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Apologies/disclaimers/warnings

o | will be taking the easiest way in, avoiding all technicalities
which may meaningfully be avoided.

@ | am no expert on Leavitt path algebras (but plenty of people
here are).

@ The literature is

e scattered:
e sometimes non-existent;
e inconsistent regarding notation.

@ | need to exert stringent time discipline.
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© Graphs



Definition

A graph is a tuple (EY, E',r, s) with

T,S:E1—>EO

and E° and E! countable sets.

We think of e € E' as an edge from s(e) to 7(e) and often
represent graphs visually

.ﬁ./_\.%.
~~—

or by an adjacency matrix
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O = = O
_ O = O
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Graphs

Infinite graphs
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@ Note our use of the symbols = and oo.

e A finite graph has |E°|, |EY| < oo.

e A graph with |E°| < co but |E!| = o is infinite but has
finitely many vertices.



Simple graphs

A graph is simple if it has no multiple edges

The simple graphs are precisely those whose adjacency matrices

have entries in {0, 1}.

The number of simple graphs with n vertices grows quickly:

n=1
n=2
n=3
n=4
n=>5
n==~06
n="7T
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10

104

3044

291968
96928992
112282908928



Graphs

Singular and regular vertices

Let £ be a graph and v € E°.
e visa sink if [s71({v})| =0
e vis a sourceif [r~1({v})| =0
e v is an infinite emitter if |s~'({v})| = oo

e v is a infinite receiver if |[r~1({v})| = 0o

Definition

| A

v is singular if v is a sink or an infinite emitter. v is regular if it is
not singular.
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Algebras

C*-algebras

Definition
A C*-algebra is a complex Banach algebra with involution a — a*
such that

laa*(| = flal®

Key examples:
e B(H)
o K(H)
e M,(C)
e C(X), X compact Hausdorff
e Cy(X), X locally compact Hausdorff



Rigidity

@ Any C*-algebra is x-isomorphic to a sub-C*-algebra of some
B(H)

@ Any commutative C*-algebra is *-isomorphic to Cy(X) or
C(X).

© Any x-isomorphism is an isometry



Algebras

Graph algebras

The graph C*-algebra C*(FE) is given as the universal C*-algebra
generated by {p, : v € E°} and {s. : e € E'} subject to:

° py=p; =P}

® Sc555¢ = Se

@ pypw = 0 when v # w

o (sesz)(sfst) =0 when e # f

® S;Se = Pr(e)

C 5682 < Ps(e)

© Py =D ()= SeSe for every regular v




Algebras

Graph algebras

Compressed definition

The graph C*-algebra C*(E) is given as the universal C*-algebra
generated by mutually orthogonal projections {p, : v € E°} and
partial isometries {s. : e € E'} with mutually orthogonal ranges
subject to the Cuntz-Krieger relations

Q sise= Pr(e)
Q sesp < Ps(e)
Q pv =3 ()= Sese for every regular v

C*(FE) is unital when E' has finitely many vertices.



Algebras
Leavitt path algebras

Let k be a field.
Definition
The Leavitt path algebra Ly (FE) is given as the universal k-algebra
generated by mutually orthogonal idempotents {v : v € E°} and
elements {e,e* : e € E'} subject to the relations

Q s(e)e=er(e) =e

Q r(e)e* =e*s(e) =e*

Q e f =dcysr(e)

Q v =73 )=, cec for every regular v

Ly(FE) is unital when E has finitely many vertices.



Graph C*-algebras versus LPAs

Theorem (Tomforde)

C*(E) contains a canonical dense copy of L¢(E)

(F)
L@(F) as x-algebras
~ Lk(F) as x-algebras
F)



Algebras

Graph C*-algebras versus LPAs

) C*(E) = C*(F)

) Le(F) ~ Le(F) as *-algebras

(iii) Vk: Ly(E) ~ Ly(F) as x-algebras
)

v) Vk: Ly(E) ~ Ly(F) as rings
(ii)= (i) by Tomforde's result, and clearly (iii))= (ii), (v)=
(iv), (ih=> (iv), (ii)= (v)
Conjecture [Abrams-Tomforde]

(iv)= (i)
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Identifying algebras

¢ : C*(E) — C given by

is a *-isomorphism.

Similarly, Ly(E) = k



Identifying algebras

@ : C*(E) — C(S') given by

o) =1 p(se) =2

is a *-isomorphism.

Similarly, Ly(E) = K[z, 271].



Identifying algebras

n = 2, Abelian cases




Identifying algebras

The Cuntz-Krieger uniqueness theorem

Theorem

Suppose ¢ : C*(E) — 2 is a x-homomorphism with the property
that

Vv e E®: o(py) #0

When E has the property that every cycle has an exit,  is
injective.




Identifying algebras

n = 2, applicability of CKUT




Identifying algebras

C*(E) ~ M5(C)
¢ : C*(E) — M3(C) given by

p(py) = [3
P(pw) = [g
P(se) = [8

is a *-isomorphism.




Identifying algebras

The operator S € B(¢2(Ny)) defined by

S(§07£17§27§37 .. ) = (0)505517527537 .. )
is called the unilateral shift. The Toeplitz algebra C*(S) = T has

universal properties.
C*(E)~=T
¢ : C*(E) — B(£?(Np)) given by

©(Pv)(€0,61,82,€35- -+ ) = (0,61,2,83, .- -)
©(Pw) (€0, 1,82, &3, - - - ) = (£,0,0,0,0,...)
©(8e)(€0,&1,62,83,--.) = (0,£0,0,0,0,...)
w860y E1562,68, - - ) =0, 8,641,626,

is injective and maps onto C*(5).




Identifying algebras

Consider isometries S1, S € B(¢?(Np)) given by

Sl(€07€17§27§37 .. ) = (07607075170762707537 e )
S2(§07£17§27§37 .. ) = (5070751707'5270753707 e )

The Cuntz algebra C*(S1,S2) = Oz has universal properties.
C*(E) =~ O
¢ : C*(E) — O3 given by

o(pv) = 5157 p(pw) = 5255

©(se) = 5151 p(sp) = 5152
w(sg) = 5252 @(sn) = 9251

is a x-isomorphism.




Identifying algebras

n = 2, applicability of CKUT




Identifying algebras

Gauge action

Observation

'Yz(p'v) = Dv "Yz(se) = ZSe
induces a gauge action S' — Aut(C*(E))

The action is strongly (i.e. point-norm) continuous.



Identifying algebras

The gauge invariant uniqueness theorem

Theorem

Suppose ¢ : C*(E) — 2 is a x-homomorphism with the property
that

VUEEO:(P(pv) #0

When A also has a strongly continuous gauge action 3, which
intertwines ¢ and «y in the sense that

VZESI:/BzOSOZ(PO’)’z

then ¢ is injective.

Key example: 3, € Aut(C(S1)) with B.(f)(w) = f(zw).



Identifying algebras

C*(E) ~ My(C(SY))
¢ : C*(E) — My(C(S')) given by

o) = o] et =g ]
wo=o 5] een=) 9]

is a *-isomorphism by the GIUT.




Identifying algebras

E:@U<Tw

C*(E) ~ My(C(SY))
@ : C*(E) — My(C(S1)) given by

p(pv) = [(1) 8} P(pw) = [g (1)]

wa=l5 9 oton=]2

is a *-isomorphism by the GIUT.







Morita equivalence

Outline

e Morita equivalence



Morita equivalence

Theorem (Brown-Green-Rieffel)

When 21 and B are separable C*-algebras, the following are
equivalent

QO ARIK~2BRK
@ There exists a C*-algebra © and orthogonal full projections
p,q € M(D) with

pOp =~ A qOq ~ B

© There exists an A — B imprimitivity bimodule

We say that 2l and B are Morita equivalent and write 2l ~\ip B
in this case. Note all of

C, My(C), M5(C), ..., K

are Morita equivalent.



Morita equivalence

Definition

Let R and S be unital rings. We say that R and S are Morita
equivalent if the category R-mod of left modules over R is
equivalent to the category S-mod of left modules over S.

When R and S are Abelian, Morita equivalence reduces to
isomorphism. One sees that all of

k, Ma(k), Ms(k), ...

are Morita equivalent.



|dentified algebras

cShHaeC .Q . . C
CsH@C(st) o) o) o ——e My(C)
Mg(C(Sl)) OCO Co—>o T
Mp(C(S8") (e~ (e =0 ) 0y

C(Sl) .Q ° e CoC




Morita equivalence
Graph C*-algebras versus LPAs

Let E, F' be graphs with finitely many vertices and consider
(i) C*(E) ~mg C*(F)

(i) Le(E) ~me Le(F)

(i) Vk: Lx(E) ~mE Li(F)

Conjecture [Abrams-Tomforde]

(i)= (i)




Morita equivalence

Key questions

Let G denote the set of graphs with finitely many vertices.

Geometric classification

@ Which equivalence relation ~¢« is induced on G by
C*(E) ~\g C*(F)?

@ Which equivalence relation ~ppa is induced on G by

Lc(E) ~MmE Le(F)?




Morita equivalence
Simple graphs

Let Gs[n| denote the set of simple graphs with n vertices.

n | |9s[n]l | [Gs[n]/ ~c+| | |Gs[n]/ ~rpal
1 2 2 2
2 10 8 8
3 104 35 35
4| 3044 206 ?
5 | 291968 ? ?
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Ideal structure

Let A be separable. The set of prime ideals Prim(2l) in a
C*-algebra has a (possibly non-Hausdorff) hull-kernel topology.
There is a 1 — 1 correspondence between the ideals of 2 and the
open sets of Prim(2A). Key examples:

e Prim(K(#)) = Prim(M,,(C)) = Prim(Os) = {x}

e Prim(B(H)) = {* O} with {0} the only non-open set

e Prim(C(X)) =

e Prim(7) = {x} U S1 with x dense and the usual topology on

St

Observation
When 2 ~\ig B, Prim(2() ~ Prim ‘8.




Ideal structure

Theorem

When FE is a finite graph, there is a 1 — 1 correspondence between
the gauge invariant ideals of C*(E) and subsets V C E° that are
hereditary and saturated sets of vertices V :

0 s(e)eV=r(e)eV

o r(stv) CV=nveV

Proposition

If 3<J < C*(E) are gauge invariant ideals such that J/J has no
non-trivial gauge-invariant ideals yet is not simple, then

3/3 ~ue C(SY)




Ideal structure

Recipe for computing Prim(C*(E)) for E finite

@ Locate all hereditary and saturated subsets of E° (don't
forget the empty set)

@ Extract those sets V' that contain a largest such proper subset
Vo

© Organize these sets into a partially ordered P set using
containment of sets as the order

@ Represent the partially ordered set as a Hasse diagram

@ Color those vertices with the property that V\ 1} is a cycle
with no exit

Prim(C*(E)) is obtained as the Alexandrov topology of P with a
circle substituted at each colored vertex. Thus, the colored Hasse
diagram is a Morita equivalence invariant for C*(E).
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