Joint work with Nathan Brownlowe and Michael F. Whittaker from the University of Wollongong

Toke Meier Carlsen

Classification of *C**-algebras, flow equivalence of shift spaces, and graphs and Leavitt path algebras University of Louisiana at Lafayette, 2015-05-14 Cuntz-Krieger algebras and flow equivalence

Theorem [Cuntz and Krieger ('80), Matsumoto and Matui ('13)]

Suppose A and B are irreducible $\{0,1\}$ -matrices that are not permutation matrices. Then the following are equivalent:

- $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are flow equivalent.

Cuntz-Krieger algebras and orbit equivalence

An essential part of the proof of the previous theorem is the following result.

Theorem [Matsumoto ('13), Matsumoto and Matui ('13)]

Suppose A and B are irreducible $\{0,1\}$ -matrices that are not permutation matrices. Then the following are equivalent:

- (X_A, σ) and (X_B, σ_B) are continuously orbit equivalent.
- 2 \mathscr{G}_A and \mathscr{G}_B are isomorphic.
- **3** $(\mathcal{O}_A, \mathcal{D}_A)$ and $(\mathcal{O}_B, \mathcal{D}_B)$ are isomorphic.

Theorem [Brownlowe, Carlsen, and Whittaker]

Let E and F be graphs. Consider the following 4 statements.

- (1) There is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathscr{D}(E)$ onto $\mathscr{D}(F)$.
- (2) The graph groupoids \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.
- (3) The pseudogroups of E and F are isomorphic.
- (4) E and F are orbit equivalent.

Directed graphs

- A directed graph E is a quadruple (E⁰, E¹, r, s) consisting of two sets E⁰ and E¹ and two maps r, s: E¹ → E⁰.
- The elements of *E*⁰ are called *vertices*.
- The elements of E^1 are called *edges*.
- If e is an edge, s(e) is called the source of e, and r(e) is called the range of e.
- If s(e) = v and r(e) = w, then we say that v emits e, and that w receives e.
- If $v \in E^0$, then we let $vE^1 = \{e \in E^n : s(e) = v\}$ and $E^1v = \{e \in E^n : r(e) = v\}.$

Graph C*-algebras

Let *E* be a graph. The *C*^{*}-algebra *C*^{*}(*E*) of the graph *E* is defined as the universal *C*^{*}-algebra generated by a family $(s_e, p_v)_{e \in E^1, v \in E^0}$ consisting of partial isometries $(s_e)_{e \in E^1}$ with mutually orthogonal range projections and mutually orthogonal projections $(p_v)_{v \in E^0}$ satisfying

•
$$s_e^*s_e = p_{r(e)}$$
 for all $e \in E^1$,

②
$$s_e s_e^* \leq p_{s(e)}$$
 for all $e \in E^1$

$${f 0}$$
 $p_v = \sum_{e \in vE^1} s_e s_e^*$ for all $v \in E^0_{
m reg}$.

Paths

- A path of length n in a directed graph E is a sequence $\mu = \mu_1 \mu_2 \dots \mu_n$ of edges in E such that $r(\mu_i) = s(\mu_{i+1})$ for $i \in \{1, 2, \dots, n-1\}$.
- We write $|\mu|$ for the length *n* of a path.
- We denote by E^n the set of paths of length *n*, and let $E^* = \bigcup_{n=0}^{\infty} E^n$.
- We extend the range and source maps to E^* by setting $s(\mu) = s(\mu_1)$ and $r(\mu) = r(\mu_n)$ when $|\mu| \ge 1$, and $s(\mu) = r(\mu) = \mu$ when $\mu \in E^0$.
- If $\mu, \nu \in E^*$ and $r(\mu) = s(\nu)$, then we write $\mu\nu$ for the path $\mu_1 \dots \mu_{|\mu|} \nu_1 \dots \nu_{|\nu|}$.

The C^* -subalgebra $\mathcal{D}(E)$

- For $\mu \in E^*$, we let $s_\mu = s_{\mu_1} \dots s_{\mu_{|\mu|}}$ when $|\mu| \ge 1$, and $s_\mu = p_\mu$ when $\mu \in E^0$.
- We let D(E) denote the C*-subalgebra of C*(E) generated by {s_μs_μ^{*} | μ ∈ E*}.
- D(E) is abelian and its spectrum is homeomorphic to ∂E by a homeomorphism h_E : ∂E → Spec(D(E)) satisfying

$$h_E(x)(s_\mu s_\mu^*) = egin{cases} 1 & ext{if } x \in Z(\mu), \ 0 & ext{if } x \notin Z(\mu). \end{cases}$$

Theorem [Brownlowe, Carlsen, and Whittaker]

Let E and F be graphs. Consider the following 4 statements.

- (1) There is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathscr{D}(E)$ onto $\mathscr{D}(F)$.
- (2) The graph groupoids \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.
- (3) The pseudogroups of E and F are isomorphic.
- (4) E and F are orbit equivalent.

Infinite paths

- An *infinite path* in a directed graph *E* is an infinite sequence *x* = *x*₁*x*₂... of edges in *E* such that *s*(*x_i*) = *r*(*x_{i+1}*) for *i* ∈ {1,2,...}.
- We denote by E[∞] the set of infinite paths in E.
- We extend the range map to E^{∞} by setting $r(x) = r(x_1)$.
- If $\mu \in E^*$, $x \in E^{\infty}$ and $s(\mu) = r(x)$, then we write μx for the path $\mu_1 \dots \mu_{|\mu|} x_1 x_2 \dots$ (if $\mu \in E^0$, then $\mu x = x$).

The boundary path space

- We let $E_{reg}^0 = \{v \in E^0 : vE^1 \text{ is finite and nonempty}\}$ and $E_{sing}^0 = E^0 \setminus E_{reg}^0$.
- The boundary path space of *E* is the space $\partial E := E^{\infty} \cup \{\mu \in E^* : r(\mu) \in E^0_{sing}\}.$
- For $\mu \in E^*$, we let $Z(\mu) = \{\mu x : x \in \partial E, \ s(\mu) = r(x)\}.$
- Given $\mu \in E^*$ and a finite subset $F \subseteq r(\mu)E^1$ we let $Z(\mu \setminus F) = Z(\mu) \setminus (\bigcup_{e \in F} Z(\mu e)).$
- We equip ∂E with the topology generated by {Z(µ \ F) : u ∈ E*, F is a finite subset of r(µ)E¹}.
- ∂E then becomes a totally disconnected locally compact Hausdorff space.
- Z(µ \ F) is open and compact for all µ ∈ E* and all finite subsets F of r(µ)E¹.
- ∂E is compact if and only if E^0 is finite.

The shift map

- For $n \in \mathbb{N}$, let $\partial E^{\geq n} = \{x \in \partial E : |x| \geq n\}$.
- Then $\partial E^{\geq n}$ is an open subset of ∂E .
- We define the *shift map* on *E* to be the map $\sigma_E : \partial E^{\geq 1} \rightarrow \partial E$ given by $\sigma_E(x_1x_2x_3\cdots) = x_2x_3$ for $x_1x_2x_3\cdots \in \partial E^{\geq 2}$ and $\sigma_E(e) = r(e)$ for $e \in \partial E \cap E^1$.
- For n ≥ 1, we let σⁿ_E be the *n*-fold composition of σ_E with itself.
- We let σ_E^0 denote the identity map on ∂E .
- Then σ_E^n is a local homeomorphism for all $n \in \mathbb{N}$.
- When we write $\sigma_E^n(x)$, we implicitly assume that $x \in \partial E^{\geq n}$.
- The *orbit* of an $x \in \partial E$ is the set $\bigcup_{n \in \mathbb{N}} \bigcup_{m=0}^{|x|} (\sigma_E^n)^{-1} (\sigma_E^m(\{x\})).$

The groupoid of a graph

- Let E be a graph.
- Let $\mathscr{G}_E = \{(x, m-n, y) : x, y \in \partial E, m, n \in \mathbb{N}, \text{ and } \sigma_E^m(x) = \sigma_E^n(y)\}.$
- We define a partial defined product on 𝒢_E by (x,k,y)(w,l,z) = (x,k+l,z) if y = w and the product is undefined otherwise; and an inverse map (x,k,y)⁻¹ = (y,-k,x).
- With these operations \mathscr{G}_E becomes a groupoid.
- The unit space \mathscr{G}_{E}^{0} of \mathscr{G}_{E} is $\{(x,0,x) : x \in \partial E\}$ which we will freely identify with ∂E via the map $(x,0,x) \mapsto x$. We then have that the range and source maps $r, s : \mathscr{G}_{E} \to \partial E$ are given by r(x,k,y) = x and s(x,k,y) = y.

The groupoid of a graph

- When $m, n \in \mathbb{N}$, U is an open subset of $\partial E^{\geq m}$ such that the restriction of σ_E^m to U is injective, V is an open subset of $\partial E^{\geq n}$ such that the restriction of σ_E^n to V is injective, and $\sigma_E^m(U) = \sigma_E^n(V)$, we let $Z(U, m, n, V) := \{(x, k, y) \in \mathscr{G}_E : x \in U, k = m n, y \in V, \sigma_E^m(x) = \sigma_E^n(y)\}.$
- For $\mu, v \in E^*$ with $r(\mu) = r(v)$, let $Z(u, v) := Z(Z(\mu), |\mu|, |v|, Z(v))$.
- Then \mathscr{G}_E is a locally compact, Hausdorff, étale topological groupoid with the topology given by the basis $\{Z(U, m, n, V) : m, n \in \mathbb{N}, U \text{ is an open subset of } \partial E^{\geq m}$ such that the restriction of σ_E^m to U is injective, V is an open subset of $\partial E^{\geq n}$ such that the restriction of σ_E^n to V is injective, σ_E^n to V is injective, $\sigma_E^n(U) = \sigma_E^n(V)$.

The groupoid of a graph

- We furthermore have that each Z(μ, v) is compact and open, and that the topology ∂E inherits when we consider it as a subset of 𝒢_E by identifying it with {(x,0,x) : x ∈ ∂E} agrees with the topology described previously.
- Notice that {Z(U, |μ|, |v|, V) : μ, v ∈ E*, U is a clopen subset of Z(μ), V is a clopen subset of Z(v), σ_E^{|μ|}(U) = σ_E^{|v|}(V)} is a basis for the topology of 𝒢_E.
- \mathscr{G}_E is topological amenable, so the reduced and universal C^* -algebras of \mathscr{G}_E are equal.

Graph groupoids and graphs

Proposition

Let *E* be a graph. Then there is a unique isomorphism from $C^*(E)$ to the C^* -algebra $C^*(\mathscr{G}_E)$ of \mathscr{G}_E that, for each $v \in E^0$, maps p_v to the indicator function $1_{Z(v,v)}$ of the compact open set Z(v,v), and, for each $e \in E^1$, maps s_e to the indicator function $1_{Z(e,r(e))}$ of the compact open set Z(e,r(e)). This isomorphism maps $\mathscr{D}(E)$ onto $C_0(\mathscr{G}_E^0)$.

Proposition

Let *E* and *F* graphs. If \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids, then there is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathscr{D}(E)$ onto $\mathscr{D}(F)$.

Theorem [Brownlowe, Carlsen, and Whittaker]

Let E and F be graphs. Consider the following 4 statements.

- (1) There is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathscr{D}(E)$ onto $\mathscr{D}(F)$.
- (2) The graph groupoids \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.
- (3) The pseudogroups of E and F are isomorphic.
- (4) E and F are orbit equivalent.

Orbit equivalence

• The *orbit* of $x \in \partial E$ is the set

$$\operatorname{orb}(x) = \bigcup_{n \in \mathbb{N}} \bigcup_{m=0}^{|x|} (\sigma_E^n)^{-1} (\sigma_E^m(\{x\})).$$

- So the orbit of x is the smallest subset $\operatorname{orb}(x)$ of ∂E which contains x and satisfies $y \in \operatorname{orb}(x) \Longrightarrow \sigma_E(y) \in \operatorname{orb}(x)$ and $\sigma_E(y) \in \operatorname{orb}(x) \Longrightarrow y \in \operatorname{orb}(x)$.
- Suppose $h: \partial E \to \partial F$ is a homeomorphism such that $h(\operatorname{orb}(x)) = \operatorname{orb}(h(x))$ for all $x \in \partial E$. Then there is for each $x \in \partial E$ nonnegative integers k(x) and l(x) such that $\sigma_F^{k(x)}(h(\sigma_E(x))) = \sigma_F^{l(x)}(h(x))$.
- Similarly, there is for each $y \in \partial F$ nonnegative integers k'(y) and l'(y) such that

$$\sigma_{E}^{k'(y)}(h^{-1}(\sigma_{F}(y))) = \sigma_{E}^{l'(y)}(h^{-1}(y)).$$

• If k(x), l(x), k'(y), and l'(y) can be choosen such that $k, l : \partial E^{\geq 1} \to \mathbb{N}$ and $k', l' : \partial F^{\geq 1} \to \mathbb{N}$ are continuous, then we say that *E* and *F* are *orbit equivalent*.

Continuously orbit equivalence

Let *E* and *F* be graphs. We say that *E* and *F* are *continuously orbit equivalent* if there exists a homeomorphism $h: \partial E \to \partial F$ and continuous functions $k_1, l_1: \partial E^{\geq 1} \to \mathbb{N}$ and $k'_1, l'_1: \partial F^{\geq 1} \to \mathbb{N}$ such that

$$\sigma_F^{k_1(x)}(h(\sigma_E(x))) = \sigma_F^{l_1(x)}(h(x))$$

and

$$\sigma_E^{k_1'(y)}(h^{-1}(\sigma_F(y))) = \sigma_E^{l_1'(y)}(h^{-1}(y)),$$

for all $x \in \partial E^{\geq 1}$, $y \in \partial F^{\geq 1}$.

Theorem [Brownlowe, Carlsen, and Whittaker]

Let E and F be graphs. Consider the following 4 statements.

- (1) There is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathscr{D}(E)$ onto $\mathscr{D}(F)$.
- (2) The graph groupoids \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.
- (3) The pseudogroups of E and F are isomorphic.
- (4) E and F are orbit equivalent.

The pseudogroup of a graph

- We let \mathscr{P}_E be the set of homeomorphisms $\alpha : V_{\alpha} \to U_{\alpha}$ where U_{α} and V_{α} are open subsets of ∂E such that there exist continuous functions $m, n : V_{\alpha} \to \mathbb{N}$ such that $\sigma_E^{m(x)}(x) = \sigma_E^{n(x)}(\alpha(x))$ for all $x \in V_{\alpha}$.
- \mathscr{P}_E forms an inverse semigroup with product defined by $\alpha\beta:\beta^{-1}(V_{\alpha})\to \alpha(V_{\alpha}\cap U_{\beta}), (\alpha\beta(x))=\alpha(\beta(x))$ for $x\in\beta^{-1}(V_{\alpha}).$

Pseudogroups of a graphs and orbit equivalence

Suppose that *E* and *F* are two graphs and that there exists a homeomorphism $h: \partial E \to \partial F$. Let *U* and *V* be open subsets of ∂E and let $\alpha: V \to U$ be a homeomorphism. We then let $h \circ \alpha \circ h^{-1}$ denote the homeomorphism from h(V) to h(U) given by $h \circ \alpha \circ h^{-1}(x) = h(\alpha(h^{-1}(x)))$. We let $h \circ \mathscr{P}_E \circ h^{-1} = \{h \circ \alpha \circ h^{-1} : \alpha \in \mathscr{P}_E\}$. We say that the pseudogroups of *E* and *F* are isomorphic if there is a homeomorphism $h: \partial E \to \partial F$ such that $h \circ \mathscr{P}_E \circ h^{-1} = \mathscr{P}_F$.

Proposition

Let *E* and *F* be two graphs. Then *E* and *F* are orbit equivalent if and only if the pseudogroups of *E* and *F* are isomorphic.

Theorem [Brownlowe, Carlsen, and Whittaker]

Let E and F be graphs. Consider the following 4 statements.

- (1) There is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathscr{D}(E)$ onto $\mathscr{D}(F)$.
- (2) The graph groupoids \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.
- (3) The pseudogroups of E and F are isomorphic.
- (4) E and F are orbit equivalent.

The pseudogroup of an étale groupoid

- Let *I* be an étale groupoid.
- Define a *bisection* to be a subset *A* of *G* such that the restriction of the source map of *G* to *A* and the restriction of the range map of *G* to *A* both are injective.
- The set of all open bisections of 𝔅 form an inverse semigroup 𝔅 with product defined by
 AB = {γγ' : (γ, γ') ∈ (A × B) ∩𝔅⁽²⁾} (where 𝔅⁽²⁾ denote the set of compassable pairs of 𝔅), and the inverse of A defined to be the image of A under the inverse map of 𝔅.
- Each $A \in \mathscr{S}$ defines a unique homeomorphism $\alpha_A : s(A) \to r(A)$ such that $\alpha(s(\gamma)) = r(\gamma)$ for $\gamma \in A$.
- The set {α_A : A ∈ 𝒴} of partial homeomorphisms on 𝒴⁰ is the pseudogroup of 𝒴.

The pseudogroup of \mathscr{G}_E

Let *E* be a graph. It is not difficult to check that the pseudogroup of \mathscr{G}_E is equal to \mathscr{P}_E . Thus we get:

Proposition

Let *E* and *F* graphs. If \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids, then \mathscr{P}_E and \mathscr{P}_F are isomorphic.

Theorem [Brownlowe, Carlsen, and Whittaker]

Let E and F be graphs. Consider the following 4 statements.

- (1) There is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathscr{D}(E)$ onto $\mathscr{D}(F)$.
- (2) The graph groupoids \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.
- (3) The pseudogroups of E and F are isomorphic.
- (4) E and F are orbit equivalent.

Cycles

- A *cycle* is a path $\mu \in E^*$ for which $|\mu| \ge 1$ and $s(\mu) = r(\mu)$.
- An *exit* for a cycle μ is an edge $e \in E^1$ such that $s(e) = s(\mu_i)$ and $e \neq \mu_i$ for some $i \in \{1, 2, ..., |\mu|\}$.
- A graph is said to satisfy *condition (L)* if every cycle has an exit.

Topological principal groupoids

An étale groupoid is said to be *topologically principal* if the set of points of \mathscr{G}^0 with trivial isotropy group is dense (the isotropy group of $x \in \mathscr{G}^0$ is the group $\{\gamma \in \mathscr{G} : s(\gamma) = r(\gamma) = x\}$).

Proposition

Let *E* be a graph. Then the following are equivalent:

- The groupoid \mathscr{G}_E is topologically principal.
- E satisfies condition (L).
- Solution There exists no isolated points x ∈ ∂E which are periodic (i.e. σⁿ(x) = x for some n > 0).
- $\mathscr{D}(E)$ is a MASA in $C^{(E)}$.

Theorem [Brownlowe, Carlsen, and Whittaker]

Let E and F be graphs. Consider the following 4 statements.

- (1) There is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathscr{D}(E)$ onto $\mathscr{D}(F)$.
- (2) The graph groupoids \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.
- (3) The pseudogroups of E and F are isomorphic.
- (4) E and F are orbit equivalent.

The groupoid of germs

- Let \mathscr{P} be a pseudogrope on a topological space X.
- The groupoid of germs of 𝒫 is 𝒢_𝒫 = {[x, α, y] : α ∈ 𝒫, y ∈ dom(α), x ∈ ran(α)} where [x, α, y] = [x, β, y] if and only if there exists an open subset V such that y ∈ V ⊆ dom(α) ∩ dom(β) and α(z) = β(z) for all z ∈ V.
- The product on $\mathscr{G}_{\mathscr{P}}$ is defined by $[x, \alpha, y][y, \beta, z] = [x, \alpha\beta, z]$ and the inverse by $[x, \alpha, y]^{-1} = [y, \alpha^{-1}, x]$.
- The topology of 𝒢_𝒫 is generated by sets
 Z(U, α, V) := {[x, α, y] : x ∈ U, y ∈ V} where α ∈ 𝒫, V is an open subset of dom(α), and U is an open subset of ran(α).

The groupoid of germs

Renault has shown that if \mathscr{G} is Hausdorff and topological principal étale groupoid, then the groupoids of germs of the pseudogroup of \mathscr{G} is isomorphic to \mathscr{G} .

Thus we get:

Proposition

Let *E* and *F* graphs satisfying condition (L). If \mathscr{P}_E and \mathscr{P}_F are isomorphic, then \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.

Theorem [Brownlowe, Carlsen, and Whittaker]

Let E and F be graphs. Consider the following 4 statements.

- (1) There is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathscr{D}(E)$ onto $\mathscr{D}(F)$.
- (2) The graph groupoids \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.
- (3) The pseudogroups of E and F are isomorphic.
- (4) E and F are orbit equivalent.

The normalizer of $\mathcal{D}(E)$

- Let E be a graph.
- The normalizer of $\mathscr{D}(E)$ is the set $N(\mathscr{D}(E)) := \{n \in C^*(E) : ndn^*, n^*dn \in \mathscr{D}(E) \text{ for all } d \in \mathscr{D}(E)\}.$
- If $n \in N(\mathscr{D}(E))$, then $nn^*, n^*n \in \mathscr{D}(E)$.
- For $n \in N(\mathscr{D}(E))$ let dom $(n) := \{x \in \partial E : h_E(x)(n^*n) > 0\}$ and ran $(n) := \{x \in \partial E : h_E(x)(nn^*) > 0\}.$
- There is a unique homeomorphism $\alpha_n : \operatorname{dom}(n) \to \operatorname{ran}(n)$ such that $h_E(x)(n^*dn) = h_E(\alpha_n(x))(d)h_E(x)(n^*n)$ for all $d \in \mathscr{D}(E)$.

Isolated points in ∂E

- Let ∂E_{iso} be the set of isolated points in ∂E .
- If x ∈ ∂E_{iso}, then the characteristic function 1_{x} of {x} belongs to C₀(∂E).
- Let p_x denote the unique element of $\mathscr{D}(E)$ satisfying that $h_E(y)(p_x)$ is 1 if y = x and zero otherwise.
- We say that $x \in \partial E$ is *eventually periodic* if there are $m, n \in \mathbb{N}, m \neq n$ such that $\sigma_E^m(x) = \sigma_E^n(x)$.

Lemma

Let $x \in \partial E_{iso}$. If x is not eventually periodic, then $p_x C^*(E)p_x = p_x \mathscr{D}(E)p_x = \mathbb{C}p_x$. If x is eventually periodic, then $p_x C^*(E)p_x$ is isomorphic to $C(\mathbb{T})$ and $p_x \mathscr{D}(E)p_x = \mathbb{C}p_x$.

The extended Weyl groupoid of $(C^*(E), \mathscr{D}(E))$

- If $x_1, x_2 \in \partial E$, $n_1, n_2 \in N(\mathscr{D}(X))$, $x_1 \in \text{dom}(n_1)$, and $x_2 \in \text{dom}(n_2)$, then we write $(n_1, x_1) \sim (n_2, x_2)$ if either $x_1 = x_2 \notin \partial E_{\text{iso}}$ and there is an open set U such that $x_1 \in U \subseteq \text{dom}(n_1) \cap \text{dom}(n_2)$ and $\alpha_{n_1}(y) = \alpha_{n_2}(y)$ for all $y \in U$; or $x_1 = x_2 \in \partial E_{\text{iso}}$, $\alpha_{n_1}(x_1) = \alpha_{n_2}(x_2)$, and $[(p_{x_1}n_1^*n_2p_{x_1}n_2^*n_1p_{x_1})^{-1/2}p_{x_1}n_1^*n_2p_{x_1}]_1 = 0$;.
- Then \sim is an equivalence relation on $\{(n,x): n \in N(\mathscr{D}(E)), x \in \text{dom}(n)\}.$

The extended Weyl groupoid of $(C^*(E), \mathscr{D}(E))$

- We let [(n,x)] denote the equivalence class of (n,x), and we let $\mathscr{G}_{(C^*(E),\mathscr{D}(E))} = \{[(n,x)] : n \in N(\mathscr{D}(E)), x \in dom(n)\}.$
- We define a partial defined product on $\mathscr{G}_{(C^*(E),\mathscr{D}(E))}$ by $[(n_1, x_1)][(n_2, x_2)] = [(n_1 n_2, x_2)]$ if $\alpha_{n_2}(x_2) = x_1$ (the product is undefined otherwise) and an inverse map $[(n, x)]^{-1} = [(n^*, \alpha_n(x))].$
- Then \$\mathcal{G}_{(C^*(E), \mathcal{D}(E))}\$ equipped with these operations is a groupoid.
- We equipe $\mathscr{G}_{(C^*(E),\mathscr{D}(E))}$ with the topology generated by $\{\{[(n,x)]: x \in \operatorname{dom}(n)\}: n \in N(\mathscr{D}(E))\}.$

The extended Weyl groupoid of $(C^*(E), \mathcal{D}(E))$

Proposition

Let *E* be a graph. Then $\mathscr{G}_{(C^*(E),\mathscr{D}(E))}$ is a topological groupoid, and \mathscr{G}_E and $\mathscr{G}_{(C^*(E),\mathscr{D}(E))}$ are isomorphic as topological groupoids.

Proposition

Let *E* and *F* graphs. If there is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathcal{D}(E)$ onto $\mathcal{D}(F)$, then \mathcal{G}_E and \mathcal{G}_F are isomorphic as topological groupoids.

Theorem [Brownlowe, Carlsen, and Whittaker]

Let E and F be graphs. Consider the following 4 statements.

- (1) There is an isomorphism from $C^*(E)$ to $C^*(F)$ which maps $\mathscr{D}(E)$ onto $\mathscr{D}(F)$.
- (2) The graph groupoids \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.
- (3) The pseudogroups of E and F are isomorphic.
- (4) E and F are orbit equivalent.

Examples

- Let *E* be the graph and let *F* be the graph Then $\partial E = \{\star\} = \partial F$, so *E* and *F* are orbit equivalent, but $C^*(E) \cong \mathbb{C} \not\cong C(\mathbb{T}) \cong C^*(F)$.

and let *F* be the graph $\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet$

Then $\partial E = \mathbb{N} = \partial F$, so *E* and *F* are orbit equivalent, but $C^*(E) \cong \mathscr{K} \cong \mathscr{K} \otimes C(\mathbb{T}) \cong C^*(F)$.