 3.4: Main Effects—End-to-End Delay 

 
Figure 3.4 suggests that the main effects of all factors, except for the MAC layer, 

impact the end-to-end delay.  For example, we see that the end-to-end delay increases from 

roughly 1.5 seconds to roughly 2.5 seconds when the average node speed is varied from 

5 meters/second (its −  level) to 30 meters/second (its  +  level).  In contrast, the end-to-end 

delay remains at around 2 seconds when varying the MAC layer protocol from 802.11b 

w/RTS  (its  −  level) to 802.11b w/out RTS  (its  +  level). 

Comparing Figures 3.3 and 3.4, we observe that as the average neighbors is varied 

from “strongly-connected” to “weakly-connected” (that is, when the number of neighbor 

nodes changes from 7 to 3), the main effect upon packet delivery ratio is such that it is 

dramatically decreased, with a corresponding slight increase in end-to-end delay.  This is 

likely due to the reduction in the availability of links, since there are fewer neighbor nodes.  

We observe similar main effects phenomena when varying the average speed, traffic load, 

and number of node factors from their “−” levels to their respective “+” levels.  A 

particularly significant main effect results from varying the number of nodes from 
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100 to 500, whereby the packet delivery ratio is drastically reduced and end-to-end delay 

increases substantially.  A probable explanation is that the greater number of nodes also leads 

to increased network traffic, which results in much greater contention of the channel among 

the nodes in the network.  A final point of interest is the fact that the MAC layer protocol has 

virtually no effect on either performance metric. 

Having examined the apparent main effects of each of the factors on the response 

metrics, we next turn our attention to interaction effects, which are those combinational 

effects that two factors have on the two response metrics.  Thus, two-way factor interaction 

effects plots can be used to visualize the performance changes that result from the combined 

varying of two factors from their − levels to their + levels.  This is particularly important, 

since such two-way factor interactions are not apparent when using the traditional OFAT 

approach.  Note that parallel lines suggest a lack of factor interaction, whereas non-parallel 

lines suggest the presence of two-way factor interactions. 

Figure 3.5 shows the two-way factor interactions on the average packet delivery ratio 

metric by varying from low to high levels for each factor.  From Figure 3.5, we see that the 

following two-way factor interactions have a notable impact on the packet delivery ratio: 

(1)  average number of neighbors and average node speed; (2) average number of neighbors 

and number of nodes; (3) average node speed and traffic load; and (4)  number of nodes and 

average node speed. 

Figure 3.6 shows the two-way factor interactions on the end-to-end delay response 

metric by varying from low to high levels for each of the five factors.  The following two-

way factor interactions appear to have notable impact on the end-to-end delay: (1) average 

number of neighbors and average node speed; (2) average number of neighbors and traffic  
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Figure 3.5: Two-Way Interaction Effects—Packet Delivery Ratio 
 

 

 

 

Figure 3.6: Two-Way Interaction Effects—End-to-End Delay 
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load; (3) average number of neighbors and number of nodes; (4) average node speed and 

traffic load; (5) average node speed and number of nodes; and (6)  average traffic load and 

number of nodes. 

These visual observations of two-way factor interactions intuitively correspond with 

the aforementioned main effects.  Similar to what we observed in the main effects graphs, the 

MAC layer protocol appears to have no apparent two-way factor interaction effects.  These 

observed results are important for researchers when considering new protocol designs, since 

it is obvious that varying single factors may lead to undesirable performance results.  

However, an awareness of and knowledge about two-way factor interactions may allow 

researchers to exploit these interactions in such a way that desirable performance results may 

be realized. 

 
Quantifying the Main and Joint Effects.  Scatter plots and effects plots offer a graphical 

and intuitive way of inferring whether main and interactive effects exists.  Such “evidence” is 

not sufficient to draw definitive conclusions regarding factors and their impact on the 

response metrics.  We must go one step further and quantify these effects using statistical 

analysis.  Using a simplified method called the “sign-table” method, which is based on the 

mathematical properties discussed in Subsection 3.1.2, we compute the main and two-way 

interaction effects for each factor.  Performing an analysis of variance (ANOVA) allows us 

to determine the statistical significance of the main and two-way interaction effects. 

Table 3.4 shows the effect estimate and the allocation of variation for each factor and 

two-way interaction.  The allocation of variation indicates the percentage of response 

variation contributed to a specific factor or two-way interaction.  We see that certain factors 

account for a large percentage of the performance change.  For example, we see in Table 3.4  
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Table 3.4: Effects Table 

 
that average neighbors and number of nodes together account for almost 85% of the 

performance change in packet delivery ratio.  A similar observation may be made for end-to-

end delay, where the average speed and number of nodes factors, as well as the average 

neighbors and number of nodes two-way interaction, together account for approximately 

70% of the performance change. 

As shown in Table 3.4, each factor and two-way interaction has an “estimate” 

associated with it.  This estimate quantifies the change in the performance metric when 

varying the factor (or two-way interaction) from its “−” level to its “+” level.  For example, 

we see that the estimate for average neighbors is −0.3269 with respect to packet delivery 

ratio.  Since varying the average neighbors factor from its “−” level to its “+” level is a two-

unit change (that is, moving from −1 to +1), we take one-half the value of its estimate, 

−0.3269, which is −0.163452, and say this is the expected change in packet delivery ratio 

when average neighbors changes by one unit.  Table 3.4 also highlights those factors, as well 

as the two-way factor interactions, that are statistically significant for the prediction of end-
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to-end delay.   Here we see the following individual factors that are statistically significant 

per their impact on end-to-end delay: average number of neighbors, average node speed, 

traffic load, and number of nodes.  The two-way factor interactions that are statistically 

significant include: average number of neighbors and average node speed; average number of 

neighbors and number of nodes; and traffic load and number of nodes. 

Expanded Design 
 
This expanded experimental design involve three responses and an initial factor space of size 

Fs =  10.  The purpose of this initial experimental design is twofold.  First, I wish to gain 

preliminary insights into the behavior and performance of a multi-hop WMN; these insights 

should prove useful throughout the various stages of my empirical modeling.  Second, in 

order to reduce the size of Fs, I shall employ a fractional factorial design, a technique by 

which such factor space size reduction may be expedited both efficiently and reliably. 

An important point to keep in mind is that experimental design methods are by their 

very nature iterative.  As I shall later show, results from this initial experimental design are 

dubious at best.  Thus, successive experimental designs usually are required, which involve 

not only a smaller factor space, but also high and low factor values that are “fine-tuned” 

relative to earlier experimental designs.  

 
1/64 fractional factorial design  

I begin with a relatively large factor space, an objective of which, as earlier stated, is to 

expedite factor elimination.  At this point, only main effects are indicated; that is, because of 

the inherent limitations normally found in fractional factorial experimental designs, 

interaction effects are not indicated.  Subsequent to factor space reduction, I shall apply a 
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Table 3.5: 1/64 Fractional Factorial Design: Responses 

 

 

Table 3.6: 1/64 Fractional Factorial Design: Factors and Levels 

 
full-factorial design, the results of which should offer information both about main and 

interaction effects. 

Table 3.5 shows three responses of interest and their units of measure.  Selection of 

these responses was based on their significance to QoS in both wired and wireless networks. 

It is important to note that no single response is considered as the most important; rather, 

QoS levels for one or more of these responses usually are indicated.  

Table 3.6 lists ten factors with their low and high levels.  With ten factors, a two-level 

full-factorial design would require 210 = 1024 design points.  Moreover, with three replicates, 

this would involve 1024 × 3 = 3072 experimental runs. Clearly, this would require 

considerable computing time and real time. 
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Since we are here concerned mainly with factor elimination, only main effects are 

relevant; hence, we use a 1/64 fractional factorial design, which, with three replicates, 

requires 48 total experimental runs.  Moreover, because we are concerned mainly with factor 

elimination, examination of two-factor interactions at this point, is both unreliable and 

unnecessary.  This particular type of factorial design enables us to expedite that which we 

hope to gain from the initial factor set, which is factor elimination. 

As shown in Table 3.6, most of the factors I have included for this initial 

experimental design are representative of the various layers of the protocol stack.  

Specifically, AODV_BUF and ITEM_SIZ belong to the application layer; IP_FRAG is a 

factor that resides in the network layer; RTS_THRS, SHR_TRNS, and LNG_TRNS all are 

part of the MAC layer; and PHY_RATE is at the physical layer.  The remaining three 

factors—TERRAIN, TRAFF_LD, and GW_ROUTR—are not directly tied to any particular 

layer of the protocol stack, but are nonetheless adjustable in a simulation environment.  

 
Experiment Setup.  For this Stage I simulation, and all subsequent simulations, I use the 

QualNet [67] discrete-event simulator developed by Scalable Network Technologies, Inc.  

The communications structure I define for my simulations is a wireless-to-wired mixed 

network that includes a wireless subnet with 100 mesh routers, with one or more of these 

configured as wireless/wired gateway routers.  Node placement of mesh routers in the 

wireless subnet is uniform with no mobility, and the MAC protocol used for all simulation 

experimental runs is 802.11b.  Finally, the simulation time for each experiment is set at 900 

seconds (i.e., 15 minutes). 
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Figure 3.7: 1/64 Fractional Factorial—Main Effects (Throughput) 

 
Throughput—Main Effects.  Figure 3.7 illustrates the main effects for throughput.  As 

shown in the figure, varying factors in the factor space seems to have some impact on the 

throughput response.  Still, varying both LNG_TRN and ITEM_SIZ appears to have minimal 

impact on the average throughput.  Assessments about the significance of these main effects 

should be viewed with some skepticism.  As Figure 3.7 shows, most of the 95% confidence 

intervals are unacceptably large. This should not be cause for discouragement, however, as 

these results reflect a 1/64 fractional factorial design, and are not intended to lead to 

definitive empirical conclusions.  

 
Throughput—ANOVA.  Table 3.7 is an ANOVA (analysis of variance) for throughput.  

ANOVA is a useful tool for identifying factors whose main effects upon a response are 

statistically significant.  The degrees of freedom (DF) is equal to 1 for each factor; the sum of 

squares (SS) is the variation; the mean-square (MS) is the variance, or SS/DF ; and F is the 

F-ratio, which is MS/Error.  The P-value is of particular interest, since it serves as a measure 

of “statistical significance,” which indicates the degree to which the value of a factor is 

“true.”  Factors for which the P-value is small (P < 0.05) are considered significant and 

should therefore be included in the prediction, or regression, model.  From the ANOVA in 

Table 3.7 we observe that RTS_THRS, LNG_TRNS, IP_FRAG, AODV_BUF, and  
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Table 3.7: 1/64 Fractional Factorial Design: ANOVA for THROUGHP 

 

 

Table 3.8: 1/64 Fractional Factorial Design: Fit Statistics for THROUGHP 

 
ITEM_SIZ are not statistically significant, and should therefore not be included as part of the 

regression model.  

 
Throughput—Fit Statistics.  Fit statistics for throughput are indicated in Table 3.8, the 

predictive model of which may be interpreted as follows.  The mean is the intercept, which, 

as shown in Table 3.8, is 156.3921.  The quantity R-square is 74.98%, which is the 

proportion of total variability explained by the model, where 0 � R2 � 1, with larger values 

being more desirable.  A related quantity, Adj.  R-square, is a variation of the R-square 

statistic, whose value decreases as more factors are included within the model.  The RMSE, 

or root mean square error, is determined by calculating the deviations of points from their 

true position, summing up the measurements, and then taking the square root of the sum,  
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Table 3.9: 1/64 Fractional Factorial Design: Effect Estimates for THROUGHP 

 
with smaller values being more desirable.  Finally, the CV, or coefficient of variation, a 

measure of the precision or relative dispersion, is 20.2801.  The CV is calculated as the 

standard deviation divided by the mean, and is used to compare variation among multiple 

data series that have significantly different means.  

 
Throughput—Effect Estimates.  The predictive model estimates shown in Table 3.9,  

along with the mean for the predictive model indicated in Table 3.8, provide the data  

needed to develop a preliminary empirical model for throughput. 

 
Throughput—Preliminary Empirical Model.  The SAS application applies automatically a 

Box-Cox transformation on the dependent variable—that is, SQRT(Ythroughp)—because the 

initial empirical model (not shown here) exhibits heterogeneous, or non-Gaussian, errors.  

The transformed preliminary empirical model for throughput is shown in Equation (3.11). 

 
Ythroughp  =  156.3921 + 26.82598x2 − 11.67151x4 –  

− 10.74393x5 + 18.51303x6 + 30.59531x8                      (3.11) 
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Figure 3.8: 1/64 Fractional Factorial—Main Effects (End-to-End Delay). 

 
where x1 = RTS_THRS, x2 = SHR_TRNS, x3 = LNG_TRNS, x4 = TERRAIN, 

x5 =  TRAFF_LD, x6 = GW_ROUTR, x7 = IP_FRAG, x8 = PHY_RATE, x9 = AODV_BUF, 

and x10 = ITEM_SIZ. 

The equation for Ythroughp is a function that describes the empirical relationship 

between the response Ythroughp and its corresponding factors.  In fact, Equation (3.11) is called 

a regression equation.  The general multiple linear regression model with k regressor 

variables is of the form 

 
y = �0 + �1x1 + �2x2 + . . . + �kxk + �.            (3.12) 

 
The parameters �j, j = 0, 1, . . . , k, are called the regression coefficients.  The model shown 

in Equation (3.12) describes a hyperplane in the k-dimensional space of the regressor 

variables {xj}.  The parameter �j represents the expected change in response y per unit change 

in xj when all the remaining independent variables xj (x � j) are held constant.  

 
End-to-End Delay—Main Effects.  Figure 3.8 shows the main effects for end-to-end delay. 

Similar to our observations of throughput main effects, we see that main effects upon end-to-

end delay result from varying nearly all variables in the factor space, except for the  
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Table 3.10: 1/64 Fractional Factorial Design: ANOVA for END2END 

 

 

Table 3.11: 1/64 Fractional Factorial Design: Fit Statistics for END2END 

 
GW_ROUTR factor, where there seems to be virtually no effect on average end-to-end 

delay.  Since we are concerned mainly with factor elimination at this preliminary stage, we 

should not be overly concerned with the significant span of the 95% confidence intervals. 

 
End-to-End Delay—ANOVA.  Table 3.10 is an ANOVA table for end-to-end delay.  Recall 

from our previous discussion, ANOVA is a useful tool for identifying factors whose main 

effects upon a response are statistically significant. 

 
End-to-End Delay—Fit Statistics.  Fit statistics for end-to-end delay are indicated in 

Table 3.11, the predictive model of which may be interpreted as follows.  The mean is the 

intercept, which, as shown in Table 3.11, is 0.388402.  The quantity R-square is 37.27%, 
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which is the proportion of total variability explained by the model, where 0 � R2 � 1, with 

larger values being more desirable.  A related quantity, Adj. R-square, is a variation of the 

R-square statistic, whose value decreases as more factors are included within the model.  The 

RMSE, or root mean square error, is determined by calculating the deviations of points from 

their true position, summing up the measurements, and then taking the square root of the 

sum, with smaller values being more desirable.  Finally, the CV, or coefficient of variation, a 

measure of the precision or relative dispersion, is 43.96903.  The CV is calculated as the 

standard deviation divided by the mean. 

Unlike the previous predictive model for THROUGHP, the predictive model for 

END2END does not explain sufficiently the variability exhibited by the model.  Of particular 

significance in this case is the very low R-square value for the predictive model.  As I have 

indicated earlier, an R-square value that is less than 65.00% generally is unacceptable.  I 

should here again emphasize, however, that my goal at this point is not to derive viable 

emprical models; rather, the purpose for a 1/64 fractional factorial design is to expedite factor 

elimination. 

 
End-to-End Delay—Preliminary Empirical Model.  The predictive model estimates 

shown in Table 3.12, along with the mean for the predictive model indicated in Table 3.11, 

provide the data needed to develop a preliminary empirical model for end-to-end delay.  The 

preliminary empirical model for end-to-end delay is shown in Equation (3.13). 

 
Yend2end  = 0.388402 + 0.11626x5 − 0.052292x10          (3.13) 

 
where x1 = RTS_THRS, x2 = SHR_TRNS, x3 = LNG_TRNS, x4 = TERRAIN,  
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Table 3.12: 1/64 Fractional Factorial: Effect Estimates for END2END 

 

 

Figure 3.9: 1/64 Fractional Factorial—Main Effects (Jitter) 

 
x5 = TRAFF_LD, x6 = GW_ROUTR, x7 = IP_FRAG, x8 = PHY_RATE, x9 = AODV_BUF, 

and x10 = ITEM_SIZ. 

The equation for Yend2end is a function that describes the empirical relationship 

between the response Yend2end and its corresponding factors. 

 
Jitter—Main Effects.  Much of what we have discussed thus far concerning main effects by 

the factor space upon both throughput and end-to-end delay may be similarly applied to jitter, 

as shown in Figure 3.9.  We observe, as before, what appear to be significant main effects by 

factors upon jitter; however, notice, too, the, by now, all too familiar 95% confidence 

intervals that are of significant length. 
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Table 3.13: 1/64 Fractional Factorial Design: ANOVA for JITTER 

 

 

Table 3.14: 1/64 Fractional Factorial Design: Fit Statistics for JITTER 

 
Jitter—ANOVA.  Table 3.13 is an ANOVA table for jitter.  Recall from our previous 

discussion, ANOVA is a useful tool for identifying factors whose main effects upon a 

response are statistically significant.  

 
Jitter—Fit Statistics.  Fit statistics for jitter are indicated in Table 3.14, the predictive model 

of which may be interpreted as follows.  The mean is the intercept, which, as shown in 

Table 3.14, is 2.018852.  The quantity R-square is 15.16%, which is the proportion of total 

variability explained by the model, where 0  �  R2  �  1, with larger values being more 

desirable.  A related quantity, Adj. R-square, is a variation of the R-square statistic, whose 

value decreases as more factors are included within the model.  The RMSE, or root mean 

square error, is determined by calculating the deviations of points from their true position,  
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Table 3.15: 1/64 Fractional Factorial Design: Effect Estimates for JITTER 

 
summing up the measurements, and then taking the square root of the sum, with smaller 

values being more desirable.  Finally, the CV, or coefficient of variation, a measure of the 

precision or relative dispersion, is 155.4936.  The CV is calculated as the standard deviation 

divided by the mean; thus, a smaller CV is more desirable. 

Of the three predictive models we analyze, the predictive model for JITTER explains 

very little, if any, of the variability exhibited by the model.  Of particular importance in this 

case is the exceptionally low R-square value of 15.16% for the predictive model.  As I have 

indicated earlier, an R-square value less than 65.00% generally is considered poor.  Thus, for 

all intents and purposes, this model does not explain variability.  Still, this is not cause for 

significant concern, since my goal at this early stage is not to derive viable emprical models, 

but to expedite factor elimination. 

 
Jitter—Effect Estimates.  The predictive model estimates shown in Table 3.15, along 

with the mean for the predictive model indicated in Table 3.14, provide the data needed to 

develop a preliminary empirical model for jitter. 
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Jitter—Preliminary Empirical Model.  The preliminary empirical model for jitter is shown 

in Equation (3.14). 

Yjitter = 2.018852 + 1.298826x4           (3.14) 

 
where, for consistency, x1 = RTS_THRS, x2 = SHR_TRNS, x3 = LNG_TRNS, 

x4  =  TERRAIN, x5 = TRAFF_LD, x6 = GW_ROUTR, x7 = IP_FRAG, x8 = PHY_RATE,  

x9 = AODV_BUF,and x10 = ITEM_SIZ. 

The equation for Yjitter is a function that describes the empirical relationship between 

the response Yjitter and its corresponding factors. 

 
Full factorial design 

Having gleaned some insights into the behavior of our responses of interest, I have 

eliminated factors that appear not to have any effect on these responses.  Recall that the 1/64 

fractional factorial design has allowed for an examination of main effects, using a relatively 

small number of design points, although we began with a significant number of factors.  

Because we have reduced the number of factors from ten to three, a 23 factorial design 

contains only eight design points, which is manageable in most cases, including my current 

work.  A full factorial design should lead to an analysis both of main effects and two-factor 

interaction effects.  Moreover, in the case of a full factorial design, I shall “trim” the value 

range within which the factors are varied, which should permit formulation of empirical 

models that exhibit a reliable fit.  The resultant empirical models should lead us directly into 

a more penetrating analysis using least-squares regression. 

Table 3.16 shows the four responses for a full factorial design—three of the four 

responses carry-over from my previous 1/64 fractional factorial design.  My inclusion of  
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Table 3.16: Full Factorial Design: Responses 

 

 

Table 3.17: Full Factorial Design: Factors and Levels 

 

 

Table 3.18: Full Factorial Design Matrix 
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packet delivery ratio (PDRATIO) in the response set should provide some context within 

which my analysis of throughput (THROUGHP) is made.  As important as throughput is, the 

ratio of the number of packets sent to the number of packets received is equally important.  

My reduced factor space Fs, shown in Table 3.17, is now of size 3.  Notice also that I 

have revised the low and high values for the factors.  Since this is a full factorial design, and 

because there are three factors, this design contains 23 = 8 design points.  Moreover, my 

design involves point replication; that is, each design point is replicated three times.  Thus, 

this design is called a 23 3 factorial design, which requires 24 experimental runs (23 × 3 = 24) 

Employment of these preliminary factorial designs has led to a far simpler design, 

from which a set of simulations that test the full-factorial design may be devised.  This 

completes Stage I work, whereby the principle objective was to gain familiarity with the 

process of first-design, fractional factorial design, and full factorial design.  In Stage II, I 

move forward with a more comprehensive approach, in that I begin with a large factor space, 

the size of which I reduce by way of fractional factorial designs. 

Stage II: Models and Response Surfaces  
 
My principle objective in Stage I was to gain preliminary insights about the use of statistical 

DOE, as well as understand better the behavior and performance of multi-hop WMNs.  

Following Box’s recommendation that the resources spent on preliminary designs should not 

exceed 25% of the overall design, analysis, and modeling effort, I shall next discuss Stage II 

of my methodology.  Specifically, I employ statistical DOE to develop viable empirical 

models for multi-hop wireless mesh networks.  Additionally, I apply response surface 

methodology (RSM) to find the levels of traffic load and network size that optimize a single 

response metric. 
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Statistical Design of Experiments 
 
I begin Stage II of my work by employing fractional factorial design approaches, similar to 

my work in Stage I.  Recall that fractional factorial design permits fairly expedient 

identification of factors in the factor space that do not exhibit statistically-significant effects 

on response metrics of interest.  Such factors may then be removed from the factor space, 

after which subsequent full-factorial designs may be applied.  An added benefit is that results 

of fractional factorial designs may offer some insight into the behavior of the target system 

under study.   

As indicated earlier, I used the QualNet Version 3.8 simulator by Scalable Networks 

for all Stage I simulation studies.  Scalable Networks has since released QualNet Version 4.0.   

I use this most recent version of the QualNet simulator for all Stage II simulation studies.  

Fractional Factorial Design: Simulation Setup 
 
Figure 3.10 illustrates the terrain within which the wireless mesh routers operate.  As shown 

in the figure, the terrain size is 3000 meters by 3000 meters for all fractional factorial 

simulation experiments.  The wireless mesh router nodes form a grid, such that nodes are 

spaced 270 meters apart, irrespective of the network size.  Propagation pathloss model is 

two-ray, which, in the QualNet simulator, translates to free space path loss for near sight and 

plane earth path loss for far sight.  Moreover, the antenna height is fixed, using this pathloss 

model. Simulation time for all experimental runs is 15 minutes. 

Each simulation run results in the generation of output files by QualNet, each of 

which is named <run#>.stat.  Because each of these files tends to be somewhat large, I have 

developed several Perl scripts that parse .stat files, calculates average values for response  
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Figure 3.10: Multi-hop WMN Terrain 

 

 

Table 3.19: Two-Level 1/16 Fractional Design 
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variables, and writes these values to .csv (comma separated values) files.  I import the .csv 

data into SAS, which is the statistics tool I use for data analyses.  

Fractional Factorial Designs 
 
I begin with a two-level, 1/16 fractional factorial design, which consists of seven factors 

(shown in Table 3.19) and a single response, Throughput (measured in bps).  A full factorial 

design with seven factors would require 27 = 128 design points, each of which requires a 

simulation run.  In contrast, a 1/16 fractional design with seven factors requires only eight 

design points, a considerable reduction in the number of simulation runs.  Each design point 

is replicated three times, in order to reduce (and better explain) variability. 

With this 1/16 fractional design, main effects by factors are calculable; however, two-

way factor interactions are not.  However, at this point, we are interested only in identifying 

factors that should be eliminated from the factor space; thus, two-way factor interactions are 

of  minimal relevance.  The expected reduction of the factor space should allow for 

subsequent full-factorial designs. 

The design matrix (uncoded) is shown in Table 3.20, along with the average values 

for the throughput response in each simulation run.  The seed value for each simulation is 

equal to its run number (e.g., the seed value for the fifteenth simulation run is 15).  

 
1/16 Fractional—Graphical Analysis.  Figure 3.11 illustrates main effects on throughput by 

varying factors from their −1 levels to their +1 levels.  By inspection, it appears that varying  

all factors from their −1 levels to their +1 levels has an impact on throughput.  Recall from 

previous main effects charts that 95% confidence intervals are indicated by vertical bars, with 

smaller vertical bars being more desirable.  In other words, there is a 95% likelihood that the  
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Table 3.20: 1/16 Fractional Design Matrix 

 

 

Figure 3.11: 1/16 Fractional Factorial Design—Main Effects (Throughput) 
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average measured response (throughput, in this case) will fall somewhere within the 

indicated confidence interval. 

From Figure 3.11, we can gain some insight about the behavior of the target system, 

as well as begin the process of determining which factors to eliminate for subsequent full-

factorial experimental designs.  A reminder that the results of this 1/16 fractional design 

provide main effects only, and do not include two-way factor interactions.  In the paragraphs 

that follow, I shall discuss my visual analysis of Figure 3.11, beginning with the factor that 

appears to have the greatest main effect on throughput, and concluding with the factor that 

appears to have the least main effect on throughput. 

Varying the the traffic type from UDP (CBR traffic) to TCP-Lite appears to have a 

significant effect on average throughput, in that average throughput seems to be substantially 

higher with TCP-Lite than with UDP.  Notice, however, that the confidence interval is 

considerably smaller with UDP than with TCP-Lite.  Nonetheless, even with the confidence 

intervals shown, it is clear that throughput is higher when using TCP-Lite when compared to 

using UDP. 

Varying the routing protocol from AODV to OLSR-Inria seems to have the next 

highest level of main effect on throughput, with the greater level of throughput realized when 

using AODV.  The 95% confidence intervals associated with varying the routing protocol 

suggest, however, that favoring AODV over OLSR-Inria may not always necessarily hold.  

As seen in the figure, the 95% confidence interval for AODV spans (vertically) a significant 

portion of the measured throughput range. 

Varying traffic load from 20% of wireless mesh routers to 50% of wireless mesh 

routers suggests measured average throughput similar to what we see when varying the 



 

80 

routing protocol.  What is suggested by the figure is that increasing the traffic load leads to a 

reduction in average measured throughput.  Similar to what we observed with the routing 

protocol, the 95% confidence interval for the lower traffic load spans a substantial segment of 

the measured throughput range. 

An increase in average measured throughput is indicated by an increase in item size 

from 512 bytes to 1500 bytes.  This seems hardly surprising, since items of ITEMSIZE are 

generated once every second.  Thus, in the case of the larger item size, more data is 

transmitted per unit time than with the smaller item size.  However, there seems to be 

considerable overlap in the confidence intervals for the low and high factor values, which 

suggests that conclusions about the main effect from varying this factor may be doubtful. 

Varying the bit rate from 2 Mbps to 11 Mbps seems to have a relatively small main 

effect on throughput.  This effect may be further mitigated by the somewhat large 95% 

confidence intervals for both the low and high factor values.  Indeed, the graphical evidence 

here suggests that BITRATE may be a candidate factor for elimination from the factor space. 

Both the NETWRKSZ and GATEWAYN factors exhibit highly similar main effects, 

when varying their values.  In addition to the seemingly small main effect upon throughput 

from varying their values, the confidence intervals in both are rather substantial.  As with 

BITRATE, these factors may also be candidate factors for elimination from the factor space. 

The insights gleaned thus far result from graphical inspection; however, this is just 

one perspective.  I introduced analysis of variance (ANOVA) as a useful analytical tool for 

Stage I work.  Because we wish to identify factors that may be eliminated from the factor 

space, ANOVA offers an additional perspective to my simulation studies by which such 

identification might occur.  
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Table 3.21: 1/16 Fractional: ANOVA for THROUGHP 

 

 

Table 3.22: 1/16 Fractional: Fit Statistics for THROUGHP 

 
1/16 Fractional—Analysis of Variance.  Table 3.21 is an ANOVA (analysis of variance) 

for throughput.  Recall from Stage I that ANOVA is a useful tool for identifying factors 

whose main effects upon a response are statistically significant.  The degrees of freedom 

(DF) is equal to 1 for each factor; the sum of squares (SS) is the variation; the mean-square 

(MS) is the variance, or SS/DF ; and F is the F-ratio, which is MS/Error.  The P-value is of 

particular interest, since it serves as a measure of “statistical significance,” which indicates 

the degree to which the value of a factor is “true.”  Factors for which the P-value is small 

(P <  0.05) are considered significant and should therefore be included in the prediction, or 

regression, model.  From the ANOVA in Table 3.21 we observe that all factors in the factor 

space—that is, GATEWAYN, TRAFFLD, ITEMSIZE, BITRATE, ROUTINGP, NETWRKSZ,  
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Table 3.23: 1/16 Fractional Factorial: Effect Estimates for THROUGHP 

 
and TRANSPRT—are statistically significant, and should therefore be included as part of the 

regression model. 

 
1/16 Fractional: Throughput—Fit Statistics.  Fit statistics for throughput are indicated in 

Table 3.22, the predictive model of which may be interpreted as follows.  The mean is the 

intercept, which, as shown in Table 3.22, is 21151.85.  The quantity R-square is 100.0%, 

which is the proportion of total variability explained by the model, where 0 � R2 � 1, with 

larger values being more desirable.  A related quantity, Adj. R-square, is a variation of the 

R-square statistic, whose value decreases as more factors are included within the model.  The 

RMSE, or root mean square error, is determined by calculating the deviations of points from 

their true position, summing up the measurements, and then taking the square root of the 

sum, with smaller values being more desirable.  Finally, the CV, or coefficient of variation, a 

measure of the precision or relative dispersion, is 0.523584. The CV is calculated as the 

standard deviation divided by the mean, and is used to compare variation among multiple 

data series that have significantly different means. 
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Throughput—Effect Estimates.  The predictive model estimates shown in Table 3.23, 

along with the mean for the predictive model indicated in Table 3.22, provide the data 

needed to develop a preliminary empirical model for throughput. 

 
Throughput—Preliminary Empirical Model.  The preliminary empirical model for 

throughput (coded levels) is shown in Equation (3.15). 

 
Ythroughp  =  21151.85 − 627.5937x1 – 6495.802x2 + 3254.958x3 + 

+ 2013.088x4 – 6121.064x5 – 1003.357x6 + 15813.99x7         (3.15) 

 
where x1 = GATEWAYN, x2 = TRAFFLD, x3 = ITEMSIZE, x4 = BITRATE, x5 = 

ROUTINGP, x6 = NETWRKSZ, and x7 = TRANSPRT 

Recall from Stage I that the equation for Ythroughp is a function that describes the 

empirical relationship between the response Ythroughp and its corresponding factors.  In fact,  

Equation (3.15) is called a regression equation. The general multiple linear regression model 

with k regressor variables is of the form 

 
y = �0 + �1x1 + �2x2 + . . . + �kxk + �.           (3.16) 

 
The parameters �j, j = 0, 1, . . . , k, are called the regression coefficients.  The model shown 

in Equation (3.16) describes a hyperplane in the k-dimensional space of the regressor 

variables {xj}.  The parameter �j represents the expected change in response y per unit change 

in xj when all the remaining independent variables xj (x  �  j) are held constant.  The effect 

estimates shown in Table 3.23 reflect a two-unit change in the value of its associated 

regressor variable.  Thus, the regression coefficients are computed as ½ the effect estimates.  
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1/16 Fractional—Preliminary Factor Eliminations.  Drawing preliminary conclusions 

about factor elimination is difficult at this point, for two reasons.  First, although the 

information provided in the ANOVA table suggests strongly that all factors in the factor 

space are significant at the 0.05 level, the main effects chart seems to indicate otherwise.  

Second, this 1/16 fractional factorial design highlights a single response variable, throughput.  

As a response, throughput, although very important for any network, should be viewed along 

with other related responses, such as end-to-end delay, jitter, and packet delivery ratio.  

Therefore, before deciding upon specific factor eliminations from the factor space, it may be 

useful to work through an additional set of simulation studies, which consists of many of the 

same factors in the current 1/16 fractional factor space, as well as the responses, throughput, 

end-to-end delay, jitter, and packet delivery ratio. 

 
1/8 Fractional Design.  The design matrix for a 1/8 fractional factorial design is shown in 

Table 3.24.  Unlike the previous fractional design, which had a factor space of size 7, this 

new fractional design has a factor space of size 6.  The principal difference between this new 

fractional design and the previous one is the fact that only CBR traffic is involved.  

Moreover, I measure four average responses, instead of just a single response; these include: 

throughput, end-to-end delay, jitter, and packet delivery ratio.  The simulation setup for this 

fractional factorial design is exactly the same as the setup I used for the 1/16 fractional 

design. 

Table 3.25 shows the average response values for throughput, end-to-end delay, jitter, 

and packet delivery ratio.  Recall, however, that we are interested mainly in factor 

elimination; that is, we seek to efficiently identify factors whose main effects are not 

statistically-significant.  Thus, we shall exploit both graphical and ANOVA support, in order  
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Table 3.24: 1/8 Fractional Factorial Design Matrix 

 

 

Table 3.25: 1/8 Fractional Factorial Design Responses 
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Figure 3.12: 1/8 Fractional Factorial Design—Main Effects (Throughput) 

 
to make reasonable decisions about which factors should not be included in our first-order 

empirical models. 

Figure 3.12 illustrates the main effects for the throughput response. Upon 

examination, it appears that varying both ITEMSIZE and BITRATE have significant main 

effects upon the throughput response.  Moreover, the slopes of the other factors (i.e., 

GATEWAYN, TRAFFLD, etc.) seem rather insubstantial, and the 95% confidence intervals 

for these have considerable overlap. 

Figure 3.13 illustrates the main effects for the end-to-end delay response. In contrast 

to the main effects for the throughput response, we observe that TRAFFLD, ITEMSIZE, and 

NETWRKSZ appear to be significant. 

Figure 3.14 illustrates the main effects for the delay jitter response. As with the main 

effects on throughput, it seems from this figure that both ITEMSIZE and BITRATE have 

substantial main effects on jitter, with far lesser effects by the other factors. 
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Figure 3.13: 1/8 Fractional Factorial Design—Main Effects (End-to-End Delay) 

 

 

 

 

Figure 3.14: 1/8 Fractional Factorial Design—Main Effects (Jitter) 
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Figure 3.15: 1/8 Fractional Factorial Design—Main Effects (Packet Delivery Ratio) 

 
Figure 3.15 illustrates the main effects for the packet delivery ratio response. 

Examination of this figure again suggests significant main effects by both ITEMSIZE and 

BITRATE, with far fewer main effects on packet delivery ratio by varying the remaining 

factors. 

2k Full Factorial Design 
 
The results of both the 1/16 and 1/8 fractional factorial simulation studies provide important 

insight into the behavior and performance of the multi-hop WMN. Moreover, an important 

methodological objective was met, which was to retain those factors in the factor space for 

which their main effects are statistically-significant.  The next step in Stage II is to develop a 

full factorial design, from which further simulation experiments may be contrived.  Unlike 

the two previous fractional factorial design studies, which measured main effects on 

responses, full factorial designs measure main effects and two-way factor interaction. 
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Table 3.26: Two-Level Full-Factorial Design 

 
Design Structure 

The factor space for my full factorial design is rather small—three, to be exact.  From the 

two preceding fractional design results, we shall include only NETWRKSZ, TRAFFLD, and 

ITEMSIZE factors.  The factors and their levels are shown in Table 3.26.  A factor space of 

size 3 requires 23= 8 design points in a 2k factorial design.  Additionally, there are four 

response variables of interest, which include: THROUGHP, E2EDELAY, JITTER, and 

PDRATIO. 

We have already seen that variability may be reduced through the use of replicates. 

Thus, for this particular statistical DOE, I define five point-replicates.  As a result, the total 

number of simulation runs is 40. 

As with the two fractional factorial simulation studies, I used the QualNet 4.0 

simulator, where the number of gateway nodes is set at 15% of the network size (a variable 

that is itself part of the factor space). The terrain size is 3000 meters2, with a grid node 

placement and 270 meter wireless mesh node separation.  The bit rate is 11 Mbps.  The 

pathloss model is two-ray, and traffic is CBR (UDP), generating one packet per second.  The 

routing protocol used in the simulation experiments is AODV, with each experiment running 

15 minutes in time length. 

The design matrix for a 2k factorial design is shown in Table 3.27.  With five 

replicates per design point, runs 1 through 5 reflect design point 1, runs 6 through 10 reflect  
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Table 3.27: 2k Factorial Design Matrix 

 
design point 2, and so on.  Also, the number of gateway nodes is 15% of the network size; 

thus, when the network size is 36, the number of gateway nodes is 5, and when the network 

size is 100, the number of gateway nodes is 15. 

Table 3.28 shows the average response values for throughput, end-to-end delay, jitter, 

and packet delivery ratio.  I shall rely upon both graphical and quantitative data, in order to 

draw inferences about main and interaction effects on the four response variables.  From  
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Table 3.28: 2k Factorial Design Responses 

 
these results, I develop first-order empirical models that characterize the relationship between 

each of the four responses and the factors and their interactions.  

 
Graphical Analysis 

Figure 3.16 illustrates a scatterplot for the throughput response.  Clearly, some factor change 

at run 21 results in a significant increase in throughput.  A reexamination of Table 3.27 

shows that the item size goes from 512 bytes to 1500 bytes.  Because the two other factors  
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Figure 3.16: 235 Full Factorial—Scatterplot (Throughput) 

 
(that is, network size and traffic load) are varied several times between runs 1 and 20 

inclusive, with no discernible change in the throughput response.  Thus, from the scatterplot, 

we may conclude that varying items size from 512 bytes to 1500 bytes has a significant effect 

on the throughput response. 

Figure 3.17 illustrates the main effects for the throughput response.  From the figure 

we see that throughput appears to be mostly unaffected by varying either network size or 

traffic load.  Varying the item size, however, appears to have a substantial impact on 

throughput.  This latter observation seems reasonable, considering that increasing the number 

of bytes per item at the application layer would indeed result in greater throughput. 

Figure 3.18 illustrates two-way factor interaction effects for the throughput response.  

Two-way factor interaction is indicated by the presence of non-parallel lines.  From this 

figure, it appears that two-way factor interaction is not present for throughput, at least not 

with the current factor space and the range of low/high values. 
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Figure 3.17: 235 Full Factorial—Main Effects (Throughput) 

 

 

 

 

 

 

Figure 3.18: 235 Full Factorial—Interaction Effects (Throughput) 
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Figure 3.19: 235 Full Factorial—Scatterplot (End-to-End Delay) 

 
Figure 3.19 illustrates a scatterplot for the end-to-end delay response.  Runs 1 through 

10 suggest response signals that are seemingly homogeneous, with a noticeable change 

indicated at run 11 and continuing through run 30.  This change reflects the shift in traffic 

load from 20% of total nodes (as indicated by network size) to 50% of total nodes; thus, in 

such a case, increases in both end-to-end delay and jitter are expected.  Substantial increases 

both in end-to-end delay and jitter occur at runs 31 through 40, due likely to the concurrent 

levels of traffic load (50%) and 1500 byte itemsize. 

Figure 3.20 illustrates the main effects for the end-to-end delay response.  As with 

throughput, varying network size seems to have negligible effect on end-to-end delay; 

however, varying either traffic load or item size or both leads to a rather significant increase 

in end-to-end delay.  We observe, too, the somewhat smaller 95% confidence intervals, 

which suggests a reliable characterization between end-to-end delay and these two factors. 

The observed main effect upon end-to-end delay by (independently) varying these two 

factors is not altogether surprising. 
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Figure 3.20: 235 Full Factorial—Main Effects (End-to-End Delay) 

 
Figure 3.21 illustrates two-way factor interaction effects for the end-to-end delay 

response.  Examination of this figure suggests two-way factor interaction between traffic load 

and item size.  Such two-way factor interaction is indicated by the non-parallel lines shown 

in the intersection cells for TRAFFLD and ITEMSIZ.  Moreover, some two-way factor 

interaction is indicated between traffic load and network size, although to a lesser degree than 

the two-way factor interaction indicated for traffic load and item size. 

Figure 3.22, which illustrates a scatterplot for the delay jitter response.  Runs 1 

through 10 suggest response signals that are seemingly homogeneous, with a notable change 

indicated at run 11 and continuing through run 30.  This notable change reflects the shift in 

traffic load from 20% of total nodes (as indicated by network size) to 50% of total nodes; 

thus, in such a case, increases in both end-to-end delay and jitter are expected.  Substantial 

increases both in end-to-end delay and jitter occur at runs 31 through 40, due likely to the 

concurrent levels of traffic load (50%) and 1500 byte itemsize. 

Figure 3.23 illustrates the main effects for the delay jitter response.  The main effects 

applied to end-to-end delay may be similarly applied to the main effect for jitter.  Again, we  
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Figure 3.21: 235 Full Factorial—Interaction Effects (End-to-End Delay) 

 

 

 

 

 

 

 

Figure 3.22: 235 Full Factorial—Scatterplot (Jitter) 



 

97 

 

Figure 3.23: 235 Full Factorial—Main Effects (Jitter) 

 
see that varying both traffic load and item size seems to have significant impact on the 

response, which, in this case, is jitter. 

Figure 3.24 illustrates two-way factor interaction effects for the delay jitter response. 

Similar to the two-way factor interaction we described for end-to-end delay, there seems to 

be two-way factor interaction between traffic load and item size for jitter.  Moreover, two-

way factor interaction between traffic load and network size is suggested by the figure as 

well. 

Figure 3.25 illustrates a scatterplot for the packet delivery ratio response.  As 

indicated in the figure, the packet delivery ratio is at acceptable levels (that is, between 0.99 

and 1.00) for the entire run set.  A somewhat interesting phenomenon seems to occur 

between runs 31 through 35.  Specifically, runs 31 through 35 exhibit an erratic packet 

delivery ratio.  This, in spite of the fact that the factor levels remain unchanged within this 

run set.  A similar scenario is indicated for runs 36 through 40.  A plausible explanation for 

this seemingly erratic behavior is that the network is likely reaching saturation point, 

beginning with run 31 and continuing through run 40. 
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Figure 3.24: 235 Full Factorial—Interaction Effects (Jitter) 

 

 

 

 

 

 

 

Figure 3.25: 235 Full Factorial—Scatterplot (Packet Delivery Ratio) 
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Figure 3.26: 235 Full Factorial—Main Effects (Packet Delivery Ratio) 

 
Figure 3.26 illustrates the main effects for the packet delivery ratio response. 

Interesting observations may be gleaned from the main effects for packet delivery ratio, as 

illustrated in the figure.  At first glance, varying network size seems to have an impact on 

packet delivery ratio; however, we must be careful not to overlook the important 

consideration of the 95% confidence intervals. In the case of varying network size, the 

overlap between the two confidence intervals seems rather substantial.  We shall need to 

investigate the implications of this—if indeed any such implications really are present.  

Varying traffic load or varying item size or varying both seems to lead to a virtually identical 

impact on packet delivery ratio.  An interesting observation is the fact that the confidence 

intervals of both are exceptionally small when the factor values are at their low level; 

however, when the factor values are at their high levels, the confidence intervals for both are 

substantial. 

Figure 3.27 illustrates two-way factor interaction effects for the packet delivery ratio 

response.  The figure suggests a higher degree of two-way factor interaction between traffic  
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Figure 3.27: 235 Full Factorial—Interaction Effects (Jitter) 

 
load and item size than we have seen in previous two-way factor interaction figures.  

Moreover, the figure seems to indicate two-way factor interaction between item size and 

network size. 

 
Empirical Models 

The graphical evidence analyzed and discussed thus far offers important insight into the 

performance and behavior of the four response metrics upon which my analyses are focused.  

As beneficial as the preceding figures seem to be in my analyses, however, they are 

insufficient in terms of developing and measuring first-order empirical models.  I shall next  

use three analytical tools by which such first-order empirical models may be derived; these 

analytical tools include: ANOVA (analysis of variance), fit statistics, and effect estimates. 

 
235 Full Factorial: Analysis of Variance—THROUGHP.  Table 3.29 is an ANOVA 

(analysis of variance) for throughput.  Recall from my previous discussion that ANOVA is a 

useful tool for identifying factors whose main effects upon a response are statistically  
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Table 3.29: 235 Full Factorial: ANOVA for THROUGHP 

 

Table 3.30: 235 Full Factorial: Fit Statistics for THROUGHP 

 
significant.  The degrees of freedom (DF) is equal to 1 for each factor; the sum of squares 

(SS) is the variation; the mean-square (MS) is the variance, or SS/DF; and F is the F-ratio, 

which is M S/Error.  The P-value is of particular interest, since it serves as a measure of 

“statistical significance,” which indicates the degree to which the value of a factor is “true.”  

Factors for which the P-value is small (P  <  0.05) are considered significant and should 

therefore be included in the prediction, or regression, model.  From the ANOVA in Table 

3.29 we observe that TRAFFLD and ITEMSIZE are statistically significant, and should 

therefore be included as part of the regression model.  Moreover, the two-way factor 

interaction between TRAFFLD and ITEMSIZE is statistically significant, and should also be 

included as part of the regression model. 

 
235 Full Factorial: Throughput—Fit Statistics.  Fit statistics for throughput are indicated 

in Table 3.30, the predictive model of which may be interpreted as follows.  The mean is the  
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Table 3.31: 235 Full Factorial: Effect Estimates for THROUGHP 

 
intercept, which, as shown in Table 3.30, is 8036.471.  The quantity R-square is 100.0%, 

which is the proportion of total variability explained by the model, where 0 � R2 � 1, with 

larger values being more desirable.  A related quantity, Adj. R-square, is a variation of the R-

square statistic, whose value decreases as more factors are included within the model.  The 

RMSE, or root mean square error, is determined by calculating the deviations of points from 

their true position, summing up the measurements, and then taking the square root of the 

sum, with smaller values being more desirable.  Finally, the CV, or coefficient of variation, a 

measure of the precision or relative dispersion, is 0.180089.  The CV is calculated as the 

standard deviation divided by the mean, and is used to compare variation among multiple 

data series that have significantly different means.  

 
Throughput—Effect Estimates.  The predictive model estimates shown in Table 3.31, 

along with the mean for the predictive model indicated in Table 3.30, provide the data 

needed to develop an empirical model for throughput. 

 
Throughput—Empirical Model.  The empirical model for throughput (coded levels) is 

shown in Equation (3.17). 
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Ythroughp  =  8036.471 – 11.70617x2 + 3940.116x3 − 

− 11.18407x2x3             (3.17) 

 
where x1 = NETWRKSZ,  x2 = TRAFFLD, and  x3 = ITEMSIZE. 

Recall from my earlier discussion that the equation for Ythroughp is a function that 

describes the empirical relationship between the response Ythroughp and its corresponding 

factors.  Each of the effect estimates shown in Table 3.31 reflects a two-unit change in the 

value of its associated regressor variable.  Thus, the regression coefficients are computed as 

½ the effect estimates.  Observe, also, the fact that NETWRKSZ is not part of the model.  

From the ANOVA in Table 3.29, we see that NETWRKSZ is not significant at P < 0.05, and 

should therefore be excluded from the model.  

 
235 Full Factorial: Analysis of Variance—E2EDELAY.  Table 3.32 is an ANOVA 

(analysis of variance) for end-to-end delay.  From the ANOVA in Table 3.32 we observe that 

TRAFFLD and ITEMSIZE are statistically significant, and should therefore be included as 

part of the regression model.  Moreover, the two-way factor interaction between TRAFFLD 

and ITEMSIZE is statistically significant, and should also be included as part of the 

regression model. 

 
235 Full Factorial: End-to-End Delay—Fit Statistics.  Fit statistics for end-to-end delay 

are indicated in Table 3.33, the predictive model of which may be interpreted as follows.  

The mean is 0.220798.  The quantity R-square is 93.98%. the CV, or coefficient of variation, 

a measure of the precision or relative dispersion, is 12.9949. 
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Table 3.32: 235 Full Factorial: ANOVA for E2EDELAY 

 

Table 3.33: 235 Full Factorial: Fit Statistics for E2EDELAY 

 
235 Full Factorial: End-to-End Delay—Effect Estimates.  The predictive model estimates 

shown in Table 3.34, along with the mean for the predictive model indicated in Table 3.33, 

provide the data needed to develop an empirical model for end-to-end delay.  

 
235 Full Factorial: End-to-End Delay—Empirical Model.  The empirical model for end-

to-end delay (coded levels) is shown in Equation (3.18). 

 
Ye2edelay  =  0.220798 + 0.06128x2 + 0.082353x3 + 

+ 0.032055x2x3             (3.18) 

 
where x1 = NETWRKSZ,  x2 = TRAFFLD, and  x3 = ITEMSIZE. 

Recall from my earlier discussion that the equation for Ye2edelay is a function that 

describes the empirical relationship between the response Ye2edelay and its corresponding 

factors.  Each of the effect estimates shown in Table 3.34 reflects a two-unit change in the  
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Table 3.34: 235 Full Factorial: Effect Estimates for E2EDELAY 

 
value of its associated regressor variable. Thus, the regression coefficients are computed as 

½ the effect estimates. 

 
235 Full Factorial: Analysis of Variance—JITTER.  Table 3.35 is an ANOVA (analysis of 

variance) for jitter.  From the ANOVA in Table 3.32 we observe that NETWRKSZ, 

TRAFFLD, and ITEMSIZE all are statistically significant, and should therefore be included as 

part of the regression model.  Moreover, the two-way factor interactions between 

NETWRKSZ and TRAFFLD, as well as TRAFFLD and ITEMSIZE, are statistically 

significant, and should also be included as part of the regression model. 

 
235 Full Factorial: Jitter—Fit Statistics.  Fit statistics for jitter are indicated in Table 3.36, 

the predictive model of which may be interpreted as follows. The mean is 0.072036.  The 

quantity R-square is 98.14%, which is the proportion of total variability explained by the 

model, where 0 � R2� 1, with larger values being more desirable.  The CV, or coefficient of 

variation, a measure of the precision or relative dispersion, is 12.61512.  

 
Jitter—Effect Estimates.  The predictive model estimates shown in Table 3.37, along with 

the mean for the predictive model indicated in Table 3.36, provide the data needed to develop 

an empirical model for jitter.  
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Table 3.35: 235 Full Factorial: ANOVA for JITTER 

 

 

Table 3.36: 235 Full Factorial: Fit Statistics for JITTER 

 

 

Table 3.37: 235 Full Factorial: Effect Estimates for JITTER 

 
Jitter—Empirical Model.  The empirical model for jitter (coded levels) is shown in 

Equation (3.19). 

 
Yjitter  =  0.072036 – 0.003345x1 + 0.045573x2 + 0.0033927x3 + 

+ 0.008119x1x2. + 0.019888x2x3            (3.19) 

 
where x1 = NETWRKSZ,  x2 = TRAFFLD, and  x3 = ITEMSIZE. 
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Table 3.38: 235 Full Factorial: ANOVA for PDRATIO 

 
Recall from my earlier discussion that the equation for Yjitter is a function that 

describes the empirical relationship between the response Yjitter and its corresponding factors.  

The effect estimates shown in Table 3.37 reflect a two-unit change in the value of its 

associated regressor variable.  Thus, the regression coefficients are computed as ½ the effect 

estimates. 

 
235 Full Factorial: Analysis of Variance—PDRATIO.  Table 3.38 is an ANOVA (analysis 

of variance) for packet delivery ratio.  From the ANOVA in Table 3.38 we observe that 

TRAFFLD and ITEMSIZE are statistically significant, and should therefore be included as 

part of the regression model.  Moreover, the two-way factor interaction between TRAFFLD 

and ITEMSIZE is statistically significant, and should also be included as part of the 

regression model. 

 
235 Full Factorial: Packet Delivery Ratio—Fit Statistics.  Fit statistics for packet delivery 

ratio are indicated in Table 3.39, the predictive model of which may be interpreted as 

follows.  The mean is the intercept, which, as shown in Table 3.39, is 0.998597.  The 

quantity R-square is 72.62%, which is the proportion of total variability explained by the  
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Table 3.39: 235 Full Factorial: Fit Statistics for PDRATIO 

 
model, where 0 � R2� 1, with larger values being more desirable.  The CV, or coefficient of 

variation, a measure of the precision or relative dispersion, is 0.119419. 

 
Packet Delivery Ratio—Effect Estimates.  The predictive model estimates shown in Table 

3.40, along with the mean for the predictive model indicated in Table 3.39, provide the data 

needed to develop an empirical model for packet delivery ratio. 

 
Packet Delivery Ratio—Empirical Model.  The empirical model for packet delivery ratio 

(coded levels) is shown in Equation (3.20). 

 
Ypdratio  =  0.998597 − 0.001153x2 − 0.001119x3 − 

− 0.000901x2x3             (3.20) 

 
where x1 = NETWRKSZ,  x2 = TRAFFLD, and  x3 = ITEMSIZE. 

Recall from my earlier discussion that the equation for Ypdratio is a function that 

describes the empirical relationship between the response Ypdratio and its corresponding 

factors.  Each of the effect estimates shown in Table 3.40 reflects a two-unit change in the 

value of its associated regressor variable.  Thus, the regression coefficients are computed as 

½ the effect estimates. 
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Table 3.40: 235 Full Factorial: Effect Estimates for PDRATIO 

Response Surface Methodology 
 
Results from the 235 full-factorial simulation studies suggest that first-order models may be 

inadequate; thus, the development of second-order models should be considered.  If such 

models could be shown to adequately characterize the relationship between the responses of 

interest and their factors, an extension to this would also include numerical optimization of 

responses.  Response surface designs are intended to identify and develop both second-order 

models and numerical optimization of responses. 

 
Response Surface Design Setup.  The response surface design setup involves a central 

composite, uniform precision design, which includes axial scaling, center blocking.  A factor 

space of size 2 involves 22 = 4 design points; however, a central composite, uniform 

precision design also includes 9 center points.  This type of design lends itself to the 

identification of both factor interaction (which we have observed previously) and quadratic 

effects (which usually indicate curvature of the response surface). 

The simulation environment involves a 64 wireless mesh node subnet, with a grid 

node placement scheme (8x8 matrix) and a 270 meter node separation factor.  The terrain 

size is 2500 x 2500 meters.  Ten of the 64 mesh nodes serve as gateway nodes to a wired 

subnet. The bit rate is 11 Mbps, with CBR traffic at one packet per second.  As before, along 



 

110 

with AODV routing, a two-ray pathloss model is employed.  All traffic generated is sent to 

the same destination node, thereby exploiting the routing protocol, since multiple paths are 

possible. 

The response surface design involves the four response metrics of interest, used in the 

previous fractional and full-factorial experimental designs: THROUGHP, E2EDELAY, 

JITTER, and PDRATIO.  Results of the full-factorial design experiments suggest two factors 

in particular: TRAFFLD and ITEMSIZE.  The design points for a response surface design is 

shown in Table3.41.  With five replicates, runs 1 through 13 reflect the first replicate, runs 14 

through 26 reflect the second replicate, and so on 

The average response values for throughput, end-to-end delay, jitter, and packet 

delivery ratio, are shown in Table 3.42, with ANOVA (analysis of variance) for throughput 

shown in Table 3.43.  Recall from my previous discussion that ANOVA is a useful tool for 

identifying factors whose main effects upon a response are statistically significant.  The 

degrees of freedom (DF) is equal to 1 for each factor; the sum of squares (SS) is the 

variation; the mean-square (MS) is the variance, or SS/DF ; and F is the F-ratio, which is 

MS/Error.  The P-value is of particular interest, since it serves as a measure of “statistical 

significance,” which indicates the degree to which the value of a factor is “true.”  Factors for 

which the P-value is small (P < 0.05) are considered significant and should therefore be 

included in the prediction, or regression, model.  From the ANOVA in Table 3.43 we 

observe that TRAFFLD and ITEMSIZE are statistically significant, and should therefore be 

included as part of the second-order model.  Additionally, quadratic effects (which suggest 

curvature) are indicated (by way of TRAFFLD*TRAFFLD and ITEMSIZE*ITEMSIZE).  
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Moreover, the two-way factor interaction between TRAFFLD and ITEMSIZE is statistically 

significant, and should also be included as part of the second-order model. 

 
Response Surfaces: Throughput—Fit Statistics.  Fit statistics for throughput are indicated 

in Table 3.44, the predictive model of which may be interpreted as follows.  The mean is the 

intercept, which, as shown in Table 3.44, is 8044.128.  The quantity R-square is 100.0%, 

which is the proportion of total variability explained by the model, where 0 � R2 � 1, with 

larger values being more desirable.  A related quantity, Adj. R-square, is a variation of the R-

square statistic, whose value decreases as more factors are included within the model.  The 

RMSE, or root mean square error, is determined by calculating the deviations of points from 

their true position, summing up the measurements, and then taking the square root of the 

sum, with smaller values being more desirable.  Finally, the CV, or coefficient of variation, a 

measure of the precision or relative dispersion, is 0.064022.  The CV is calculated as the 

standard deviation divided by the mean and is used to compare variation among multiple data 

series that have significantly different means. 

 
Throughput—Effect Estimates.  The predictive model estimates shown in Table 3.45, 

along with the mean for the predictive model indicated in Table 3.44, provide the data 

needed to develop a second-order model for throughput. 

 
Throughput—Second-Order Model.  The second-order empirical model for throughput 

(coded levels) is shown in Equation (3.21). 

 
Ythroughp  = 8047.929 – 13.14258x1 + 3938.635x2 − 

− 12.35312(x1)2
 − 13.14648x1x2           (3.21) 
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where x1= TRAFFLD, and x2= ITEMSIZE. 

Recall from my earlier discussion that the equation for Ythroughp is a function that 

describes the empirical relationship between the response Ythroughp and its corresponding 

factors.  The effect estimates shown in Table 3.45 reflect a one-unit change in the value of its 

associated regressor variable. 

 
Response Surfaces: Analysis of Variance—E2EDELAY.  Table 3.46 is an ANOVA 

(analysis of variance) for end-to-end delay.  Recall from my previous discussion that 

ANOVA is a useful tool for identifying factors whose main effects upon a response are 

statistically significant.  The degrees of freedom (DF) is equal to 1 for each factor; the sum of 

squares (SS) is the variation; the mean-square (MS) is the variance, or SS/DF ; and F is the F 

-ratio, which is MS/Error.  The P-value is of particular interest, since it serves as a measure 

of “statistical significance,” which indicates the degree to which the value of a factor is 

“true.”  Factors for which the P-value is small (P < 0.05) are considered significant and 

should therefore be included in the prediction, or regression, model.  From the ANOVA in 

Table 3.46 we observe that TRAFFLD and ITEMSIZE are statistically significant, and should 

therefore be included as part of the second-order model.  Additionally, quadratic effects 

(which suggest curvature) are indicated (by way of TRAFFLD*TRAFFLD and 

ITEMSIZE*ITEMSIZE).  Moreover, the two-way factor interaction between TRAFFLD and 

ITEMSIZE is statistically significant and should also be included as part of the second-order 

model.  

 
Response Surfaces: End-to-End Delay—Fit Statistics.  Fit statistics for end-to-end delay 

are indicated in Table 3.47, the predictive model of which may be interpreted as follows.  
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The mean is the intercept, which, as shown in Table 3.47, is 0.209038.  The quantity R-

square is 93.98%, which is the proportion of total variability explained by the model, where 

0 � R2 � 1, with larger values being more desirable.  A related quantity, Adj. R-square, is a 

variation of the R-square statistic, whose value decreases as more factors are included within 

the model.  The RMSE, or root mean square error, is determined by calculating the 

deviations of points from their true position, summing up the measurements, and then taking 

the square root of the sum, with smaller values being more desirable.  Finally, the CV, or 

coefficient of variation, a measure of the precision or relative dispersion, is 8.099644.  The 

CV is calculated as the standard deviation divided by the mean, and is used to compare 

variation among multiple data series that have significantly different means. 

 
End-to-End Delay—Effect Estimates.  The predictive model estimates shown in Table 

3.48, along with the mean for the predictive model indicated in Table 3.47, provide the data 

needed to develop a second-order model for end-to-end delay. 

 
End-to-End Delay—Second-Order Model.  The second-order model for end-to-end delay 

(coded levels) is shown in Equation (3.22). 

 
Ye2edelay  = 0.206855 + 0.060222x1 + 0.08479x2 − 

+ 0.007095(x1)2
 + 0.039888x1x2           (3.22) 

 
where x1= TRAFFLD, and x2= ITEMSIZE. 

Recall from my earlier discussion that the equation for Ye2edelay is a function that 

describes the empirical relationship between the response Ye2edelay and its corresponding 
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factors.  Each of the effect estimates shown in Table 3.51 reflects a one-unit change in the 

value of its associated regressor variable. 

 
Response Surfaces: Analysis of Variance—JITTER.  Table 3.49 is an ANOVA (analysis 

of variance) for JITTER.  Recall from my previous discussion that ANOVA is a useful tool 

for identifying factors whose main effects upon a response are statistically significant. The 

degrees of freedom (DF) is equal to 1 for each factor; the sum of squares (SS) is the 

variation; the mean-square (MS) is the variance, or SS/DF ; and F is the F-ratio, which is 

MS/Error.  The P-value is of particular interest, since it serves as a measure of “statistical 

significance,” which indicates the degree to which the value of a factor is “true.”  Factors for 

which the P-value is small (P < 0.05) are considered significant and should therefore be 

included in the prediction, or second-order, model.  From the ANOVA in Table 3.49 we 

observe that TRAFFLD and ITEMSIZE are statistically significant, and should therefore be 

included as part of the second-order model.  Additionally, quadratic effects (which suggest 

curvature) are indicated (by way of TRAFFLD*TRAFFLD and ITEMSIZE*ITEMSIZE).  

Moreover, the two-way factor interaction between TRAFFLD and ITEMSIZE is statistically 

significant, and should also be included as part of the second-order model. 

 
Response Surfaces: Jitter—Fit Statistics.  Fit statistics for jitter are indicated in Table 3.50, 

the predictive model of which may be interpreted as follows.  The mean is the intercept, 

which, as shown in Table 3.50, is 0.05398.  The quantity R-square is 86.49%, which is the 

proportion of total variability explained by the model, where 0 � R2 � 1, with larger values 

being more desirable.  A related quantity, Adj. R-square, is a variation of the R-square 

statistic, whose value decreases as more factors are included within the model.  The RMSE, 
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or root mean square error, is determined by calculating the deviations of points from their 

true position, summing up the measurements, and then taking the square root of the sum, 

with smaller values being more desirable.  Finally, the CV, or coefficient of variation, a 

measure of the precision or relative dispersion, is 21.27506.  The CV is calculated as the 

standard deviation divided by the mean, and is used to compare variation among multiple 

data series that have significantly different means. 

 
Jitter—Effect Estimates.  The predictive model estimates shown in Table 3.51, along with 

the mean for the predictive model indicated in Table 3.50, provide the data needed to develop 

a second-order model for jitter. 

 
Jitter—Empirical Model.  The second-order model for jitter (coded levels) is shown in 

Equation (3.23). 

 
Yjitter  = 0.055197 + 0.038355x1 + 0.025064x2 − 

− 0.003957(x1)2
 + 0.019237x1x2           (3.23) 

 
where x1= TRAFFLD, and x2= ITEMSIZE. 

Recall from my earlier discussion that the equation for Yjitter is a function that 

describes the empirical relationship between the response Yjitter and its corresponding factors.  

The effect estimates shown in Table 3.51 reflect a one-unit change in the value of its 

associated regressor variable. 

 
Response Surfaces: Analysis of Variance—PDRATIO.  Table 3.52 is an ANOVA 

(analysis of variance) for packet delivery ratio.  Recall from my previous discussion that 

ANOVA is a useful tool for identifying factors whose main effects upon a response are 
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statistically significant.  The degrees of freedom (DF) is equal to 1 for each factor; the sum of 

squares (SS) is the variation; the mean-square (MS) is the variance, or SS/DF ; and F is the 

F-ratio, which is MS/Error.  The P-value is of particular interest, since it serves as a measure 

of “statistical significance,” which indicates the degree to which the value of a factor is 

“true.”  Factors for which the P-value is small (P < 0.05) are considered significant and 

should therefore be included in the prediction, or regression, model.  From the ANOVA in 

Table 3.52 we observe that TRAFFLD and ITEMSIZE are statistically significant, and should 

therefore be included as part of the second-order model.  Moreover, the two-way factor 

interaction between TRAFFLD and ITEMSIZE is statistically significant, and should also be 

included as part of the second-order model. 

 
Response Surfaces: Packet Delivery Ratio—Fit Statistics.  Fit statistics for packet delivery 

ratio are indicated in Table 3.53, the predictive model of which may be interpreted as 

follows.  The mean is the intercept, which, as shown in Table 3.53, is 0.999201.  The 

quantity R-square is 88.14%, which is the proportion of total variability explained by the 

model, where 0 � R2 � 1, with larger values being more desirable.  A related quantity, Adj. 

R-square, is a variation of the R-square statistic, whose value decreases as more factors are 

included within the model.  The RMSE, or root mean square error, is determined by 

calculating the deviations of points from their true position, summing up the measurements, 

and then taking the square root of the sum, with smaller values being more desirable.  

Finally, the CV, or coefficient of variation, a measure of the precision or relative dispersion, 

is 0.046874.  The CV is calculated as the standard deviation divided by the mean, and is used 

to compare variation among multiple data series that have significantly different means.  
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Packet Delivery Ratio—Effect Estimates.  The predictive model estimates shown in Table 

3.54, along with the mean for the predictive model indicated in Table 3.53, provide the data 

needed to develop an second-order model for packet delivery ratio. 

 
Packet Delivery Ratio—Empirical Model.  The second-order model for packet delivery 

ratio (coded levels) is shown in Equation (3.24). 

 
Ypdratio  = 0.999482 − 0.001189x1 − 0.00124x2 − 

− 0.000915(x1)2
 − 0.001117x1x2           (3.23) 

 
where x1= TRAFFLD, and x2= ITEMSIZE 

Recall from my earlier discussion that the equation for Ypdratio is a function that 

describes the empirical relationship between the response Ypdratio and its corresponding 

factors.  The effect estimates shown in Table 3.54 reflect a one-unit change in the value of its 

associated regressor variable. 
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Table 3.41: Response Surface Design Points 
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Table 3.42: Response Surface Design Responses Values 
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Table 3.43: Response Surfaces: ANOVA for THROUGHP 

 

 

Table 3.44: Response Surfaces: Fit Statistics for THROUGHP 

 

 

Table 3.45: Response Surfaces: Effect Estimates for THROUGHP 

 

 

Table 3.46: Response Surfaces: ANOVA for E2EDELAY 
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Table 3.47: Response Surfaces: Fit Statistics for E2EDELAY 

 

Table 3.48: Response Surfaces: Effect Estimates for E2EDELAY 

 
 

Table 3.49: Response Surfaces: ANOVA for JITTER 

 

 

Table 3.50: Response Surfaces: Fit Statistics for JITTER 
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Table 3.51: Response Surfaces: Effect Estimates for JITTER 

 

Table 3.52: Response Surfaces: ANOVA for PDRATIO 

 

Table 3.53: Response Surfaces: Fit Statistics for PDRATIO 

 

Table 3.54: Response Surfaces: Effect Estimates for PDRATIO 

 



 

 

CHAPTER 4 

RESULTS 
 

“There is no better high than discovery.” 

—E. O. Wilson 

 
Figure 4.1 shows the response surface of THROUGHP for the local region, with 

optimization results for the maximization of THROUGHP for the local response region 

indicated in Table 4.1.  The data in Table 4.1 are shown in decreasing order of THROUGHP.  

From the table we see that 12 generating mesh routers with an item size of 1500 bytes should 

lead to an average throughput of 12000.5 bps.  At the other extreme, we see that 12 

generating mesh routers with an item size of 512 bytes results in an expected THROUGHP 

of 4096.9 bps. 

These optimization results for the maximization of THROUGHP are shown 

graphically in Figure 4.2.  Observe that the levels of traffic load are indicated on the x axis, 

with a similar representation of item size indicated on the y axis.  The overlays reflect the 

expected values for the THROUGHP response for each factor combination traffic load–item 

size. 

Figure 4.3 shows the response surface of E2EDELAY for the local region, with 

optimization results for the minimization of E2EDELAY for the local response region 

indicated in Table 4.2.  The data in Table 4.2 are shown in decreasing order of E2EDELAY.  

From the table we see that 12 generating mesh routers with an item size of 512 bytes should 

lead to an average end-to-end delay of roughly 0.104 seconds, or 104 milliseconds.  At the  
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Figure 4.1: Response Surface: THROUGHP 

 

 

Table 4.1: Optimization Results: (THROUGHP is Maximized) 
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Figure 4.2: Contour Chart: THROUGHP 

 
other extreme, we see that 32 generating mesh routers with an item size of 1500 bytes results 

in an expected E2EDELAY of about 0.394 seconds, or 394 milliseconds. 

These optimization results for the minimization of E2EDELAY are shown 

graphically in Figure 4.4.  Observe again that the levels of traffic load are indicated on the x 

axis, with a similar representation of item size indicated on the y axis.  The overlays reflect 

the expected values for the E2EDELAY response for each factor combination traffic load–

item size. 

Figure 4.5 shows the response surface of JITTER for the local region, with 

optimization results for the minimization of JITTER for the local response region indicated 

in Table 4.3.  The data in Table 4.3 are shown in decreasing order of JITTER.  From the table 

we see that 12 generating mesh routers with an item size of 512 bytes should lead to an  
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Figure 4.3: Response Surface: E2EDELAY 

 

 

Table 4.2: Optimization Results: (E2EDELAY is Minimized) 
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Figure 4.4: Contour Chart: E2EDELAY 

 
average jitter of roughly 0.010 seconds, or 110 milliseconds.  At the other extreme, we see 

that 32 generating mesh routers with an item size of 1500 bytes results in an expected 

JITTER of about 0.137 seconds, or 137 milliseconds. 

These optimization results for the minimization of JITTER are shown graphically in 

Figure 4.6.  Observe again that the levels of traffic load are indicated on the x axis, with a 

similar representation of item size indicated on the y axis.  The overlays reflect the expected 

values for the JITTER response for each factor combination traffic load–item size. 

Figure 4.7 shows the response surface of PDRATIO for the local region, with 

optimization results for the maximization of PDRATIO for the local response region 

indicated in Table 4.4.  The data in Table 4.4 are shown in decreasing order of PDRATIO. 

From the table we see that 22 generating mesh routers with an item size of 512 bytes should 

lead to an average packet delivery ratio of roughly 1.0007.  At the other extreme, we see that  
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Figure 4.5: Response Surface: JITTER 
 
32 generating mesh routers with an item size of 1500 bytes results in an expected PDRATIO 

of approximately 0.9950. 

These optimization results for the maximization of PDRATIO are shown graphically 

in Figure 4.8.  Observe that the levels of traffic load are indicated on the x axis, with a similar 

representation of item size indicated on the y axis.  The overlays reflect the expected values 

for the PDRATIO response for each factor combination traffic load–item size.  
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Table 4.3: Optimization Results: (JITTER is Minimized) 
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Figure 4.6: Contour Chart: JITTER 

 

 

 

 

Figure 4.7: Response Surface: PDRATIO 
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Table 4.4: Optimization Results: (PDRATIO is Maximized) 
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Figure 4.8: Contour Chart: PDRATIO 

 



 

 

CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 
 

“A journey of a thousand miles begins with a single step.” 

—Confucius 

 
Statistical design of experiments (DOE) and response surface methodology (RSM) 

may be useful to researchers and scientists for evaluating the performance of existing and 

future multi-hop wireless mesh networks.  The stepwise use of fractional and full factorial 

designs should lead to viable first-order empirical models.  Where first-order empirical 

models are deemed inadequate, response surface methodology may lead the researcher to 

develop viable second-order empirical models.  Moreover, RSM facilitates response 

optimization for a local region of interest. 

Future work might include application of statistical DOE and RSM for a small-scale 

multi-hop WMN testbed, where the results of such an experimental environment may be 

compared against comparable simulation studies.  Reconciling differences in results of the 

two might offer a useful starting point for developing viable first-order and second-order 

models, as well as the use of response optimization, for deployed multi-hop WMNs.  

Assuming that the preceding is done successfully, first-order and second-order models could 

conceivably be developed for small-scale, medium-scale, and large-scale multi-hop WMNs.  

The end result of such work might be the development of a vast “library” of pre-determined 

first-order, second-order, and optimization models, which should be of interest to protocol 

and network architects.  Additionally, such a “library” would mitigate the need to employ 
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time-consuming and expensive simulation studies, since the appropriate factor levels for a 

particular response are predetermined. 
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ABSTRACT 
 
The number of multi-hop wireless mesh networks is expected to grow dramatically during 

the coming years.  This is due mainly to the need for wireless connection to the Internet that 

meets the following requirements: low cost; fast and flexible deployment; and extension to 

areas where wireline deployment is economically infeasible.  In order to accommodate such 

deployments, however, research challenges such as security, QoS support for video and 

VoIP, and performance and scalability must be addressed.  The work described in this 

dissertation addresses performance evaluation and empirical modeling of multi-hop wireless 

mesh networks. Specifically, three research goals are met.  The first is the development of a 

better understanding of fundamental performance, scaling properties, and tradeoffs of multi-

hop wireless mesh networks.  The second is the comprehensive evaluation of network 

performance over a large design space.  And the third is the characterization of the functional 

relationship between performance metrics and relevant factors.  Statistical design of 

experiments and response surface methodology are used to meet these three research goals.  

Results of the work described in this dissertation suggest that: (1) statistical design of 

experiments and response surface methodology may be useful to researchers and scientists 

for evaluating the performance of existing and future multi-hop wireless mesh networks; 

(2) the stepwise use of fractional and full factorial designs should lead to viable first-order 
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empirical models; (3) response surface methodology may lead the researcher to viable 

second-order empirical models where first-order empirical models are deemed inadequate; 

and (4) response optimization for a local region may be attained through the use of response 

surface methodology.  Implications of these results are as follows: (1) application of 

statistical design of experiments and response surface methodology for a small-scale multi-

hop wireless mesh network testbed, along with comparable simulation studies, might offer a 

starting point for reconciling expected differences in outcomes between the two; (2) first-

order and second-order empirical models could conceivably be developed for small-scale, 

medium-scale, and large-scale multi-hop wireless mesh networks; and (3) a “library” of first-

order and second-order models, along with optimized results for responses, may eventually 

prove useful to protocol and network architects. 
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