Classification of C^* -algebras, flow equivalence of shift spaces, and graph and Leavitt path algebras

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

> Lecture 2 May 12, 2015

Content

Outline

2 Wiiliams' theorem

3 Franks' theorem

Key definitions

Let $\mathfrak a$ be a finite set and equip $\mathfrak a^{\mathbb Z}$ with the product topology based on the discrete topology on $\mathfrak a.$

Definition

A shift space is a subset X of $\mathfrak{a}^{\mathbb{Z}}$ which is closed and closed under the shift map

$$\sigma: \mathfrak{a}^{\mathbb{Z}} \to \mathfrak{a}^{\mathbb{Z}} \qquad \sigma((x_i)) = (x_{i+1})$$

Definition

When $E = (E^0, E^1, r, s)$ is a finite graph, X_E denotes the *edge* shift

$$\mathsf{X}_E = \{ (e_i) \in (E^1)^{\mathbb{Z}} \mid r(e_i) = s(e_{i+1}) \}$$

It is customary and convenient to think of $E = E_A$ as defined by an adjacency matrix A and abbreviate $X_A = X_{E_A}$.

Essential graphs

Obviously, sinks and sources do not contribute to the edge shifts, so we try to avoid these.

Definition

E is essential if it contains no sinks and no sources.

1	2	1
2	10	5
3	104	55
4	3044	1918

Definition

X and Y are *conjugate*, written $X\simeq Y,$ if there exists a bijection $\varphi:X\to Y$ which is a homeomorphism and satisfies

 $\sigma\circ\varphi=\varphi\circ\sigma$

The *shifts of finite type* (SFTs) are the shift spaces conjugate to edge shifts.

Easy invariants

Definition

A shift space X is *irreducible* when for some $x \in X$,

$$\{\sigma^n(x) \mid n \in \mathbb{N}\}\$$

is dense in X.

Observation

Let X and Y be conjugate shift spaces.

- If X is finite, so is Y.
- If X is irreducible, so is Y.

Note that X_A is finite precisely when E_A is a union of disjoint cycles, and that X_A is irreducible precisely when E_A is strongly connected.

Flow equivalence

Associated to any shift space there is a $\ensuremath{\text{suspension flow}}$ given by product topology on

$$SX = \frac{X \times \mathbb{R}}{(x,t) \sim (\sigma(x), t+1)}$$

Definition

X and Y are flow equivalent (written $X \sim_{\text{FE}} Y$) when SX and SY are homeomorphic in a way preserving direction in \mathbb{R} .

Symbol expansion

Fix $a \in \mathfrak{a}$ and $\star \notin \mathfrak{a}$ and define $\eta : \mathfrak{a}^{\mathbb{Z}} \to (\mathfrak{a} \cup \{\star\})^{\mathbb{Z}}$ as the map inserting a \star after each a:

 $\cdots babbbaba \cdots \mapsto \cdots ba \star bbba \star ba \star \cdots$

Definition

The " $a\mapsto a\star$ " symbol expansion of a shift space X is the shift space

$$X_{a\mapsto a\star} = \eta(X) \cup \sigma(\eta(X)).$$

Lemma

 $X \sim_{\mathrm{FE}} X_{a \to a \star}$

Proof idea

$$\varphi([x,t]) = \begin{cases} [\eta(x), 2t] & x_0 = a, t \in [0, 1/2] \\ [\sigma(\eta(x)), 2t - 1] & x_0 = a, t \in [1/2, 1] \\ [\eta(x), t] & x_0 \neq a \end{cases}$$

Key result

Theorem (Parry-Sullivan)

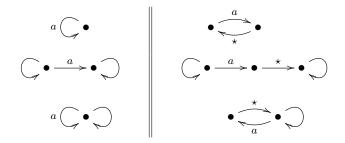
Flow equivalence is the coarsest equivalence relation containing conjugacy and $X \sim X_{a \to a \star}$

Observation

Let $X \sim_{\text{FE}} Y$.

- If X is finite, so is Y.
- If X is irreducible, so is Y.

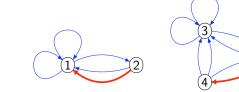
Note how symbol expansion takes the form of *edge expansion* for edge shifts:



Outline

5

State splitting



$$\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 2 & 0 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Key result

Definition

Two matrices A and B are elementary equivalent if there exist (possibly rectangular) matrices D, E with entries in \mathbb{N}_0 so that

DE = A ED = B

Definition

Strong shift equivalence is the coarsest equivalence relation containing elemenary equivalence.

Theorem (Williams)

Two edge shifts X_A and X_B given by essential matrices are conjugate precisely when A and B are strong shift equivalent.

Key result

Theorem (Williams)

Conjugacy is coarsest equivalence relation on the set of edge shifts by essential graphs containing in-splitting, out-splitting and isomorphism of graphs.

Corollary

Flow equivalence is the coarsest equivalence relation on the set of edge shifts by essential graphs containing

- in-splitting
- out-splitting
- edge expansion
- isomorphism of graphs

Outline

2 Wiiliams' theorem

3 Franks' theorem

Definition

Let A be the adjacency matrix of an essential graph with n vertices. The ${\it Bowen-Franks}$ invariant of A is the pair

$$BF(A) = [\mathbb{Z}^n / (\mathrm{Id} - A)\mathbb{Z}^n, \mathrm{sgn}(\det(\mathrm{Id} - A))]$$

Observation

When $X_A \sim_{FE} X_B$, BF(A) = BF(B)

Flow classification of SFTs

Theorem (Franks)

Let X_A and X_B be two irreducible and infinite SFTs given by graphs with essential adjacency matrices A and B, respectively. The following conditions are equivalent.

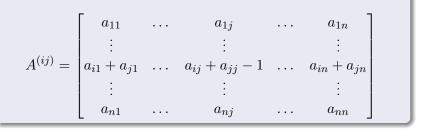
(i)
$$X_A \sim_{\text{FE}} X_B$$

(ii) $BF(A) \simeq BF(B)$

Proof idea

Lemma (Basic move)

When $A \ge 0$ with $a_{ij} > 0$ we have that $X_A \sim_{FE} X_{A^{(ij)}}$ where



Step 1 Outspli

lit to go
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 1 \\ a_{11} & a_{11} & a_{12} - 1 \\ a_{21} & a_{21} & a_{22} \end{bmatrix}$$

Step 2

Insplit to go

$$\begin{bmatrix} 0 & 0 & 1 \\ a_{11} & a_{11} & a_{12} - 1 \\ a_{21} & a_{21} & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 1 & 0 \\ a_{11} & a_{11} & 0 & a_{12} - 1 \\ a_{21} & a_{21} & 0 & a_{22} \\ a_{21} & a_{21} & 0 & a_{22} \end{bmatrix}$$

Step 3

Symbol reduce to go

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ a_{11} & a_{11} & 0 & a_{12} - 1 \\ a_{21} & a_{21} & 0 & a_{22} \\ a_{21} & a_{21} & 0 & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} a_{11} & a_{11} & a_{12} - 1 \\ a_{21} & a_{21} & a_{22} \\ a_{21} & a_{21} & a_{22} \end{bmatrix}$$

Step 4

Out-amalgamate to go

$$\begin{bmatrix} a_{11} & a_{11} & a_{12} - 1 \\ a_{21} & a_{21} & a_{22} \\ a_{21} & a_{21} & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} a_{11} + a_{21} & a_{12} + a_{22} - 1 \\ a_{21} & a_{22} \end{bmatrix}$$

For any $A\geq 0$ there is a $B\geq 0$ such that

$$X_A \sim_{\scriptscriptstyle \mathrm{FE}} X_{I+B}$$

Proof

If all $a_{jj} > 0$ we are done. If not, employ that

$$A^{(ij)} = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} + a_{j1} & \dots & a_{ij} - 1 & \dots & a_{in} + a_{jn} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

to create a zero column, which may then be deleted.

If a row or column addition takes an irreducible matrix $B\geq 0$ to $B'\geq 0,$ we have

$$X_{I+B} \sim_{\scriptscriptstyle{\mathrm{FE}}} X_{I+B'}$$

Proof

Suppose row 2 of B is added to row 1 to create $B^{\prime}.$ The first row of $I+B^{\prime}$ is

$$\begin{bmatrix} 1 + b_{11} + b_{21} & b_{12} + b_{22} & b_{13} + b_{23} & \ldots \end{bmatrix}$$

and the first two rows of ${\cal I}+{\cal B}$ are

$$\begin{bmatrix} 1+b_{11} & b_{12} & b_{13} & \dots \\ b_{21} & 1+b_{22} & b_{23} & \dots \end{bmatrix}$$

Note how this coincides with "basic move" when $b_{12} > 0$. In general, use irreducibility.

Let an irreducible matrix $B \ge 0$ be of size $n \times n$ with n > 1. Then

$$X_{I+B} \sim_{\scriptscriptstyle \mathrm{FE}} X_{I+C}$$

where we may assume that C > 0 of any size $m \ge n$.

Proof

We may keep adding rows until all entries are $\geq N$ for any N > 0. New rows may be added as required by state splitting as soon as the entries are sufficiently large.

When C > 0 we have $X_{I+C} \sim X_{I+D}$ where the first column of D is identically d, with

$$d = \gcd\{c_{ij}\} = \gcd\{d_{ij}\}$$

Proof

Subsequent "column prepared row subtractions" and "row prepared column subtractions".

Standard form 1

When C>0 is a given $n\times n\text{-matrix}$ with $\mathbb{Z}^n/C\mathbb{Z}^n=\sum_{i=1}^n\mathbb{Z}/d_i\mathbb{Z}$ where

$$d_1 \mid d_2 \mid \cdots \mid d_n$$

and $\det(-C) = (-1)^n \det(C) < 0$ we have that $X_{I+C} \sim X_{I+D}$ where

$$D = \begin{bmatrix} 0 & \dots & 0 & d_n \\ d_1 & 0 & & 0 & 0 \\ 0 & d_2 & & 0 & 0 \\ & \ddots & & \vdots \\ 0 & \dots & d_{n-1} & 0 \end{bmatrix}$$

Standard form 2

When C>0 is a given $n\times n\text{-matrix}$ with $\mathbb{Z}^n/C\mathbb{Z}^n=\sum_{i=1}^n\mathbb{Z}/d_i\mathbb{Z}$ where

$$d_1 \mid d_2 \mid \cdots \mid d_n$$

and $\det(-C) = (-1)^n \det(C) > 0$ we have that $X_{I+C} \sim X_{I+D}$ where

$$D = \begin{bmatrix} 0 & \dots & d_{n-1} & d_{n-1} \\ d_1 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 \\ & \ddots & \vdots & \vdots \\ 0 & \dots & d_{n-1} & d_{n-1} + d_n \end{bmatrix}$$

Standard form 3

When C>0 is a given $n\times n\text{-matrix}$ with $\mathbb{Z}^n/C\mathbb{Z}^n=\sum_{i=1}^n\mathbb{Z}/d_i\mathbb{Z}$ where

$$d_1 \mid d_2 \mid \cdots \mid d_n$$

and $\operatorname{rank}(C) = k < n$ we have that $X_{I+C} \sim X_{I+D}$ where

$$D = \begin{bmatrix} 0 & \dots & 0 & d_k & \dots & d_k \\ d_1 & 0 & 0 & 0 & \dots & 0 \\ 0 & d_2 & & 0 & & 0 \\ & & \ddots & \vdots & \vdots & & \\ & & d_{k-1} & 0 & \dots & 0 \\ 0 & & \dots & 0 & d_k & \dots & d_k \\ \vdots & & & \vdots & \vdots & & \vdots \\ 0 & & \dots & 0 & d_k & \dots & d_k \end{bmatrix}$$

Outline

2 Wiiliams' theorem

3 Franks' theorem

We call a non-irreducible shift space reducible. Any reducible shift space can be analyzed into irreducible components which in turn define a partially ordered set where one component C_1 dominates another component C_2 when there is a path from some vertex in C_1 to some vertex in C_2 . When $X = X_A$, we color those vertices that correspond to irreducible components that are single cycles and arrive at a colored partially ordered set \mathcal{P}_A .

1 5

Observation

When $X_A \sim_{FE} X_B$, $\mathcal{P}_A \simeq \mathcal{P}_B$.

We can even associate the Bowen-Franks invariant to all the points in \mathcal{P}_A !

Recall irreducible case

Proposition

If a row or column addition takes an irreducible matrix $B\geq 0$ to $B'\geq 0,$ we have

$$\mathsf{X}_{I+B}\sim_{\scriptscriptstyle\mathrm{FE}}\mathsf{X}_{I+B'}$$

Proof

Suppose row 2 of B is added to row 1 to create $B^{\prime}.$ The first row of $I+B^{\prime}$ is

$$\begin{bmatrix} 1 + b_{11} + b_{21} & b_{12} + b_{22} & b_{13} + b_{23} & \ldots \end{bmatrix}$$

and the first two rows of $\boldsymbol{I}+\boldsymbol{B}$ are

$$\begin{bmatrix} 1+b_{11} & b_{12} & b_{13} & \dots \\ b_{21} & 1+b_{22} & b_{23} & \dots \end{bmatrix}$$

Note how this coincides with "basic move" when $b_{12} > 0...$

If the addition of row or column j to row or column i takes an irreducible matrix $B\geq 0$ to $B'\geq 0,$ we have

$$\mathsf{X}_{I+B}\sim_{\scriptscriptstyle\mathrm{FE}}\mathsf{X}_{I+B'}$$

when $B_{ij} > 0$

Recall irreducible case

Assume that B,B^\prime are irreducible matrices both of size n. Then the following are equivalent

③ There exist SL matrices U, V with

UBV = B'

Theorem (Boyle-Huang, Boyle)

Let X_A and X_B be reducible edge shifts with isomorphic colored partial order given by their irreducible components. Then $X_A \sim_{FE} X_B$ in a way preserving the given isomorphism precisely when there exist block SL matrices U, V such that

U(I - A')V = I - B'

where $X_{A'}\sim_{\rm FE} X_A$ and $X_{B'}\sim_{\rm FE} X_B$ are prepared on the form

- Any irreducible component which is a single cycle has only one vertex
- Any irreducible component which is not a single cycle has positive entries and has at least two more vertices than there are summands in the Bowen-Franks group