
Shift spaces Wiiliams’ theorem Franks’ theorem The reducible case

Classification of C∗-algebras, flow equivalence of
shift spaces, and graph and Leavitt path algebras

Søren Eilers
eilers@math.ku.dk

Department of Mathematical Sciences
University of Copenhagen

Lecture 2
May 12, 2015



Shift spaces Wiiliams’ theorem Franks’ theorem The reducible case

Content

1 Shift spaces

2 Wiiliams’ theorem

3 Franks’ theorem

4 The reducible case



Shift spaces Wiiliams’ theorem Franks’ theorem The reducible case

Outline

1 Shift spaces

2 Wiiliams’ theorem

3 Franks’ theorem

4 The reducible case



Shift spaces Wiiliams’ theorem Franks’ theorem The reducible case

Key definitions

Let a be a finite set and equip aZ with the product topology based
on the discrete topology on a.

Definition

A shift space is a subset X of aZ which is closed and closed under
the shift map

σ : aZ → aZ σ((xi)) = (xi+1)

Definition

When E = (E0, E1, r, s) is a finite graph, XE denotes the edge
shift

XE = {(ei) ∈ (E1)Z | r(ei) = s(ei+1)}

It is customary and convenient to think of E = EA as defined by
an adjacency matrix A and abbreviate XA = XEA

.
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Essential graphs

Obviously, sinks and sources do not contribute to the edge shifts,
so we try to avoid these.

Definition

E is essential if it contains no sinks and no sources.

1 2 1
2 10 5
3 104 55
4 3044 1918
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Conjugacy

Definition

X and Y are conjugate, written X ' Y , if there exists a bijection
ϕ : X → Y which is a homeomorphism and satisfies

σ ◦ ϕ = ϕ ◦ σ

The shifts of finite type (SFTs) are the shift spaces conjugate to
edge shifts.
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Easy invariants

Definition

A shift space X is irreducible when for some x ∈ X,

{σn(x) | n ∈ N}

is dense in X.

Observation

Let X and Y be conjugate shift spaces.

If X is finite, so is Y .

If X is irreducible, so is Y .

Note that XA is finite precisely when EA is a union of disjoint
cycles, and that XA is irreducible precisely when EA is strongly
connected.
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Flow equivalence

Associated to any shift space there is a suspension flow given by
product topology on

SX =
X × R

(x, t) ∼ (σ(x), t+ 1)

Definition

X and Y are flow equivalent (written X ∼fe Y ) when SX and
SY are homeomorphic in a way preserving direction in R.
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Symbol expansion

Fix a ∈ a and ? 6∈ a and define η : aZ → (a ∪ {?})Z as the map
inserting a ? after each a:

· · · babbbaba · · · 7→ · · · ba ? bbba ? ba ? · · ·

Definition

The “a 7→ a?” symbol expansion of a shift space X is the shift
space

Xa7→a? = η(X) ∪ σ(η(X)).
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Lemma

X ∼fe Xa→a?

Proof idea

ϕ([x, t]) =





[η(x), 2t] x0 = a, t ∈ [0, 1/2]

[σ(η(x)), 2t− 1] x0 = a, t ∈ [1/2, 1]

[η(x), t] x0 6= a
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Key result

Theorem (Parry-Sullivan)

Flow equivalence is the coarsest equivalence relation containing
conjugacy and X ∼ Xa→a?

Observation

Let X ∼fe Y .

If X is finite, so is Y .

If X is irreducible, so is Y .
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Edge expansion

Note how symbol expansion takes the form of edge expansion for
edge shifts:

•a 99 •
a
(( •

?
hh

•99
a // • ee •99

a // • ? // • ee

•a 99 ee •
?
(( •

a
hh ee
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State splitting

Shift spaces
Automata

Minimal automata
Symbolic conjugacy

Special families of automata
Syntactic invariants

Conjugacy
Flow equivalence

In the previous example :

E =

[
2 0 1
1 1 0

]
, D =



1 0
1 0
0 1


 .

1 2

3

5

4

Jean Berstel, Marie-Pierre Béal, Søren Eilers, Dominique Perrin Symbolic dynamics and automata

[
2 1
2 0

]
=

[
2 0 1
1 1 0

]

1 0
1 0
0 1






2 0 1
2 0 1
1 1 0


 =



1 0
1 0
0 1



[
2 0 1
1 1 0

]
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Key result

Definition

Two matrices A and B are elementary equivalent if there exist
(possibly rectangular) matrices D,E with entries in N0 so that

DE = A ED = B

Definition

Strong shift equivalence is the coarsest equivalence relation
containing elemenary equivalence.

Theorem (Williams)

Two edge shifts XA and XB given by essential matrices are
conjugate precisely when A and B are strong shift equivalent.
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Key result

Theorem (Williams)

Conjugacy is coarsest equivalence relation on the set of edge shifts
by essential graphs containing in-splitting, out-splitting and
isomorphism of graphs.

Corollary

Flow equivalence is the coarsest equivalence relation on the set of
edge shifts by essential graphs containing

1 in-splitting

2 out-splitting

3 edge expansion

4 isomorphism of graphs
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Definition

Let A be the adjacency matrix of an essential graph with n
vertices. The Bowen-Franks invariant of A is the pair

BF(A) = [Zn/(Id−A)Zn, sgn(det(Id−A))]

Observation

When XA ∼fe XB, BF(A) = BF(B)
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Flow classification of SFTs

Theorem (Franks)

Let XA and XB be two irreducible and infinite SFTs given by
graphs with essential adjacency matrices A and B, respectively.
The following conditions are equivalent.

(i) XA ∼fe XB

(ii) BF(A) ' BF(B)
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Proof idea

Lemma (Basic move)

When A ≥ 0 with aij > 0 we have that XA ∼fe XA(ij) where

A(ij) =




a11 . . . a1j . . . a1n
...

...
...

ai1 + aj1 . . . aij + ajj − 1 . . . ain + ajn
...

...
...

an1 . . . anj . . . ann



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Step 1

Outsplit to go

[
a11 a12
a21 a22

]
→




0 0 1
a11 a11 a12 − 1
a21 a21 a22




Step 2

Insplit to go




0 0 1
a11 a11 a12 − 1
a21 a21 a22


→




0 0 1 0
a11 a11 0 a12 − 1
a21 a21 0 a22
a21 a21 0 a22






Shift spaces Wiiliams’ theorem Franks’ theorem The reducible case

Step 3

Symbol reduce to go




0 0 1 0
a11 a11 0 a12 − 1
a21 a21 0 a22
a21 a21 0 a22


→



a11 a11 a12 − 1
a21 a21 a22
a21 a21 a22




Step 4

Out-amalgamate to go



a11 a11 a12 − 1
a21 a21 a22
a21 a21 a22


→

[
a11 + a21 a12 + a22 − 1
a21 a22

]
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Proposition

For any A ≥ 0 there is a B ≥ 0 such that

XA ∼fe XI+B

Proof

If all ajj > 0 we are done. If not, employ that

A(ij) =




a11 . . . a1j . . . a1n
...

...
...

ai1 + aj1 . . . aij − 1 . . . ain + ajn
...

...
...

an1 . . . anj . . . ann




to create a zero column, which may then be deleted.
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Proposition

If a row or column addition takes an irreducible matrix B ≥ 0 to
B′ ≥ 0, we have

XI+B ∼fe XI+B′

Proof

Suppose row 2 of B is added to row 1 to create B′. The first row
of I +B′ is

[
1 + b11 + b21 b12 + b22 b13 + b23 . . .

]

and the first two rows of I +B are

[
1 + b11 b12 b13 . . .
b21 1 + b22 b23 . . .

]

Note how this coincides with “basic move” when b12 > 0. In
general, use irreducibility.



Shift spaces Wiiliams’ theorem Franks’ theorem The reducible case

Proposition

Let an irreducible matrix B ≥ 0 be of size n× n with n > 1. Then

XI+B ∼fe XI+C

where we may assume that C > 0 of any size m ≥ n.

Proof

We may keep adding rows until all entries are ≥ N for any N > 0.
New rows may be added as required by state splitting as soon as
the entries are sufficiently large.
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Proposition

When C > 0 we have XI+C ∼ XI+D where the first column of D
is identically d, with

d = gcd{cij} = gcd{dij}

Proof

Subsequent “column prepared row subtractions” and “row
prepared column subtractions”.
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Standard form 1

When C > 0 is a given n× n-matrix with Zn/CZn =
∑n

i=1 Z/diZ
where

d1 | d2 | · · · | dn
and det(−C) = (−1)n det(C) < 0 we have that XI+C ∼ XI+D

where

D =




0 . . . 0 dn
d1 0 0 0
0 d2 0 0

. . .
...

0 . . . dn−1 0



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Standard form 2

When C > 0 is a given n× n-matrix with Zn/CZn =
∑n

i=1 Z/diZ
where

d1 | d2 | · · · | dn
and det(−C) = (−1)n det(C) > 0 we have that XI+C ∼ XI+D

where

D =




0 . . . dn−1 dn−1
d1 0 0 0
0 d2 0 0

. . .
...

...
0 . . . dn−1 dn−1 + dn



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Standard form 3

When C > 0 is a given n× n-matrix with Zn/CZn =
∑n

i=1 Z/diZ
where

d1 | d2 | · · · | dn
and rank(C) = k < n we have that XI+C ∼ XI+D where

D =




0 . . . 0 dk . . . dk
d1 0 0 0 . . . 0
0 d2 0 0

. . .
...

...
dk−1 0 . . . 0

0 . . . 0 dk . . . dk
...

...
...

...
0 . . . 0 dk . . . dk



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We call a non-irreducible shift space reducible. Any reducible shift
space can be analyzed into irreducible components which in turn
define a partially ordered set where one component C1 dominates
another component C2 when there is a path from some vertex in
C1 to some vertex in C2.
When X = XA, we color those vertices that correspond to
irreducible components that are single cycles and arrive at a
colored partially ordered set PA.

Observation

When XA ∼fe XB, PA ' PB.

We can even associate the Bowen-Franks invariant to all the points
in PA!
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Recall irreducible case

Proposition

If a row or column addition takes an irreducible matrix B ≥ 0 to
B′ ≥ 0, we have

XI+B ∼fe XI+B′

Proof

Suppose row 2 of B is added to row 1 to create B′. The first row
of I +B′ is

[
1 + b11 + b21 b12 + b22 b13 + b23 . . .

]

and the first two rows of I +B are

[
1 + b11 b12 b13 . . .
b21 1 + b22 b23 . . .

]

Note how this coincides with “basic move” when b12 > 0...



Shift spaces Wiiliams’ theorem Franks’ theorem The reducible case

Proposition

If the addition of row or column j to row or column i takes an
irreducible matrix B ≥ 0 to B′ ≥ 0, we have

XI+B ∼fe XI+B′

when Bij > 0
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Recall irreducible case

Assume that B,B′ are irreducible matrices both of size n. Then
the following are equivalent

1 XI+B ∼fe XI+B′

2 BF(I +B) = BF(I +B′)

3 There exist SL matrices U, V with

UBV = B′
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Theorem (Boyle-Huang, Boyle)

Let XA and XB be reducible edge shifts with isomorphic colored
partial order given by their irreducible components. Then
XA ∼fe XB in a way preserving the given isomorphism precisely
when there exist block SL matrices U, V such that

U(I −A′)V = I −B′

where XA′ ∼fe XA and XB′ ∼fe XB are prepared on the form

Any irreducible component which is a single cycle has only
one vertex

Any irreducible component which is not a single cycle has
positive entries and has at least two more vertices than there
are summands in the Bowen-Franks group
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