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Cuntz-Krieger algebras and flow equivalence

Theorem [Cuntz and Krieger (’80), Matsumoto and Matui
(’13)]
Suppose A and B are irreducible {0,1}-matrices that are not
permutation matrices. Then the following are equivalent:

1 (X̄A, σ̄A) and (X̄B, σ̄B) are flow equivalent.
2 (OA⊗K ,DA⊗C ) and (OB⊗K ,DB⊗C ) are isomorphic.



Cuntz-Krieger algebras and orbit equivalence
An essential part of the proof of the previous theorem is the
following result.

Theorem [Matsumoto (’13), Matsumoto and Matui (’13)]
Suppose A and B are irreducible {0,1}-matrices that are not
permutation matrices. Then the following are equivalent:

1 (XA,σ) and (XB,σB) are continuously orbit equivalent.
2 GA and GB are isomorphic.
3 (OA,DA) and (OB,DB) are isomorphic.



Graph algebras and orbit equivalence

Theorem [Brownlowe, Carlsen, and Whittaker]
Let E and F be graphs. Consider the following 4 statements.
(1) There is an isomorphism from C∗(E) to C∗(F ) which maps

D(E) onto D(F ).
(2) The graph groupoids GE and GF are isomorphic as

topological groupoids.
(3) The pseudogroups of E and F are isomorphic.
(4) E and F are orbit equivalent.

Then (1) ⇐⇒ (2), (3) ⇐⇒ (4) and (2) =⇒ (3). If E and F
satisfy condition (L), then (3) =⇒ (2) and the 4 statements are
equivalent.



Directed graphs
A directed graph E is a quadruple (E0,E1, r ,s) consisting
of two sets E0 and E1 and two maps r ,s : E1→ E0.
The elements of E0 are called vertices.
The elements of E1 are called edges.
If e is an edge, s(e) is called the source of e, and r(e) is
called the range of e.
If s(e) = v and r(e) = w , then we say that v emits e, and
that w receives e.
If v ∈ E0, then we let vE1 = {e ∈ En : s(e) = v} and
E1v = {e ∈ En : r(e) = v}.



Graph C∗-algebras
Let E be a graph. The C∗-algebra C∗(E) of the graph E is
defined as the universal C∗-algebra generated by a family
(se,pv )e∈E1,v∈E0 consisting of partial isometries (se)e∈E1 with
mutually orthogonal range projections and mutually orthogonal
projections (pv )v∈E0 satisfying

1 s∗ese = pr(e) for all e ∈ E1,
2 ses∗e ≤ ps(e) for all e ∈ E1,
3 pv = ∑e∈vE1 ses∗e for all v ∈ E0

reg.



Paths
A path of length n in a directed graph E is a sequence
µ = µ1µ2 . . .µn of edges in E such that r(µi) = s(µi+1) for
i ∈ {1,2, . . . ,n−1}.
We write |µ| for the length n of a path.
We denote by En the set of paths of length n, and let
E∗ =

⋃
∞

n=0 En.
We extend the range and source maps to E∗ by setting
s(µ) = s(µ1) and r(µ) = r(µn) when |µ| ≥ 1, and
s(µ) = r(µ) = µ when µ ∈ E0.
If µ,ν ∈ E∗ and r(µ) = s(ν), then we write µν for the path
µ1 . . .µ|µ|ν1 . . .ν|ν |.



The C∗-subalgebra D(E)

For µ ∈ E∗, we let sµ = sµ1 . . .sµ|µ| when |µ| ≥ 1, and
sµ = pµ when µ ∈ E0.
We let D(E) denote the C∗-subalgebra of C∗(E) generated
by {sµs∗µ | µ ∈ E∗}.
D(E) is abelian and its spectrum is homeomorphic to ∂E
by a homeomorphism hE : ∂E → Spec(D(E)) satisfying

hE (x)(sµs∗µ ) =

{
1 if x ∈ Z (µ),

0 if x /∈ Z (µ).
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Infinite paths
An infinite path in a directed graph E is an infinite
sequence x = x1x2 . . . of edges in E such that
s(xi) = r(xi+1) for i ∈ {1,2, . . .}.
We denote by E∞ the set of infinite paths in E .
We extend the range map to E∞ by setting r(x) = r(x1).
If µ ∈ E∗, x ∈ E∞ and s(µ) = r(x), then we write µx for the
path µ1 . . .µ|µ|x1x2 . . . (if µ ∈ E0, then µx = x).



The boundary path space
We let E0

reg = {v ∈ E0 : vE1 is finite and nonempty} and
E0

sing = E0 \E0
reg.

The boundary path space of E is the space
∂E := E∞∪{µ ∈ E∗ : r(µ) ∈ E0

sing}.
For µ ∈ E∗, we let Z (µ) = {µx : x ∈ ∂E , s(µ) = r(x)}.
Given µ ∈ E∗ and a finite subset F ⊆ r(µ)E1 we let
Z (µ \F ) = Z (µ)\ (

⋃
e∈F Z (µe)).

We equip ∂E with the topology generated by
{Z (µ \F ) : u ∈ E∗, F is a finite subset of r(µ)E1}.
∂E then becomes a totally disconnected locally compact
Hausdorff space.
Z (µ \F ) is open and compact for all µ ∈ E∗ and all finite
subsets F of r(µ)E1.
∂E is compact if and only if E0 is finite.



The shift map
For n ∈ N, let ∂E≥n = {x ∈ ∂E : |x | ≥ n}.
Then ∂E≥n is an open subset of ∂E .
We define the shift map on E to be the map
σE : ∂E≥1→ ∂E given by σE (x1x2x3 · · ·) = x2x3 for
x1x2x3 · · · ∈ ∂E≥2 and σE (e) = r(e) for e ∈ ∂E ∩E1.
For n ≥ 1, we let σn

E be the n-fold composition of σE with
itself.
We let σ0

E denote the identity map on ∂E .
Then σn

E is a local homeomorphism for all n ∈ N.
When we write σn

E (x), we implicitly assume that x ∈ ∂E≥n.
The orbit of an x ∈ ∂E is the set⋃

n∈N
⋃|x |

m=0(σn
E )−1(σm

E ({x})).



The groupoid of a graph
Let E be a graph.
Let G E = {(x ,m−n,y) : x ,y ∈ ∂E , m,n ∈ N, and σm

E (x) =
σn

E (y)}.
We define a partial defined product on G E by
(x ,k ,y)(w , l ,z) = (x ,k + l ,z) if y = w and the product is
undefined otherwise; and an inverse map
(x ,k ,y)−1 = (y ,−k ,x).
With these operations G E becomes a groupoid.
The unit space G 0

E of G E is {(x ,0,x) : x ∈ ∂E} which we
will freely identify with ∂E via the map (x ,0,x) 7→ x . We
then have that the range and source maps r ,s : G E → ∂E
are given by r(x ,k ,y) = x and s(x ,k ,y) = y .



The groupoid of a graph
When m,n ∈ N, U is an open subset of ∂E≥m such that the
restriction of σm

E to U is injective, V is an open subset of
∂E≥n such that the restriction of σn

E to V is injective, and
σm

E (U) = σn
E (V ), we let Z (U,m,n,V ) := {(x ,k ,y) ∈ G E : x ∈

U, k = m−n, y ∈ V , σm
E (x) = σn

E (y)}.
For µ,ν ∈ E∗ with r(µ) = r(ν), let
Z (u,v) := Z (Z (µ), |µ|, |ν |,Z (ν)).
Then G E is a locally compact, Hausdorff, étale topological
groupoid with the topology given by the basis
{Z (U,m,n,V ) : m,n ∈ N, U is an open subset of ∂E≥m

such that the restriction of σm
E to U is injective, V is an

open subset of ∂E≥n such that the restriction of σn
E to V is

injective, σm
E (U) = σn

E (V )}.



The groupoid of a graph
We furthermore have that each Z (µ,ν) is compact and
open, and that the topology ∂E inherits when we consider
it as a subset of G E by identifying it with {(x ,0,x) : x ∈ ∂E}
agrees with the topology described previously.
Notice that {Z (U, |µ|, |ν |,V ) : µ,ν ∈ E∗, U is a clopen
subset of Z (µ), V is a clopen subset of Z (ν),
σ
|µ|
E (U) = σ

|ν |
E (V )} is a basis for the topology of G E .

G E is topological amenable, so the reduced and universal
C∗-algebras of G E are equal.



Graph groupoids and graphs

Proposition
Let E be a graph. Then there is a unique isomorphism from
C∗(E) to the C∗-algebra C∗(G E ) of G E that, for each v ∈ E0,
maps pv to the indicator function 1Z (v ,v) of the compact open
set Z (v ,v), and, for each e ∈ E1, maps se to the indicator
function 1Z (e,r(e)) of the compact open set Z (e, r(e)). This
isomorphism maps D(E) onto C0(G 0

E ).

Proposition
Let E and F graphs. If G E and G F are isomorphic as
topological groupoids, then there is an isomorphism from C∗(E)
to C∗(F ) which maps D(E) onto D(F ).
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Orbit equivalence
The orbit of x ∈ ∂E is the set

orb(x) =
⋃

n∈N

|x |⋃
m=0

(σ
n
E )−1(σ

m
E ({x})).

So the orbit of x is the smallest subset orb(x) of ∂E which
contains x and satisfies y ∈ orb(x) =⇒ σE (y) ∈ orb(x) and
σE (y) ∈ orb(x) =⇒ y ∈ orb(x).
Suppose h : ∂E → ∂F is a homeomorphism such that
h(orb(x)) = orb(h(x)) for all x ∈ ∂E . Then there is for each
x ∈ ∂E nonnegative integers k(x) and l(x) such that
σ

k(x)
F (h(σE (x))) = σ

l(x)
F (h(x)).

Similarly, there is for each y ∈ ∂F nonnegative integers
k ′(y) and l ′(y) such that
σ

k ′(y)
E (h−1(σF (y))) = σ

l ′(y)
E (h−1(y)).

If k(x), l(x), k ′(y), and l ′(y) can be choosen such that
k , l : ∂E≥1→ N and k ′, l ′ : ∂F≥1→ N are continuous, then
we say that E and F are orbit equivalent.



Continuously orbit equivalence
Let E and F be graphs. We say that E and F are continuously
orbit equivalent if there exists a homeomorphism h : ∂E → ∂F
and continuous functions k1, l1 : ∂E≥1→ N and k ′1, l

′
1 : ∂F≥1→ N

such that
σ

k1(x)
F (h(σE (x))) = σ

l1(x)
F (h(x))

and
σ

k ′1(y)
E (h−1(σF (y))) = σ

l ′1(y)
E (h−1(y)),

for all x ∈ ∂E≥1,y ∈ ∂F≥1.
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The pseudogroup of a graph
We let PE be the set of homeomorphisms α : Vα → Uα

where Uα and Vα are open subsets of ∂E such that there
exist continuous functions m,n : Vα → N such that
σ

m(x)
E (x) = σ

n(x)
E (α(x)) for all x ∈ Vα .

PE forms an inverse semigroup with product defined by
αβ : β−1(Vα )→ α(Vα ∩Uβ ), (αβ (x)) = α(β (x)) for
x ∈ β−1(Vα ).



Pseudogroups of a graphs and orbit equivalence
Suppose that E and F are two graphs and that there exists a
homeomorphism h : ∂E → ∂F . Let U and V be open subsets of
∂E and let α : V → U be a homeomorhism. We then let
h ◦α ◦h−1 denote the homeomorphism from h(V ) to h(U) given
by h ◦α ◦h−1(x) = h(α(h−1(x))). We let
h ◦PE ◦h−1 = {h ◦α ◦h−1 : α ∈PE}. We say that the
pseudogroups of E and F are isomorphic if there is a
homeomorphism h : ∂E → ∂F such that h ◦PE ◦h−1 = PF .

Proposition
Let E and F be two graphs. Then E and F are orbit equivalent
if and only if the pseudogroups of E and F are isomorphic.
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The pseudogroup of an étale groupoid
Let G be an étale groupoid.
Define a bisection to be a subset A of G such that the
restriction of the source map of G to A and the restriction
of the range map of G to A both are injective.
The set of all open bisections of G form an inverse
semigroup S with product defined by
AB = {γγ ′ : (γ,γ ′) ∈ (A×B)∩G (2)} (where G (2) denote the
set of compassable pairs of G ), and the inverse of A
defined to be the image of A under the inverse map of G .
Each A ∈S defines a unique homeomorphism
αA : s(A)→ r(A) such that α(s(γ)) = r(γ) for γ ∈ A.
The set {αA : A ∈S } of partial homeomorphisms on G 0 is
the pseudogroup of G .



The pseudogroup of G E

Let E be a graph. It is not difficult to check that the
pseudogroup of G E is equal to PE .

Thus we get:

Proposition
Let E and F graphs. If G E and G F are isomorphic as
topological groupoids, then PE and PF are isomorphic.



Graph algebras and orbit equivalence

Theorem [Brownlowe, Carlsen, and Whittaker]
Let E and F be graphs. Consider the following 4 statements.
(1) There is an isomorphism from C∗(E) to C∗(F ) which maps

D(E) onto D(F ).
(2) The graph groupoids GE and GF are isomorphic as

topological groupoids.
(3) The pseudogroups of E and F are isomorphic.
(4) E and F are orbit equivalent.

Then (1) ⇐⇒ (2), (3) ⇐⇒ (4) and (2) =⇒ (3). If E and F
satisfy condition (L), then (3) =⇒ (2) and the 4 statements are
equivalent.



Cycles
A cycle is a path µ ∈ E∗ for which |µ| ≥ 1 and s(µ) = r(µ).
An exit for a cycle µ is an edge e ∈ E1 such that
s(e) = s(µi) and e 6= µi for some i ∈ {1,2, . . . , |µ|}.
A graph is said to satisfy condition (L) if every cycle has an
exit.



Topological principal groupoids
An étale groupoid is said to be topologically principal if the set
of points of G 0 with trivial isotropy group is dense (the isotropy
group of x ∈ G 0 is the group {γ ∈ G : s(γ) = r(γ) = x}).

Proposition
Let E be a graph. Then the following are equivalent:

1 The groupoid G E is topologically principal.
2 E satisfies condition (L).
3 There exists no isolated points x ∈ ∂E which are periodic

(i.e. σn(x) = x for some n > 0).
4 D(E) is a MASA in C(E).
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The groupoid of germs
Let P be a pseudogrope on a topological space X .
The groupoid of germs of P is G P = {[x ,α,y ] : α ∈P,
y ∈ dom(α), x ∈ ran(α)} where [x ,α,y ] = [x ,β ,y ] if and
only if there exists an open subset V such that
y ∈ V ⊆ dom(α)∩dom(β ) and α(z) = β (z) for all z ∈ V .
The product on G P is defined by
[x ,α,y ][y ,β ,z] = [x ,αβ ,z] and the inverse by
[x ,α,y ]−1 = [y ,α−1,x ].
The topology of G P is generated by sets
Z (U,α,V ) := {[x ,α,y ] : x ∈ U, y ∈ V} where α ∈P, V is
an open subset of dom(α), and U is an open subset of
ran(α).



The groupoid of germs
Renault has shown that if G is Hausdorff and topological
principal étale groupoid, then the groupoids of germs of the
pseudogroup of G is isomorphic to G .

Thus we get:

Proposition
Let E and F graphs satisfying condition (L). If PE and PF are
isomorphic, then G E and G F are isomorphic as topological
groupoids.
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The normalizer of D(E)

Let E be a graph.
The normalizer of D(E) is the set
N(D(E)) := {n ∈ C∗(E) : ndn∗, n∗dn ∈D(E) for all
d ∈D(E)}.
If n ∈ N(D(E)), then nn∗,n∗n ∈D(E).
For n ∈ N(D(E)) let dom(n) := {x ∈ ∂E : hE (x)(n∗n) > 0}
and ran(n) := {x ∈ ∂E : hE (x)(nn∗) > 0}.
There is a unique homeomorphism αn : dom(n)→ ran(n)
such that hE (x)(n∗dn) = hE (αn(x))(d)hE (x)(n∗n) for all
d ∈D(E).



Isolated points in ∂E
Let ∂Eiso be the set of isolated points in ∂E .
If x ∈ ∂Eiso, then the characteristic function 1{x} of {x}
belongs to C0(∂E).
Let px denote the unique element of D(E) satisfying that
hE (y)(px ) is 1 if y = x and zero otherwise.
We say that x ∈ ∂E is eventually periodic if there are
m,n ∈ N, m 6= n such that σm

E (x) = σn
E (x).

Lemma
Let x ∈ ∂Eiso. If x is not eventually periodic, then
pxC∗(E)px = pxD(E)px = Cpx . If x is eventually periodic, then
pxC∗(E)px is isomorphic to C(T) and pxD(E)px = Cpx .



The extended Weyl groupoid of (C∗(E),D(E))

If x1,x2 ∈ ∂E , n1,n2 ∈ N(D(X )), x1 ∈ dom(n1), and
x2 ∈ dom(n2), then we write (n1,x1)∼ (n2,x2) if either
x1 = x2 /∈ ∂Eiso and there is an open set U such that
x1 ∈ U ⊆ dom(n1)∩dom(n2) and αn1(y) = αn2(y) for all
y ∈ U; or x1 = x2 ∈ ∂Eiso, αn1(x1) = αn2(x2), and
[(px1n∗1n2px1n∗2n1px1)−1/2px1n∗1n2px1 ]1 = 0;.
Then ∼ is an equivalence relation on
{(n,x) : n ∈ N(D(E)), x ∈ dom(n)}.



The extended Weyl groupoid of (C∗(E),D(E))

We let [(n,x)] denote the equivalence class of (n,x), and
we let G (C∗(E),D(E)) = {[(n,x)] : n ∈ N(D(E)), x ∈ dom(n)}.
We define a partial defined product on G (C∗(E),D(E)) by
[(n1,x1)][(n2,x2)] = [(n1n2,x2)] if αn2(x2) = x1 (the product
is undefined otherwise) and an inverse map
[(n,x)]−1 = [(n∗,αn(x))].
Then G (C∗(E),D(E)) equipped with these operations is a
groupoid.
We equipe G (C∗(E),D(E)) with the topology generated by
{{[(n,x)] : x ∈ dom(n)} : n ∈ N(D(E))}.



The extended Weyl groupoid of (C∗(E),D(E))

Proposition
Let E be a graph. Then G (C∗(E),D(E)) is a topological groupoid,
and G E and G (C∗(E),D(E)) are isomorphic as topological
groupoids.

Proposition
Let E and F graphs. If there is an isomorphism from C∗(E) to
C∗(F ) which maps D(E) onto D(F ), then G E and G F are
isomorphic as topological groupoids.
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satisfy condition (L), then (3) =⇒ (2) and the 4 statements are
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Examples

1 Let E be the graph and let F be the graph
Then ∂E = {?}= ∂F , so E and F are orbit equivalent, but
C∗(E)∼= C 6∼= C(T)∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then ∂E = N = ∂F , so E and F are orbit equivalent, but
C∗(E)∼= K 6∼= K ⊗C(T)∼= C∗(F ).


