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Apologies/disclaimers/warnings

I will be taking the easiest way in, avoiding all technicalities
which may meaningfully be avoided.

I am no expert on Leavitt path algebras (but plenty of people
here are).

The literature is

scattered;
sometimes non-existent;
inconsistent regarding notation.

I need to exert stringent time discipline.
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Definition

A graph is a tuple (E0, E1, r, s) with

r, s : E1 → E0

and E0 and E1 countable sets.

We think of e ∈ E1 as an edge from s(e) to r(e) and often
represent graphs visually

• +3 • �� (( •hh // •

or by an adjacency matrix

AE =


0 0 0 0
∞ 1 1 0
0 1 0 0
0 0 1 0


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Infinite graphs

• +3 • �� (( •hh // •


0 0 0 0
∞ 1 1 0
0 1 0 0
0 0 1 0


Note our use of the symbols =⇒ and ∞.

A finite graph has |E0|, |E1| <∞.

A graph with |E0| <∞ but |E1| =∞ is infinite but has
finitely many vertices.
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Simple graphs

Definition

A graph is simple if it has no multiple edges

The simple graphs are precisely those whose adjacency matrices
have entries in {0, 1}.
The number of simple graphs with n vertices grows quickly:

n = 1 2
n = 2 10
n = 3 104
n = 4 3044
n = 5 291968
n = 6 96928992
n = 7 112282908928
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Singular and regular vertices

Definitions

Let E be a graph and v ∈ E0.

v is a sink if |s−1({v})| = 0

v is a source if |r−1({v})| = 0

v is an infinite emitter if |s−1({v})| =∞
v is a infinite receiver if |r−1({v})| =∞

Definition

v is singular if v is a sink or an infinite emitter. v is regular if it is
not singular.

◦ +3 • �� (( •hh // ◦
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C∗-algebras

Definition

A C∗-algebra is a complex Banach algebra with involution a 7→ a∗

such that
‖aa∗‖ = ‖a‖2

Key examples:

B(H)
K(H)
Mn(C)
C(X), X compact Hausdorff

C0(X), X locally compact Hausdorff
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Rigidity

1 Any C∗-algebra is ∗-isomorphic to a sub-C∗-algebra of some
B(H)

2 Any commutative C∗-algebra is ∗-isomorphic to C0(X) or
C(X).

3 Any ∗-isomorphism is an isometry
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Graph algebras

Definition

The graph C∗-algebra C∗(E) is given as the universal C∗-algebra
generated by {pv : v ∈ E0} and {se : e ∈ E1} subject to:

pv = p2v = p∗v

ses
∗
ese = se

pvpw = 0 when v 6= w

(ses
∗
e)(sfs

∗
f ) = 0 when e 6= f

s∗ese = pr(e)

ses
∗
e ≤ ps(e)

pv =
∑

s(e)=v ses
∗
e for every regular v
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Graph algebras

Compressed definition

The graph C∗-algebra C∗(E) is given as the universal C∗-algebra
generated by mutually orthogonal projections {pv : v ∈ E0} and
partial isometries {se : e ∈ E1} with mutually orthogonal ranges
subject to the Cuntz-Krieger relations

1 s∗ese = pr(e)
2 ses

∗
e ≤ ps(e)

3 pv =
∑

s(e)=v ses
∗
e for every regular v

C∗(E) is unital when E has finitely many vertices.
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Leavitt path algebras

Let k be a field.

Definition

The Leavitt path algebra Lk(E) is given as the universal k-algebra
generated by mutually orthogonal idempotents {v : v ∈ E0} and
elements {e, e∗ : e ∈ E1} subject to the relations

1 s(e)e = er(e) = e

2 r(e)e∗ = e∗s(e) = e∗

3 e∗f = δe,fr(e)

4 v =
∑

s(e)=v ee
∗ for every regular v

Lk(E) is unital when E has finitely many vertices.
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Graph C∗-algebras versus LPAs

Theorem (Tomforde)

C∗(E) contains a canonical dense copy of LC(E)

(i) C∗(E) ' C∗(F )

(ii) LC(E) ' LC(F ) as ∗-algebras

(iii) ∀(k, ∗) : Lk(E) ' Lk(F ) as ∗-algebras

(iv) LC(E) ' LC(F ) as rings

(v) ∀k : Lk(E) ' Lk(F ) as rings
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Graph C∗-algebras versus LPAs

(i) C∗(E) ' C∗(F )

(ii) LC(E) ' LC(F ) as ∗-algebras

(iii) ∀k : Lk(E) ' Lk(F ) as ∗-algebras

(iv) LC(E) ' LC(F ) as rings

(v) ∀k : Lk(E) ' Lk(F ) as rings

(ii)=⇒ (i) by Tomforde’s result, and clearly (iii)=⇒ (ii), (v)=⇒
(iv), (ii)=⇒ (iv), (iii)=⇒ (v)

Conjecture [Abrams-Tomforde]

(iv)=⇒ (i)
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E = •

C∗(E) ' C
ϕ : C∗(E)→ C given by

ϕ(pv) = 1

is a ∗-isomorphism.

Similarly, Lk(E) = k
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E = • ff

C∗(E) ' C(S1)

ϕ : C∗(E)→ C(S1) given by

ϕ(pv) = 1 ϕ(se) = z

is a ∗-isomorphism.

Similarly, Lk(E) = k[z, z−1].
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n = 2, Abelian cases

E C∗(E)

• • C⊕ C

•99 • C(S1)⊕ C

•99 •99 C(S1)⊕ C(S1)
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The Cuntz-Krieger uniqueness theorem

Theorem

Suppose ϕ : C∗(E)→ A is a ∗-homomorphism with the property
that

∀v ∈ E0 : ϕ(pv) 6= 0

When E has the property that every cycle has an exit, ϕ is
injective.
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n = 2, applicability of CKUT

•99 • • •

•99 • ee • // •

• (( •hh •99 // •

•99 •oo •99 (( •hh ee

•99 // • ee • (( •hh ee
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E = v e //w

C∗(E) 'M2(C)
ϕ : C∗(E)→M2(C) given by

ϕ(pv) =

[
1 0
0 0

]
ϕ(pw) =

[
0 0
0 1

]
ϕ(se) =

[
0 1
0 0

]
is a ∗-isomorphism.
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E = v
f //e 88 w

The operator S ∈ B(`2(N0)) defined by

S(ξ0, ξ1, ξ2, ξ3, . . . ) = (0, ξ0, ξ1, ξ2, ξ3, . . . )

is called the unilateral shift. The Toeplitz algebra C∗(S) = T has
universal properties.

C∗(E) ' T
ϕ : C∗(E)→ B(`2(N0)) given by

ϕ(pv)(ξ0, ξ1, ξ2, ξ3, . . . ) = (0, ξ1, ξ2, ξ3, . . . )

ϕ(pw)(ξ0, ξ1, ξ2, ξ3, . . . ) = (ξ0, 0, 0, 0, 0, . . . )

ϕ(se)(ξ0, ξ1, ξ2, ξ3, . . . ) = (0, ξ0, 0, 0, 0, . . . )

ϕ(sf )(ξ0, ξ1, ξ2, ξ3, . . . ) = (0, 0, ξ1, ξ2, ξ3, . . . )

is injective and maps onto C∗(S).
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E = ve 88

f
))
w

h

ii ghh

Consider isometries S1, S2 ∈ B(`2(N0)) given by

S1(ξ0, ξ1, ξ2, ξ3, . . . ) = (0, ξ0, 0, ξ1, 0, ξ2, 0, ξ3, . . . )

S2(ξ0, ξ1, ξ2, ξ3, . . . ) = (ξ0, 0, ξ1, 0, ξ2, 0, ξ3, 0, . . . )

The Cuntz algebra C∗(S1, S2) = O2 has universal properties.

C∗(E) ' O2

ϕ : C∗(E)→ O2 given by

ϕ(pv) = S1S
∗
1 ϕ(pw) = S2S

∗
2

ϕ(se) = S1S1 ϕ(sf ) = S1S2

ϕ(sg) = S2S2 ϕ(sh) = S2S1

is a ∗-isomorphism.
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n = 2, applicability of CKUT

•99 • • •

•99 • ee • // •

• (( •hh •99 // •

•99 •oo •99 (( •hh ee

•99 // • ee • (( •hh ee
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Gauge action

Observation

γz(pv) = pv γz(se) = zse

induces a gauge action S1 7→ Aut(C∗(E))

The action is strongly (i.e. point-norm) continuous.
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The gauge invariant uniqueness theorem

Theorem

Suppose ϕ : C∗(E)→ A is a ∗-homomorphism with the property
that

∀v ∈ E0 : ϕ(pv) 6= 0

When A also has a strongly continuous gauge action βz which
intertwines ϕ and γ in the sense that

∀z ∈ S1 : βz ◦ ϕ = ϕ ◦ γz

then ϕ is injective.

Key example: βz ∈ Aut(C(S1)) with βz(f)(w) = f(zw).
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E = v
e ))

w
f

ii

C∗(E) 'M2(C(S
1))

ϕ : C∗(E)→M2(C(S
1)) given by

ϕ(pv) =

[
1 0
0 0

]
ϕ(pw) =

[
0 0
0 1

]
ϕ(se) =

[
0 z
0 0

]
ϕ(sf ) =

[
0 0
z 0

]
is a ∗-isomorphism by the GIUT.
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E = ve 88 w
f
oo

C∗(E) 'M2(C(S
1))

ϕ : C∗(E)→M2(C(S
1)) given by

ϕ(pv) =

[
1 0
0 0

]
ϕ(pw) =

[
0 0
0 1

]
ϕ(se) =

[
z 0
0 0

]
ϕ(sf ) =

[
0 0
z 0

]
is a ∗-isomorphism by the GIUT.
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n = 2

C(S1)⊕ C • ee • • • C⊕ C

C(S1)⊕ C(S1) • ee • ee • // • M2(C)

M2(C(S
1)) • (( •hh •99 // • T

M2(C(S
1)) •99 •oo •99 (( •hh ee O2

? •99 // • ee • (( •hh ee ?
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Theorem (Brown-Green-Rieffel)

When A and B are separable C∗-algebras, the following are
equivalent

1 A⊗K ' B⊗K
2 There exists a C∗-algebra D and orthogonal full projections
p, q ∈M(D) with

pDp ' A qDq ' B

3 There exists an A−B imprimitivity bimodule

We say that A and B are Morita equivalent and write A ∼ME B
in this case. Note all of

C,M2(C),M3(C), . . . ,K

are Morita equivalent.
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Definition

Let R and S be unital rings. We say that R and S are Morita
equivalent if the category R-mod of left modules over R is
equivalent to the category S-mod of left modules over S.

When R and S are Abelian, Morita equivalence reduces to
isomorphism. One sees that all of

k,M2(k),M3(k), . . .

are Morita equivalent.
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Identified algebras

C(S1)⊕ C • ee • • C

C(S1)⊕ C(S1) • ee • ee • // • M2(C)

M2(C(S
1)) • (( •hh •99 // • T

M2(C(S
1)) •99 •oo •99 (( •hh ee O2

C(S1) • ee • • C⊕ C
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Graph C∗-algebras versus LPAs

Let E,F be graphs with finitely many vertices and consider

(i) C∗(E) ∼ME C
∗(F )

(ii) LC(E) ∼ME LC(F )

(iii) ∀k : Lk(E) ∼ME Lk(F )

Conjecture [Abrams-Tomforde]

(ii)=⇒ (i)
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Key questions

Let G denote the set of graphs with finitely many vertices.

Geometric classification

1 Which equivalence relation ∼C∗ is induced on G by

C∗(E) ∼ME C
∗(F )?

2 Which equivalence relation ∼LPA is induced on G by

LC(E) ∼ME LC(F )?
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Simple graphs

Let Gs[n] denote the set of simple graphs with n vertices.

n |Gs[n]| |Gs[n]/ ∼C∗ | |Gs[n]/ ∼LPA|
1 2 2 2
2 10 8 8
3 104 35 35
4 3044 206 ?
5 291968 ? ?



Graphs Algebras Identifying algebras Morita equivalence Ideal structure

Outline

1 Graphs

2 Algebras

3 Identifying algebras

4 Morita equivalence

5 Ideal structure



Graphs Algebras Identifying algebras Morita equivalence Ideal structure

Let A be separable. The set of prime ideals Prim(A) in a
C∗-algebra has a (possibly non-Hausdorff) hull-kernel topology.
There is a 1− 1 correspondence between the ideals of A and the
open sets of Prim(A). Key examples:

Prim(K(H)) = Prim(Mn(C)) = Prim(O2) = {?}
Prim(B(H)) = {?,�} with {�} the only non-open set

Prim(C(X)) = X

Prim(T ) = {?} ∪ S1 with ? dense and the usual topology on
S1.

Observation

When A ∼ME B, Prim(A) ' PrimB.
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Theorem

When E is a finite graph, there is a 1− 1 correspondence between
the gauge invariant ideals of C∗(E) and subsets V ⊆ E0 that are
hereditary and saturated sets of vertices V :

s(e) ∈ V =⇒ r(e) ∈ V
r(s−1(v)) ⊆ V =⇒ v ∈ V

Proposition

If I / J / C∗(E) are gauge invariant ideals such that J/I has no
non-trivial gauge-invariant ideals yet is not simple, then

I/J ∼ME C(S
1)
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Recipe for computing Prim(C∗(E)) for E finite

1 Locate all hereditary and saturated subsets of E0 (don’t
forget the empty set)

2 Extract those sets V that contain a largest such proper subset
V0

3 Organize these sets into a partially ordered P set using
containment of sets as the order

4 Represent the partially ordered set as a Hasse diagram

5 Color those vertices with the property that V \V0 is a cycle
with no exit

Prim(C∗(E)) is obtained as the Alexandrov topology of P with a
circle substituted at each colored vertex. Thus, the colored Hasse
diagram is a Morita equivalence invariant for C∗(E).
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n = 2
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n = 2, applicability of CKUT

•99 • • •

•99 • ee • // •

• (( •hh •99 // •

•99 •oo •99 (( •hh ee
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