Classification of C^* -algebras, flow equivalence of shift spaces, and graph and Leavitt path algebras

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

> Lecture 1 May 11, 2015

Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
Content				

- 3 Identifying algebras
- 4 Morita equivalence

Graphs Algebras Identifying algebras Morita equivalence

Apologies/disclaimers/warnings

- I will be taking the easiest way in, avoiding all technicalities which may meaningfully be avoided.
- I am no expert on Leavitt path algebras (but plenty of people here are).
- The literature is
 - scattered;
 - sometimes non-existent;
 - inconsistent regarding notation.
- I need to exert stringent time discipline.

Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
Outline				

- 3 Identifying algebras
- 4 Morita equivalence

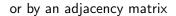
Definition

A graph is a tuple $\left(E^{0},E^{1},r,s\right)$ with

$$r,s:E^1 \to E^0$$

and E^0 and E^1 countable sets.

We think of $e \in E^1$ as an edge from s(e) to r(e) and often represent graphs visually



$$\mathsf{A}_E = \begin{bmatrix} 0 & 0 & 0 & 0\\ \infty & 1 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- Note our use of the symbols \Longrightarrow and ∞ .
- A finite graph has $|E^0|, |E^1| < \infty$.
- A graph with $|E^0| < \infty$ but $|E^1| = \infty$ is infinite but has finitely many vertices.

Simple graphs

Definition

A graph is simple if it has no multiple edges

The simple graphs are precisely those whose adjacency matrices have entries in $\{0,1\}$.

The number of simple graphs with n vertices grows quickly:

$$\begin{array}{c|c|c} n = 1 & 2 \\ n = 2 & 10 \\ n = 3 & 104 \\ n = 4 & 3044 \\ n = 5 & 291968 \\ n = 6 & 96928992 \\ n = 7 & 112282908928 \end{array}$$

Singular and regular vertices

Definitions

Let E be a graph and $v \in E^0$.

- v is a sink if $|s^{-1}(\{v\})|=0$
- v is a source if $|r^{-1}(\{v\})| = 0$
- v is an *infinite emitter* if $|s^{-1}(\{v\})| = \infty$
- v is a infinite receiver if $|r^{-1}(\{v\})| = \infty$

Definition

v is singular if v is a sink or an infinite emitter. v is regular if it is not singular.

Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
Outline				

- 3 Identifying algebras
- 4 Morita equivalence

Definition

A $C^*\mbox{-algebra}$ is a complex Banach algebra with involution $a\mapsto a^*$ such that

 $||aa^*|| = ||a||^2$

Key examples:

- $\mathbb{B}(\mathcal{H})$
- $\mathbb{K}(\mathcal{H})$
- $M_n(\mathbb{C})$
- C(X), X compact Hausdorff
- $C_0(X)$, X locally compact Hausdorff

Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
Rigidity				

- Any C*-algebra is *-isomorphic to a sub-C*-algebra of some B(H)
- Any commutative $C^*\mbox{-algebra}$ is *-isomorphic to $C_0(X)$ or C(X).
- 3 Any *-isomorphism is an isometry

Graph algebras

Definition

The graph C^* -algebra $C^*(E)$ is given as the universal C^* -algebra generated by $\{p_v : v \in E^0\}$ and $\{s_e : e \in E^1\}$ subject to:

- $p_v = p_v^2 = p_v^*$
- $s_e s_e^* s_e = s_e$
- $p_v p_w = 0$ when $v \neq w$

•
$$(s_e s_e^*)(s_f s_f^*) = 0$$
 when $e \neq f$

•
$$s_e^* s_e = p_{r(e)}$$

•
$$s_e s_e^* \le p_{s(e)}$$

•
$$p_v = \sum_{s(e)=v} s_e s_e^*$$
 for every regular v

Graph algebras

Compressed definition

The graph C^* -algebra $C^*(E)$ is given as the universal C^* -algebra generated by mutually orthogonal projections $\{p_v : v \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ with mutually orthogonal ranges subject to the Cuntz-Krieger relations

$$\bullet \ s_e^* s_e = p_{r(e)}$$

3
$$p_v = \sum_{s(e)=v} s_e s_e^*$$
 for every regular v

 $C^*(E)$ is unital when E has finitely many vertices.

Leavitt path algebras

Let k be a field.

Definition

The Leavitt path algebra $L_k(E)$ is given as the universal k-algebra generated by mutually orthogonal idempotents $\{v : v \in E^0\}$ and elements $\{e, e^* : e \in E^1\}$ subject to the relations

•
$$s(e)e = er(e) = e$$

• $r(e)e^* = e^*s(e) = e^*$

$$e^*f = \delta_{e,f}r(e)$$

)
$$v = \sum_{s(e)=v} ee^*$$
 for every regular v

 $L_{k}(E)$ is unital when E has finitely many vertices.

Graph C^* -algebras versus LPAs

Theorem (Tomforde)

 $C^*(E)$ contains a canonical dense copy of $L_{\mathbb{C}}(E)$

(i)
$$C^*(E) \simeq C^*(F)$$

(ii) $L_{\mathbb{C}}(E) \simeq L_{\mathbb{C}}(F)$ as *-algebras
(iii) $\forall (k, *) : L_k(E) \simeq L_k(F)$ as *-algebras
(iv) $L_{\mathbb{C}}(E) \simeq L_{\mathbb{C}}(F)$ as rings
(v) $\forall k : L_k(E) \simeq L_k(F)$ as rings

Graph C^* -algebras versus LPAs

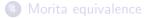
(i)
$$C^*(E) \simeq C^*(F)$$

(ii) $L_{\mathbb{C}}(E) \simeq L_{\mathbb{C}}(F)$ as *-algebras
(iii) $\forall k : L_k(E) \simeq L_k(F)$ as *-algebras
(iv) $L_{\mathbb{C}}(E) \simeq L_{\mathbb{C}}(F)$ as rings
(v) $\forall k : L_k(E) \simeq L_k(F)$ as rings
(ii) \Longrightarrow (i) by Tomforde's result, and clearly (iii) \Longrightarrow (ii), (v) \Longrightarrow
(iv), (ii) \Longrightarrow (iv), (iii) \Longrightarrow (v)

Conjecture [Abrams-Tomforde]

 $(\mathsf{iv}) \Longrightarrow (\mathsf{i})$

Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
Outline				



Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
$E = \bullet$				

$C^*(E) \simeq \mathbb{C}$

$$\varphi: C^*(E) \to \mathbb{C}$$
 given by

$$\varphi(p_v) = 1$$

is a *-isomorphism.

Similarly, $L_k(E) = k$

$$C^*(E) \simeq C(S^1)$$

$$\varphi: C^*(E) \to C(S^1) \text{ given by}$$

$$\varphi(p_v) = 1 \qquad \varphi(s_e) = z$$

is a *-isomorphism.

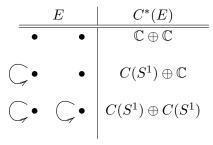
Similarly, $L_k(E) = k[z, z^{-1}]$.

Identifying algebras

Morita equivalence

Ideal structure

n = 2, Abelian cases



The Cuntz-Krieger uniqueness theorem

Theorem

Suppose $\varphi: C^*(E) \to \mathfrak{A}$ is a *-homomorphism with the property that

$$\forall v \in E^0 : \varphi(p_v) \neq 0$$

When E has the property that every cycle has an exit, φ is injective.

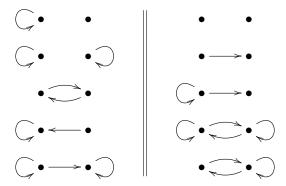
Algebras

Identifying algebras

Morita equivalenc

Ideal structure

n = 2, applicability of CKUT



Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
E = v	$\xrightarrow{e} \eta \eta$			

$C^*(E) \simeq M_2(\mathbb{C})$

 $\varphi: C^*(E) \to M_2(\mathbb{C})$ given by

$$\begin{split} \varphi(p_v) &= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \\ \varphi(p_w) &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \\ \varphi(s_e) &= \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{split}$$

is a *-isomorphism.

Graphs Algebras Identifying algebras Morita equivalence Ideal structure $E = \underbrace{e} v \xrightarrow{f} w$

The operator $S \in \mathbb{B}(\ell^2(\mathbb{N}_0))$ defined by

$$S(\xi_0,\xi_1,\xi_2,\xi_3,\dots) = (0,\xi_0,\xi_1,\xi_2,\xi_3,\dots)$$

is called the unilateral shift. The Toeplitz algebra $C^*(S)=\mathcal{T}$ has universal properties.

 $C^*(E) \simeq \mathcal{T}$

 $\varphi: C^*(E) \to \mathbb{B}(\ell^2(\mathbb{N}_0))$ given by

$$\begin{aligned} \varphi(p_v)(\xi_0,\xi_1,\xi_2,\xi_3,\dots) &= (0,\xi_1,\xi_2,\xi_3,\dots) \\ \varphi(p_w)(\xi_0,\xi_1,\xi_2,\xi_3,\dots) &= (\xi_0,0,0,0,0,\dots) \\ \varphi(s_e)(\xi_0,\xi_1,\xi_2,\xi_3,\dots) &= (0,\xi_0,0,0,0,\dots) \\ \varphi(s_f)(\xi_0,\xi_1,\xi_2,\xi_3,\dots) &= (0,0,\xi_1,\xi_2,\xi_3,\dots) \end{aligned}$$

is injective and maps onto $C^*(S)$.

Graphs Algebras Identifying algebras Morita equivalence Ideal structure $E = \underbrace{e}_{h} v \underbrace{f}_{h} w \underbrace{g}_{h}$

Consider isometries $S_1, S_2 \in \mathbb{B}(\ell^2(\mathbb{N}_0))$ given by

$$S_1(\xi_0,\xi_1,\xi_2,\xi_3,\dots) = (0,\xi_0,0,\xi_1,0,\xi_2,0,\xi_3,\dots)$$

$$S_2(\xi_0,\xi_1,\xi_2,\xi_3,\dots) = (\xi_0,0,\xi_1,0,\xi_2,0,\xi_3,0,\dots)$$

The Cuntz algebra $C^*(S_1, S_2) = \mathcal{O}_2$ has universal properties.

 $\varphi: C^*(E) \to \mathcal{O}_2$ given by

 $C^*(E) \simeq \mathcal{O}_2$

$$\begin{aligned} \varphi(p_v) &= S_1 S_1^* \qquad \varphi(p_w) = S_2 S_2^* \\ \varphi(s_e) &= S_1 S_1 \qquad \varphi(s_f) = S_1 S_2 \\ \varphi(s_g) &= S_2 S_2 \qquad \varphi(s_h) = S_2 S_1 \end{aligned}$$

is a *-isomorphism.

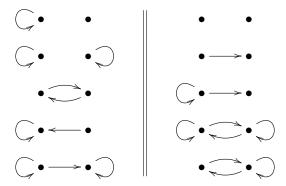
Algebras

Identifying algebras

Morita equivalenc

Ideal structure

n = 2, applicability of CKUT



Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
Gauge	action			

Observation

$$\gamma_z(p_v) = p_v \qquad \gamma_z(s_e) = zs_e$$

induces a gauge action $S^1 \mapsto \operatorname{Aut}(C^*(E))$

The action is strongly (i.e. point-norm) continuous.

The gauge invariant uniqueness theorem

Theorem

Suppose $\varphi: C^*(E) \to \mathfrak{A}$ is a *-homomorphism with the property that

 $\forall v \in E^0 : \varphi(p_v) \neq 0$

When \mathfrak{A} also has a strongly continuous gauge action β_z which intertwines φ and γ in the sense that

$$\forall z \in S^1 : \beta_z \circ \varphi = \varphi \circ \gamma_z$$

then φ is injective.

Key example: $\beta_z \in Aut(C(S^1))$ with $\beta_z(f)(w) = f(zw)$.

$$E = v \underbrace{e}_{r} w$$

$$C^*(E) \simeq M_2(C(S^1))$$

$$\varphi: C^*(E) \to M_2(C(S^1))$$
 given by

$$\varphi(p_v) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad \varphi(p_w) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\varphi(s_e) = \begin{bmatrix} 0 & z \\ 0 & 0 \end{bmatrix} \qquad \varphi(s_f) = \begin{bmatrix} 0 & 0 \\ z & 0 \end{bmatrix}$$

is a *-isomorphism by the GIUT.

Algebras

Identifying algebras

Morita equivalence

Ideal structure

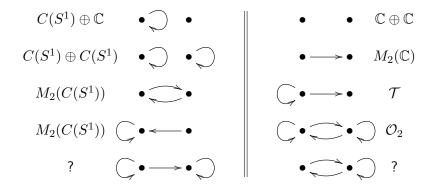
$$E = \underbrace{e}_{f} v \leftarrow w$$

$C^*(E) \simeq M_2(C(S^1))$

$$\varphi: C^*(E) \to M_2(C(S^1))$$
 given by

$$\varphi(p_v) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad \varphi(p_w) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\varphi(s_e) = \begin{bmatrix} z & 0 \\ 0 & 0 \end{bmatrix} \qquad \varphi(s_f) = \begin{bmatrix} 0 & 0 \\ z & 0 \end{bmatrix}$$

is a *-isomorphism by the GIUT.



Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
Outline				

3 Identifying algebras

4 Morita equivalence

Theorem (Brown-Green-Rieffel)

When ${\mathfrak A}$ and ${\mathfrak B}$ are separable $C^*\mbox{-algebras},$ the following are equivalent

- $\ \ \, \mathfrak{A}\otimes \mathbb{K}\simeq \mathfrak{B}\otimes \mathbb{K}$
- ② There exists a C^* -algebra \mathfrak{D} and orthogonal full projections $p,q \in M(\mathfrak{D})$ with

$$p\mathfrak{D}p\simeq\mathfrak{A} \qquad q\mathfrak{D}q\simeq\mathfrak{B}$$

③ There exists an $\mathfrak{A} - \mathfrak{B}$ imprimitivity bimodule

We say that \mathfrak{A} and \mathfrak{B} are *Morita equivalent* and write $\mathfrak{A} \sim_{ME} \mathfrak{B}$ in this case. Note all of

$$\mathbb{C}, M_2(\mathbb{C}), M_3(\mathbb{C}), \ldots, \mathbb{K}$$

are Morita equivalent.

Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure

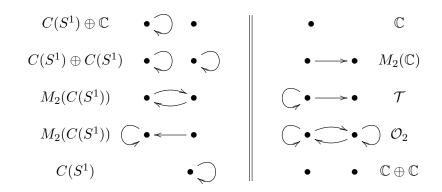
Definition

Let R and S be unital rings. We say that R and S are Morita equivalent if the category R-mod of left modules over R is equivalent to the category S-mod of left modules over S.

When R and S are Abelian, Morita equivalence reduces to isomorphism. One sees that all of

 $\mathsf{k}, M_2(\mathsf{k}), M_3(\mathsf{k}), \ldots$

are Morita equivalent.



Graph C^* -algebras versus LPAs

Let ${\cal E},{\cal F}$ be graphs with finitely many vertices and consider

(i)
$$C^*(E) \sim_{ME} C^*(F)$$

(ii) $L_{\mathbb{C}}(E) \sim_{ME} L_{\mathbb{C}}(F)$
(iii) $\forall \mathsf{k} : L_{\mathsf{k}}(E) \sim_{ME} L_{\mathsf{k}}(F)$

Conjecture [Abrams-Tomforde]

 $(\text{ii}) \Longrightarrow (\text{i})$

Let $\mathcal G$ denote the set of graphs with finitely many vertices.

Geometric classification

() Which equivalence relation \sim_{C^*} is induced on $\mathcal G$ by

$$C^*(E) \sim_{\mathrm{ME}} C^*(F)?$$

 ${\it @}$ Which equivalence relation $\sim_{\rm LPA}$ is induced on ${\cal G}$ by

 $L_{\mathbb{C}}(E) \sim_{\mathrm{ME}} L_{\mathbb{C}}(F)?$

Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
Simple	graphs			

Let $\mathcal{G}_s[n]$ denote the set of simple graphs with n vertices.

n	$ \mathcal{G}_s[n] $	$ \mathcal{G}_s[n]/\sim_{C^*} $	$ \mathcal{G}_s[n]/\sim_{\mathrm{LPA}} $
1	2	2	2
2	10	8	8
3	104	35	35
4	3044	206	?
5	291968	?	?

Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
Outline				

- 3 Identifying algebras
- 4 Morita equivalence

Let \mathfrak{A} be separable. The set of prime ideals $\operatorname{Prim}(\mathfrak{A})$ in a C^* -algebra has a (possibly non-Hausdorff) hull-kernel topology. There is a 1-1 correspondence between the ideals of \mathfrak{A} and the open sets of $\operatorname{Prim}(\mathfrak{A})$. Key examples:

- $\operatorname{Prim}(\mathbb{K}(\mathcal{H})) = \operatorname{Prim}(M_n(\mathbb{C})) = \operatorname{Prim}(\mathcal{O}_2) = \{\star\}$
- $\Prim(\mathbb{B}(\mathcal{H}))=\{\star,\Box\}$ with $\{\Box\}$ the only non-open set
- $\operatorname{Prim}(C(X)) = X$
- $\mathrm{Prim}(\mathcal{T})=\{\star\}\cup S^1$ with \star dense and the usual topology on $S^1.$

Observation

When $\mathfrak{A} \sim_{\mathrm{ME}} \mathfrak{B}$, $\mathrm{Prim}(\mathfrak{A}) \simeq \mathrm{Prim} \mathfrak{B}$.

Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure

Theorem

When E is a finite graph, there is a 1-1 correspondence between the gauge invariant ideals of $C^*(E)$ and subsets $V \subseteq E^0$ that are hereditary and saturated sets of vertices V:

•
$$s(e) \in V \Longrightarrow r(e) \in V$$

•
$$r(s^{-1}(v)) \subseteq V \Longrightarrow v \in V$$

Proposition

If $\Im \triangleleft \mathfrak{J} \triangleleft \mathcal{C}^*(E)$ are gauge invariant ideals such that $\mathfrak{J}/\mathfrak{I}$ has no non-trivial gauge-invariant ideals yet is not simple, then

 $\mathfrak{I}/\mathfrak{J} \sim_{\mathrm{ME}} C(S^1)$

Recipe for computing $Prim(C^*(E))$ for E finite

- Locate all hereditary and saturated subsets of E⁰ (don't forget the empty set)
- **②** Extract those sets V that contain a largest such proper subset V_0
- $\textcircled{Organize these sets into a partially ordered \mathcal{P} set using containment of sets as the order}$
- Represent the partially ordered set as a Hasse diagram
- § Color those vertices with the property that $V \backslash V_0$ is a cycle with no exit

 $\mathrm{Prim}(C^*(E))$ is obtained as the Alexandrov topology of $\mathcal P$ with a circle substituted at each colored vertex. Thus, the colored Hasse diagram is a Morita equivalence invariant for $C^*(E)$.

Graphs	Algebras	Identifying algebras	Morita equivalence	Ideal structure
n = 2				

