# Classification of $C^*$ -algebras, flow equivalence of shift spaces, and graph and Leavitt path algebras

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

> Lecture 4 May 14, 2015

# Content



- 2 Concluding the experiment
- 3 Classes of graph  $C^*$ -algebras
- **5** General classification

# Outline



- 2 Concluding the experiment
- 3 Classes of graph  $C^*$ -algebras
- Organizing *K*-theory
- 6 General classification



We have seen and used that when  $E^{\dagger}$  arises from E by (C), then

$$C^*(E^{\dagger}) \sim_{\mathrm{ME}} C^*(E)$$

provided E was (gauge) simple. But the following is open:

#### Question

Does  $C^*(E^{\dagger}) \sim_{\mathrm{ME}} C^*(E)$  hold true for any graph E?

#### Question

Does  $C^*(E^{\dagger}) \sim_{\mathrm{ME}} C^*(E)$  hold true for any graph E?

## Affirmative answers when

- *E* is essential and finite (Rørdam)
- E<sub>0</sub> is finite (E/Restorff/Ruiz/Sørensen)
- $C^*(E)$  has at most one non-trivial ideal (E/Tomforde)
- $C^*(E)$  is purely infinite and has a finite number of ideals (Bentmann/Meyer)

The situation is graver for the Leavitt path algebra case. Returning to the two graphs  $E, F = E^{\dagger}$  given by

we must ask

Question

Is  $L_{\mathsf{k}}(E) \sim_{\mathrm{ME}} L_{\mathsf{k}}(E^{\dagger})$ ?

# Outline



- 2 Concluding the experiment
- 3 Classes of graph  $C^*$ -algebras
- Organizing *K*-theory
- 6 General classification

# Simple graphs

## Let $\mathcal{G}_s[n]$ denote the set of simple graphs with n vertices.

| n | $ \mathcal{G}_s[n] $ | $ \mathcal{G}_s[n]/\sim_{C^*} $ | $ \mathcal{G}_s[n]/\sim_{	ext{LPA}} $ |
|---|----------------------|---------------------------------|---------------------------------------|
| 1 | 2                    | 2                               | 2                                     |
| 2 | 10                   | 8                               | 8                                     |
| 3 | 104                  | 35                              | 35                                    |
| 4 | 3044                 | 206                             | {206,207,208,209}                     |

|     | $C^*$ -Morita | LPA-Morita   |
|-----|---------------|--------------|
|     | equivalent    | equivalent   |
| (S) |               | $\checkmark$ |
| (0) | $\checkmark$  | $\checkmark$ |
| (I) | $\checkmark$  | $\checkmark$ |
| (R) | $\checkmark$  | $\checkmark$ |
| (C) | ()            | ?            |

## Definition

# $E\sim_m F$ when there is a finite sequence of moves of type

# (S),(R),(O),(I)

and their inverses, leading from E to F.

#### Definition

 $E \sim_M F$  when there is a finite sequence of moves of type

# (S),(R),(O),(I),(C)

and their inverses, leading from E to F.

# Key questions

#### Geometric classification

**(**) Which equivalence relation  $\sim_{C^*}$  is induced on  $\mathcal G$  by

 $C^*(E) \sim_{\rm ME} C^*(F)?$ 

 ${\it @}$  Which equivalence relation  $\sim_{\rm LPA}$  is induced on  ${\cal G}$  by

 $L_{\mathbb{C}}(E) \sim_{\mathrm{ME}} L_{\mathbb{C}}(F)?$ 

Could the answer be  $\sim_M$ ? It is finer as seen above, and Restorff proved that  $\sim_{C^*} = \sim_M$  for finite essential graphs with condition (K).

#### Lemma (Basic move)

When  $A \ge 0$  with  $a_{ij} > 0$  we have that  $X_A \sim_{FE} X_{A(ij)}$  where



## Lemma (Row addition)

When A is the adjacency matrix of E with  $a_{ij} + a_{jj} > 0$  we have that  $E \sim_m E'$  where

$$A^{(ij)} = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} + a_{j1} & \dots & a_{ij} + a_{jj} - 1 & \dots & a_{in} + a_{jn} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

is the adjacency matrix for E', provided that

- there is a path in E from  $v_i$  to  $v_j$
- $v_j$  is regular

## Lemma (Column addition)

When A is the adjacency matrix of E with  $a_{ji}+a_{jj}>0$  we have that  $E\sim_m E'$  where

$$A^{(ij)} = \begin{bmatrix} a_{11} & \dots & a_{1i} + a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{j1} & \dots & a_{ji} + a_{jj} - \delta^{\bullet}(j) & \dots & a_{jn} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{ni} + a_{nj} & \dots & a_{nn} \end{bmatrix}$$

is the adjacency matrix for E', provided that

• there is a path in E from  $v_j$  to  $v_i$ 

•  $[a_{j1} \ldots a_{ji} + a_{jj} - \delta^{\bullet}(j) \ldots a_{jn}]$  is not zero where  $\delta^{\bullet}(j) = 1$  precisely when v is regular. Let E and F be the graphs:



Theorem (E-Ruiz-Sørensen)

 $E \not\sim_M F$ , yet

 $C^*(E) \sim_{\mathrm{ME}} C^*(F)$ 

# Outline

# Cuntz splice

- 2 Concluding the experiment
- 3 Classes of graph  $C^*$ -algebras
- Organizing K-theory
- 6 General classification

## Definition

A  $\mathit{C}^*\text{-}\mathsf{algebra}\ \mathfrak{A}$  has real rank zero if the invertible elements in  $\mathfrak{A}_\mathsf{sa}$  are dense.

## Proposition

The following are equivalent

- $C^*(E)$  has real rank zero
- 2 If  $v \in E_0$  supports a simple cycle, is supports another

The condition on the graph is called *condition* (K).



 $\overline{n} = 2$ 



#### Definition

- $V \subseteq E^0$  is hereditary when  $s(e) \in V \Longrightarrow r(e) \in V$
- $V \subseteq E^0$  is saturated when for every regular v $r(s^{-1}(v)) \subseteq V \Longrightarrow v \in V$
- $v \in V$  is **breaking** for a hereditary and saturated set V when

$$|s^{-1}(v) \cap V| = \infty$$

and

$$0 < |s^{-1}(v) \setminus V| < \infty$$

#### Theorem

When E has no breaking vertices, there is a 1-1 correspondence between the gauge invariant ideals of  $C^*(E)$  and hereditary and saturated subsets of  $E^0$ .

- Drinen-Tomforde singularization allows us to replace any E with E' so that  $C^*(E)\sim_{\rm ME} C^*(E')$  and E' has no breaking vertices.
- When E has only finitely many vertices there is another procedure to obtain this, having also E' with finitely many vertices and  $E \sim_m E'$ .
- This tells us that when  $E^0$  is finite, condition (K) implies that there are only finitely many ideals in  $C^*(E)$ .
- When  $\Im$  is given by V we have  $C^*(E)/\Im\simeq C^*(E\backslash V)$  and  $\Im\sim_{\rm ME} C^*(V)$



 $\overline{n} = 2$ 



# Outline

# Cuntz splice

- 2 Concluding the experiment
- 3 Classes of graph  $C^*$ -algebras
- Organizing K-theory
- 6 General classification

# Filtered *K*-theory

#### Definition

Let  ${\mathfrak A}$  be a  $C^*\mbox{-algebra}$  with only finitely many ideals. The collection of all sequences

with  $\mathfrak{I} \triangleleft \mathfrak{J} \triangleleft \mathfrak{J} \triangleleft \mathfrak{K} \triangleleft \mathfrak{A}$  is called the *filtered* K-theory of  $\mathfrak{A}$  and denoted  $FK(\mathfrak{A})$ . Equipping all  $K_0$ -groups with order we arrive at the ordered, filtered K-theory  $FK^+(\mathfrak{A})$ .

There are similar definitions of  $FK^{\gamma}(-)$ ,  $FK^{\gamma,+}(-)$  where one only considers the gauge invariant ideals.

#### Definition

The **reduced** ordered, filtered K-theory  $FK^{+,red}(\mathfrak{A})$  consists of

$$K_{0}(\mathfrak{I}) \longrightarrow K_{0}(\mathfrak{I}_{0}) \longrightarrow K_{0}(\mathfrak{I}_{0}/\mathfrak{I})$$

$$\uparrow$$

$$K_{1}(\mathfrak{I}_{0}/\mathfrak{I})$$

with  $\mathfrak{I}_0$  a smallest ideal properly containing a prime ideal  $\mathfrak{I},$  along with

$$K_0(\mathfrak{J}_i) \to K_0(\mathfrak{J})$$

whenever  $\mathfrak{J}, \mathfrak{J}_i$  are prime with  $\mathfrak{J} = \bigcup_{i=1}^n \mathfrak{J}_i$ .

There is a similar definition of  $FK^{\gamma,+,red}(-)$  where one only considers the gauge invariant ideals.

#### Definition

The tempered ideal space of  $\mathfrak A$  with finitely many ideals is the gauge invariant primitive ideal space  $\mathrm{Prim}^\gamma(\mathfrak A)$  equipped with a map

 $\tau: \operatorname{Prim}^{\gamma}(\mathfrak{A}) \to \mathbb{Z}$ 

given by

$$\tau(\mathfrak{I}) = \begin{cases} -2 & \mathfrak{I}_0/\mathfrak{I} \text{ is not simple} \\ -1 & \mathfrak{I}_0/\mathfrak{I} \text{ is } AF \\ \operatorname{rank} K_0(\mathfrak{I}_0/\mathfrak{I}) - \operatorname{rank} K_1(\mathfrak{I}_0/\mathfrak{I}) & \text{otherwise} \end{cases}$$

when  $\mathfrak{I}_0$  is the smallest ideal of  $\mathfrak{A}$  containing  $\mathfrak{I}$  properly.

#### Theorem (E-Ruiz-Sørensen)

Let E and F be finite graphs with heredity of negative temperatures. Then the following are equivalent

(i) 
$$C^*(E) \sim_{ME} C^*(F)$$

(ii) 
$$E \sim_M F$$

(iii) 
$$\tau_E = \tau_F$$
 and  $FK^{\gamma,+,red}(C^*(E)) \simeq FK^{\gamma,+,red}(C^*(F))$ 

(iv) 
$$FK^{\gamma,+}(C^*(E)) \simeq FK^{\gamma,+}(C^*(F))$$

The example given above shows that the condition is necessary. It remains possible that (i) $\iff$  (iv).

# Theorem (E-Restorff-Ruiz-Sørensen)

Let  $C^*(E)$  and  $C^*(F)$  be unital graph algebras with real rank zero. Then the following are equivalent

(i) 
$$C^{*}(E) \sim_{ME} C^{*}(F)$$
  
(ii)  $E \sim_{M} F$   
(iii)  $\tau_{E} = \tau_{F}$  and  $FK^{+,red}(C^{*}(E)) \simeq FK^{+,red}(C^{*}(F))$   
(iv)  $FK^{+}(C^{*}(E)) \simeq FK^{+}(C^{*}(F))$ 

# Outline

# Cuntz splice

- 2 Concluding the experiment
- 3 Classes of graph  $C^*$ -algebras
- Organizing *K*-theory
- **5** General classification

#### Question

Suppose C[X] is a family of  $C^*$ -algebras with real rank zero and primitive ideal space X, so that it is known that  $K_*$  i(with order) s a complete invariant for all simple subquotients of  $\mathfrak{A} \in C$ . When can we conclude that  $FK^+(-)$  is a complete invariant for the  $\mathfrak{A}$ 's themselves?

# Working conjecture (E-Restorff-Ruiz)

 $FK^+$  is a complete invariant for all graph  $C^*\mbox{-algebras}$  with finitely many ideals.

## Status quo

 $FK^+(-)$  is known to be a complete invariant for graph  $C^*\mbox{-algebras}$  over X when

- |X| = 2 (E-Tomforde)
- |X| = 3 and all K-groups are finitely generated (E/Restorff/Ruiz)
- |X| = 4 and the graph  $C^*$ -algebra is purely infinite (Arklint/Bentmann/Katsura,Arklint/Restorff/Ruiz)