Purely infinite étale groupoid C*-algebras

Jonathan Brown

University of Dayton Joint with L. Clark, A. Sierakowski and A. Sims

Classification of C^* -algebras, flow equivalence of shift spaces, and graph and Leavitt path algebras

May 2015

Outline

2 Groupoids

- Groupoid C*-algebras
- Oynamics of groupoids
- 5 Characterizing purely infinite groupoid C*-algebras
- 6 Groupoid Constructions

Separable C*-algebras

Let X be a (countable) set.

•
$$\ell^2(X) = \{\xi : X \to \mathbb{C} : \sum_{x \in X} |\xi(x)|^2 < \infty\}$$

• If $X = \{1, 2\}, \ \ell^2(X) = \mathbb{C}^2.$

• There is an inner product on $\ell^2(X)$ given by

$$\langle \xi, \zeta \rangle = \sum_{x \in X} \overline{\xi(x)} \zeta(x) \text{ giving norm } \|\xi\| = \sqrt{\langle \xi, \xi \rangle}.$$

• A linear map $T : \ell^2(X) \to \ell^2(X)$ (operator) is *bounded* if $||T|| := \sup_{\|\xi\|=1} ||T\xi\| < \infty$.

• Denote the set of bounded operators by $B(\ell^2(X))$

• If
$$X = \{1, 2\}$$
, $B(\ell^2(X)) \cong M_2(\mathbb{C})$.

- Can add, multiply and scalar multiply bounded operators pointwise.
- Adjoint: $\forall T, \exists ! T^*$ such that $\langle T\xi, \zeta \rangle = \langle \xi, T^*\zeta \rangle$.
- A C*-algebra is a closed *-subalgebra of $B(\ell^2(X))$ for some X.
 - Projection: $p = p^2 = p^*$: think E_{11}
 - ▶ Partial isometry: *s* if s^*s , ss^* are projections: think E_{12}

Graph C*-algebras $E = (E^0, E^1, r, s)$ a directed graph (row-finite, no sources: ie $0 < |r^{-1}(v)| < \infty$). • $\alpha = \alpha_1 \alpha_2 \cdots$ a path if $s(\alpha_i) = r(\alpha_{i+1})$

- E^* is the set of finite paths, E^{∞} is the set of infinite paths.
 - Denote by $Z(\alpha) = \alpha E^{\infty} = \{x \in E^{\infty} : x_1 \cdots x_{|\alpha|} = \alpha\}$
- $C^*(E)$ is generated by mutually orthoginal projections $\{p_v\}_{v\in E^0}$ and partial isometries $\{s_e\}_{e\in E^1}$ which are universal for the Cuntz-Krieger relations:

1
$$s_{e}^{*}s_{f} = \delta_{e,f}p_{s(e)},$$

2 $p_{v} = \sum_{r(e)=v} s_{e}s_{e}^{*}$

- Cofinal: $\forall x \in E^{\infty}, v \in E^0 \exists \alpha \in E^*, i \in \mathbb{N}$ such that $r(\alpha) = v, s(\alpha) = r(x_i)$.
- Condition L: If α a return path $(s(\alpha) = r(\alpha))$ then $\exists i \in \mathbb{N}$ such that $r(\alpha_i)E^1 \{\alpha_i\} \neq \emptyset$.
- $C^*(E)$ simple $\Leftrightarrow E$ cofinal with Condition L. (Bates, et al 2000)

Kirchberg and Phillips classification

Let A be a C^* -algebra.

- For a ∈ M_n(A)⁺, b ∈ M_m(A)⁺, a is Cuntz below b, denoted a ≤ b, if there exists a sequence of elements x_k in M_{m,n}(A) such that x_k^{*}bx_k → a in norm.
- $a \in A^+$ is properly infinite if $a \oplus a \preceq a$.
 - if $a, b \in A^+$ $a \le b$, then $a \preceq b$. (Kirchberg Rørdam '00)
- Heuristically, $a \in A^+$ is properly infinite if it has infinite range.
- A is *purely infinite* if every nonzero positive element is properly infinite.

Theorem (Kirchberg and Phillips '00)

Two separable purely infinite, simple, nuclear C^* -algebras satisfying the UCT are isomorphic if and only if they are either both unital or nonunital and their ordered K-theory is isomorphic.

- Every simple graph C*-algebra is either purely infinite or AF.
 - Contains return path $\Leftrightarrow C^*(E)$ purely infinite. (Kumjian et al 1998)
- No characterization exists for generalizations of graph C^* -algebras.

Groupoid

A groupoid G is a small (arrows only) category in which every element is invertible.

• Mutliplication:

- Unit space: Identity arrows are identified with objects, we denote both by *G*⁽⁰⁾.
- $r, s: G \to G^{(0)}$, taking γ to its range and source respectively.
 - γ, η composible iff $s(\gamma) = r(\eta)$.

•
$$xGy = \{\gamma : r(\gamma) = x, s(\gamma) = y\}$$

Topological groupoids

- Topology
 - G second countable locally compact Hausdorff.
 - Composition and inversion are continuous.
- $B \subset G$ is a bisection if
 - ► B open,
 - ► r(B), s(B) are open,
 - $r|_B, s|_B$ are homeomorphisms.
 - In particular $r|_B, s|_B$ are injective.
- G is étale if it has a basis of bisections.
- G étale implies
 - r⁻¹(x) discrete.
 - * $\gamma \in r^{-1}(x)$ there exists open bisection *B* such that $\gamma \in B$.
 - ★ Since *B* a bisection $B \cap r^{-1}(x) = \{\gamma\}$.
 - ▶ G⁽⁰⁾ clopen.

Graph Groupoid

Let *E* be a directed graph, $x, y \in E^{\infty}$.

- $x \sim_k y$ if there exists N such that for $i \ge N, x_{i+k} = y_i$.
 - ▶ $x \sim_k y$ if and only if there exists $\alpha, \beta \in E^*$, $z \in E^\infty$ with $|\alpha| |\beta| = k$ and

$$x = \alpha z$$
 $y = \beta z$.

• Take
$$G_E = \{(x, k, y) : x \sim_k y\} \subset E^{\infty} \times \mathbb{Z} \times E^{\infty}$$
.
• Multiplication: $(x, k, y)(y, \ell, z) = (x, k + \ell, z)$
• Units: $(x, 0, x)(x, k, y) = (x, k, y) = (x, k, y)(y, 0, y)$.
* $E^{\infty} \leftrightarrow G_E^{(0)}$ by $x \leftrightarrow (x, 0, x)$.
• Inverse: $(x, k, y)(y, -k, x) = (x, 0, x)$.
Basis: $Z(\alpha, \beta) = \{(\alpha z, |\alpha| - |\beta|, \beta z) : z \in s(\alpha) E^{\infty}\}$.
• Note:
 $r(Z(\alpha, \beta)) = \alpha E^{\infty} \leftrightarrow Z(\alpha, \alpha), \quad s(Z(\alpha, \beta)) = \beta E^{\infty} \leftrightarrow Z(\beta, \beta)$

• $Z(\alpha, \beta)$ is compact.

Same construction works for higher rank graphs.

B

Étale groupoid C^* -algebras

Let G be an étale groupoid and $f, g \in C_c(G)$. Define

$$f * g(\gamma) = \sum_{r(\eta)=r(\gamma)} f(\eta)g(\eta^{-1}\gamma) \qquad f^*(\gamma) = \overline{f(\gamma^{-1})}$$

$$\begin{split} \mathbf{1}_{Z(\alpha,\beta)} * \mathbf{1}_{Z(\mu,\nu)}(x,k,y) &= \sum_{(x,\ell,z)} \mathbf{1}_{Z(\alpha,\beta)}(x,\ell,z) \mathbf{1}_{Z(\mu,\nu)}((x,\ell,z)^{-1}(x,k,y)) \\ &= \sum_{(x,\ell,z)} \mathbf{1}_{Z(\alpha,\beta)}(x,\ell,z) \mathbf{1}_{Z(\mu,\nu)}(z,k-\ell,y) \\ &= \begin{cases} 1 & \text{if } z = \mu z' = \beta x', y = \nu z', x = \alpha x', k = |\mu| - |\nu| + |\alpha| - |\beta| \\ 0 & \text{otherwise} \end{cases} \\ &= \begin{cases} \mathbf{1}_{Z(\alpha,\nu\mu')}(x,k,y) & \text{if } \beta = \mu \mu' \\ \mathbf{1}_{Z(\alpha\beta',\nu)}(x,k,y) & \text{if } \beta\beta' = \mu. \end{cases} \\ &\mathbf{1}_{Z(\alpha,\beta)}^*(x,k,y) = \mathbf{1}_{Z(\alpha,\beta)}(y,-k,x) = \mathbf{1}_{Z(\beta,\alpha)}(x,k,y) \end{split}$$

Groupoid C*-algebra

Regular Representation:

 For x ∈ G⁽⁰⁾ consider ℓ²(Gx), the left regular representation associated to x is charecterized by

$$L^{\times}(f)\delta_{\eta} = f * \delta_{\eta} = \sum_{s(\gamma)=r(\eta)} f(\gamma)\delta_{\gamma\eta}$$

where $f \in C_c(G)$ and δ_η is the Dirac delta function.

Define:

$$||f||_r = \sup_{x \in G^{(0)}} ||L^x(f)||.$$

 $C_r^*(G) \cong \overline{\bigoplus_{x \in G^{(0)}} L^x(C_c(G))}.$ • $C^*(E) \cong C_r^*(G_E)$ via $s_e \mapsto 1_{Z(e,s(e))}.$

Since $G^{(0)}$ is open in G,

- $C_c(G^{(0)}) \hookrightarrow C_c(G)$ via extension by 0;
- this inclusion extends to an inclusion $C_0(G^{(0)}) \hookrightarrow C_r^*(G)$.

Minimal groupoids

Definition

G is minimal if $r(s^{-1}(x))$ is dense in $G^{(0)}$ for all $x \in G^{(0)}$.

- Let *E* be a row-finite graph with no sources, then *G_E* is minimal if and only if *E* is cofinal. (Kumjian et al '97)
 - ▶ Suppose *E* is cofinal. Let $x \in E^{\infty} = G_E^{(0)}$ and $Z(\alpha)$ in $G^{(0)}$ open.
 - * There exists a path μ and i such that $r(\mu) = s(\alpha)$ and $s(\mu) = r(x_{i+1})$.
 - * Let $y = x_{i+1}x_{i+2}\cdots$ then $(\alpha\mu y, x_1\cdots x_i y)$ has range in $Z(\alpha)$ and source x.
 - Suppose G_E is minimal, $x \in E^{\infty}$ $v \in E^0$
 - * there exists $(\alpha y, k, \beta y)$ such that $\alpha y \in Z(v)$ and $\beta y = x$
 - * Then $r(\alpha) = v$ and $s(\alpha) = r(y) = r(x_{|\beta|+1})$.

Topologically principal groupoids

Definition

G is topologically principal if $X = \{x : xGx = \{x\}\}$ is dense in $G^{(0)}$. If $X = G^{(0)}$ then we say *G* is principal.

- $xG_Ex \neq \{x\}$ if and only if $x = \alpha \mu \mu \cdots$ for some return path μ .
 - If $x = \alpha \mu \mu \cdots$ let $y = \mu \mu \cdots$ then $(\alpha \mu y, |\mu|, \alpha y) \in xG_Ex \setminus \{x\}$
 - If $(\alpha y, k, \beta y) \in xG_E x \setminus \{x\}$, then $\alpha y = x = \beta y$.
 - WLOG assume $|\alpha| > |\beta|$ then for $\mu = \alpha_{|\beta|+1} \cdots \alpha_{|\alpha|}$, $x = \alpha \mu \mu \mu \cdots$.
- G_E is topologically principal if and only if E satisfies condition L. (Kumjian et al 1998)

• If G_E topological principal and μ is a return path in E.

- * $y = \mu \mu \mu \cdots$. Then there exists $x \in Z(\mu)$ such that $xG_E x = \{x\}$.
- ***** So $x = \mu z$ but $z \neq \mu \mu \cdots$.
- * Let *i* be the first index such that $x_i \neq \mu_j$ for some *j*. Then x_i is an entrance for μ : that is *E* satisfies L.
- If E satisfies condition L and $Z(\alpha)$ open
 - * Using condition L, construct a path $x = \alpha y$ with y not of the form $\beta \mu \mu \cdots$.
 - ★ Then $xG_E x = \{x\}$ and $x \in Z(\alpha)$: that is G_E topologically principal.

Locally Contracting

A étale groupoid G is *locally contracting* if for every $U \subset G^{(0)}$ open there exists a $V \subset U$ and a bisection B such that

- $s(B) \subset \overline{V}$, and
- $I r(B) \subsetneq V.$
 - If E is a graph and α is a return path with entrance e. Assume $r(e) = s(\alpha)$
 - Consider $Z(\alpha \alpha, \alpha)$
 - ► $s(Z(\alpha\alpha, \alpha)) = Z(\alpha) \supset Z(\alpha\alpha) = r(Z(\alpha\alpha, \alpha))$
 - $Z(\alpha\alpha) \cap Z(\alpha e) = \emptyset$ so $Z(\alpha\alpha) \neq Z(\alpha)$.

Theorem (Anantharaman-Delaroche, '97)

If G is a locally contracting topologicially principal minimal étale groupoid then $C_r^*(G)$ is purely infinite.

Purely infinite

Theorem (B., Clark, Sierakowski '14)

For a second countable locally compact Hausdorff groupoid G that is topologically principal and minimal, $C_r^*(G)$ is purely infinite simple if and only if every nonzero positive element of $C_0(G^{(0)})$ is properly infinite.

Idea: Given $c \in C_r^*(G)$, use an argument of Anantharaman Delaroche (1997) and Lemma 2.2 of Kirchberg, Rørdam 2002 to construct a $b \in C_r^*(G)$ so that $b^*cb \in C_0(G^{(0)})$. Now b^*cb infinite implies c infinite. Advantages of this theorem:

• Only have to check positive elements in a restricted abelian subalgebra of $C^*(G)$.

Disadvantage of the theorem:

• Theorem doesn't say anything about the groupoid structure.

Graphs

Let E be a row-finite cofinal graph that satisfies condition L.

- If $a \in C_0(E^{\infty}) = C_0(G_E^{(0)})$ is positive, then there exists $c \in \mathbb{C}$ and $\alpha \in E^*$ with $c1_{\alpha E^*} \leq a$.
- So *a* infinite if $1_{\alpha E^{\infty}}$ is infinite.

• Now
$$1_{\alpha E^*} = 1_{Z(\alpha, s(\alpha))} 1^*_{Z(\alpha, s(\alpha))}$$
 is infinite if and only if $p_{s(\alpha)} \leftrightarrow 1_{s(\alpha)E^*} = 1^*_{Z(\alpha, s(\alpha))} 1_{Z(\alpha, s(\alpha))}$ is.

Corollary (B., Clark, Sierakowski '14)

If E is a row-finite cofinal graph that satisfies condition L, then $C^*(E)$ is purely infinite simple if and only if p_v is infinite in $C^*(E)$ for all $v \in E^0$.

• Works for higher rank graphs too!

Constructing purely infinite groupoids

- Suppose G is a groupoid and $h: G \rightarrow G$ is an automorphism.
- \bullet Let ${\mathcal O}$ be the graph consisting of one vertex and countably many edges.

•
$$C^*(\mathcal{O}) \cong \mathcal{O}_{\infty}.$$

- Let $G_{\mathcal{O}}$ be the groupoid associated to $G_{\mathcal{O}}$ (slightly different construction from before).
- There is a map

$$c: G_{\mathcal{O}} \to \mathbb{Z}$$
 by $(x, k, y) \mapsto k$.

- Construct a semidirect product groupoid G_h^∞
 - $G_h^{\alpha} = \mathcal{O} \times G$ as a topological space.
 - $r(((x,k,y),\gamma)) = (x,r(\gamma)) \quad s(((x,k,y),\gamma)) = (y,h^k(s(\gamma))).$
 - Operations:

$$\begin{aligned} ((x, k, y), \gamma)) \cdot ((y, \ell, z), \eta) &= ((x, k + \ell, z), \gamma h^{-k}(\eta)), \\ ((x, k, y), \gamma))^{-1} &= ((y, -k, x), h^{k}(\gamma^{-1})). \end{aligned}$$

Properties of G_h^{∞}

Properties of G	Properties of <i>h</i>	Properties of ${\mathcal G}^\infty_h$
Principal	$r(s^{-1}(x)) = r(s^{-1}(h^k(x))) \Rightarrow k = 0$	Principal
	$\bigcup_{n \le k} h^n(r(s^{-1}(x)))$ is dense in $G^{(0)}$	Minimal
Basis for G ⁽⁰⁾ , B, of compact open sets	$orall V \in \mathcal{B} \;\; \exists \ell > 0$ such that $h^{-\ell}(V) \subset V$	locally contracting

By Anantharaman Delaroche '97 G_h^{∞} is purely infinite simple if G and h satisfy the listed properties above.

Bratteli Diagrams

A Bratteli diagram E consists of vertices divided into levels V_n so that for each e in E^1 $s(e) \in V_i$ and $r(e) \in V_{i-1}$.

• Let $k_{vw} = |vE^1w|$ and enumerate $vE^1w = \{e_{vw}^1, e_{vw}^2, \cdots e_{vw}^{k_{vw}}\}$.

Define

$$ilde{h}(e^i_{\scriptscriptstyle VW})=e^{(i+1 \mod (k_{\scriptscriptstyle VW}))}_{\scriptscriptstyle VW}$$

and \tilde{h} fixes E^0 .

• \tilde{h} induces an automorphism on G_E via

$$h(x_1x_2\cdots,k,y_1y_2\cdots)=(\tilde{h}(x_1)\tilde{h}(x_2)\cdots,k,\tilde{h}(y_1)\tilde{h}(y_2)\cdots)$$

• Since $|r(\mu)Es(\mu)| < \infty$ and $h(Z(\alpha)) = Z(\tilde{h}(\alpha))$ there exists an ℓ with $h^{\ell}(Z(\alpha)) = Z(\alpha)$.

• Thus G_E^{∞} is locally contracting.

Bratteli Diagrams Continued

Assume for $v \in V_n$, $w \in V_{n+1}$ that $k_{vw} := |vE^1w| > n$. Then G_E^{∞} is principal.

- Fix $x \in G^{(0)} = E^{\infty}$.
- Since E is acyclic, G_E is principal. Need to show r(s⁻¹(x)) = r(s⁻¹(h^k(x)) implies k = 0.
 If r(s⁻¹(x)) = r(s⁻¹(h^k(x)). This happens if and only if
 - $\alpha x_m \cdots = \alpha \tilde{h}(x_n) \cdots$. Since \tilde{h} fixes vertices we have m = n and can thus assume

$$x=h^k(x).$$

• Thus
$$x_i = \tilde{h}^k(x_i)$$
 for all *i*.

• h^k permutes edges in $r(x_i)E^1s(x_i) \mod k_{r(x_i)s(x_i)}$ and $k_{r(x_i)s(x_i)} \to \infty$ we must have k = 0.

Thus if we assume *E* is cofinal. Then G_E is minimal and $\bigcup_{n \le k} h^n(r(s^{-1}(x))) \subset r(s^{-1}(x))$ is dense for all *x* we get

 $C^*(G_E^{\infty})$ is purely infinite simple.

KK-equivalence

Theorem (B., Clark, Sierakowski, Sims)

Suppose G is a second countable locally compact amenable étale groupoid with a basis of compact open bisections and h and automorphism of G. Then the map

$$\iota_{G}: C^{*}_{r}(G) \to C^{*}_{r}(G^{\infty}_{h}) \text{ given by } f \mapsto 1_{G^{(0)}_{\infty}} \times f$$

induces an isomorphism of ordered K-theory.

Idea: Construct a $C_r^*(G)$ correspondence where $C_r^*(G_h^\infty)$ is the Toeplitz algebra and ι_G is the inclusion of $C_r^*(G)$ into the Toeplitz algebra. Then Theorem 4.4 of Pimsner 1997 gives the result.

Corollary (B., Clark, Sierakowski, Sims)

Suppose A is a Kirchberg algebra with $K_0(A)$ a simple dimension group and $K_1(A) = \{0\}$. Then there exists a topologically principal minimal étale groupoid G such that $C_r^*(G) \cong A$.

THANK YOU