Leavitt path and graph *C**-algebras: connections via traces

Lia Vaš

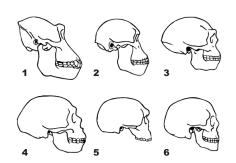
University of the Sciences, Philadelphia

Making connections

Traces

Graph algebra evolution

- 1. **1950s:** Leavitt algebras as examples of rings with $R^m \cong R^n$.
- 1970s: Cuntz's algebras C*-algebras defined by analogous identities.
- 3. **1980s:** Cuntz-Krieger algebras generalization of 2.



- 4. **1990s:** Graph *C**-algebras.
- 5. **2000s:** Leavitt path algebras as algebraic analog of 4. and generalization of 1.

Missing link?

Two worlds, two languages:

Gene Abrams: "Find a Rosetta stone".

This talk's agenda – two fold

1. The first agenda.

Traces of Leavitt path algebras

Traces of graph

C*algebras

The second agenda

2. While working on 1. I ended up filling the blank below.

A LPA is **directly finite** iff the graph is ______.

Illustrate a more general method of

"localization"

in the sketch of the proof.

But first – the larger picture

Berberian 1972. "Von Neumann algebras are blessed with an excess of structure – algebraic, geometric, topological – so much, that one can easily obscure, through proof by overkill, what makes a particular theorem work."

"If all the functional analysis is stripped away ... what remains should (be) completely accessible through algebraic avenues".

Two worlds – with more than one inhabitant each

Group Von Neumann algebras \iff Group rings AW^* -algebras \iff Baer *-rings Graph C^* -algebras \iff Leavitt Path Algebras

My algebraic avenues. 2000s: group $\overline{VNAs} \rightarrow finite VNAs \rightarrow Baer *-rings$.

Need more Rosetta stones.

And then...

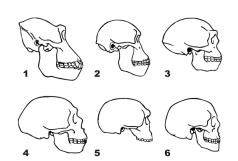
... I started hanging out with Gonzalo (Aranda Pino)...

... and noticed that the search of algebraic avenues motivates the study of Leavitt path algebras as well.

Trace evolution

1. The usual trace on $M_n(R)$.

The **trace** of an idempotent/projection is related to the **dimension** of the corresponding projective submodule/subspace.



- 2. More generally, **traces of operators** of a Hilbert space \rightarrow traces of von Neumann algebras \rightarrow of C^* -algebras.
- 3. Tomforde (2002) Graph traces and tracial states of **graph** C*-algebras.
- 4. Traces on Leavitt path algebras?
- 5. Connections?

So, let us look at a trace...

... in the most general way.

T-valued trace on R

is a map $t: R \to T$ which is

- additive and
- central i.e. t(xy) = t(yx)for all $x, y \in R$

If R and T are K-algebras, we also want it to be

► *K*-linear i.e. t(kx) = kt(x) for all $x \in R$ and $k \in K$.

Let R and T be rings. A

Examples

- 1. **Kaplanski trace** on a group ring KG. $\sum a_g g \mapsto a_1$
- 2. Augmentation map on KG. $\sum a_g g \mapsto \sum a_g$.
- 3. **Standard trace** on matrix ring over K. Matrix ring $=\overline{KG}$ for G= matrix units.

$$\overline{\mathit{KG}} = \mathsf{contracted}\ \mathit{KG} = \mathit{KG}/\mathit{K0}.$$

$$KG = \overline{KG + 0}$$
 if G is without 0.

Traces on contracted semigroup rings with Zak (Mesyan).

Characterization of minimal traces.

▶ *t* is **minimal**: t(x) = 0 iff *x* is in the commutator.

Relevance to Leavitt path algebras?

 $G = \{pq^* \mid p, q \text{ paths of a graph } E\}$. Here q^* is a **ghost path**.

G = graph inverse semigroup and

 $\overline{\mathit{KG}} = \mathbf{Cohn} \ \mathbf{path} \ \mathbf{algebra}.$

 $\begin{array}{l} {\sf Cohn\ path\ algebra} \,+\, {\sf CK2\ axiom} \\ = {\sf Leavitt\ path\ algebra}. \end{array}$

$$\forall vv = v \text{ and } vw = 0 \text{ if } v \neq w,$$

E1
$$\mathbf{s}(e)e = e\mathbf{r}(e) = e$$

E2
$$\mathbf{r}(e)e^* = e^*\mathbf{s}(e) = e^*$$

CK1
$$e^*e = \mathbf{r}(e)$$
, $e^*f = 0$ if $e \neq f$

CK2 $v = \sum ee^*$ for $e \in \mathbf{s}^{-1}(v)$ if v is regular (= emits edges, finitely many).

Traces on Cohn and Leavitt path algebras

G = graph inverse semigroup.

Proposition [Zak-Lia].

traces on Cohn path algebra	\\\\	central maps on G	
traces on Leavitt path algebra	< ~~→	central maps on <i>G</i> which agree with CK2	

A central map t on G agrees with CK2 iff

$$t(v) = t(\sum ee^*) = \sum t(ee^*) = \sum t(e^*e) = \sum t(\mathsf{r}(e))$$

for v regular with $e \in \mathbf{s}^{-1}(v)$.

Involution kicks in

x in *-ring is **positive** $(x \ge 0)$ if x = finite sum of yy^* . $R, T *-rings, t : R \rightarrow T trace.$

- t is **positive** if $x \ge 0$ implies $t(x) \ge 0$.
- t is **faithful** if x > 0 implies t(x) > 0.

If t is **positive** on a LPA, then

(P)
$$t(v) \geq \sum_{e \in I} t(\mathbf{r}(e))$$

for all v, and finite $I \subset \mathbf{s}^{-1}(v)$.

- $I = \emptyset \Rightarrow t(v) > 0.$
- v regular and $I = \mathbf{s}^{-1}(v) \Rightarrow \geq \text{is} = .$

If t is **faithful** then | (F) t(v) > 0 | for all v.

Are these meaningful?

Desirable properties.

- 1. (P) is **sufficient** for positivity and (F) for faithfulness.
- 2. Traces are determined by values on vertices.

 $\frac{\text{\bf 1 fails.}}{(=\text{LPA of a loop})} \text{ The } \mathbb{C}\text{-valued } t \text{ on } \mathbb{C}[x,x^{-1}]$

$$t(x^n)=i^n, t(x^{-n})=i^n$$

has (P) and (F) but is not positive since

$$t((1+x)(1+x^{-1})) = 2+2i.$$

2 also fails. The map on vertices of the graph below

$$\bullet^1 \longleftarrow \bullet^3 \longrightarrow \bullet^1$$

has (P) and (F) but does not extend to a trace: CK2 fails (3 \neq 1 + 1).

Fixing 1 – Canonical traces

t =trace on $L_K(E), p, q =$ paths.

1. t is canonical if

$$t(pq^*) = 0$$
, for $p \neq q$ and $t(pp^*) = t(\mathbf{r}(p))$.

2. t is **gauge invariant** if

$$t(pq^*) = k^{|p|-|q|}t(pq^*)$$
 for any nonzero $k \in K$.

Equivalent for char K = 0.

Harmony

Theorem 1 [Lia]. If t is a <u>canonical</u> trace on $L_K(E)$, then

t is positive \iff (P) holds. t is faithful \iff (F) holds.

Fixing 2 – Graph Traces

A graph trace is a map δ on the set of vertices such that

It is

positive if $| \delta(v) \ge \sum_{e \in I} \delta(\mathbf{r}(e)) |$ for all v, and finite

 $I \subset \mathsf{s}^{-1}(v)$.

▶ **faithful** if positive and $|\delta(v)>0|$ for all v.

$$\delta(v) > 0$$

Harmony continued

Theorem 2 [Lia].

```
canonical trace on L_K(E) \iff graph trace on E

positive, canonical trace on L_K(E) \iff graph trace on E

faithful, faithful graph trace on E
```

Direct corollary of Theorem 1.

Instead of going over 6 pages of proof...

... let me tell you what my driving force was.

- 1. Classification of von Neumann algebras via traces.
- 2. Results on traces of graph C^* -algebras.

Connecting with the C*-algebra world

Theorem [Pask-Rennie, 2006]. *E* row-finite and countable.

All maps are \mathbb{C} -valued.

faithful, semifinite, lower semicontinuous gauge-invariant

trace on $C^*(E)$

faithful

 \iff graph trace on E

semifinite = $\{x \in C^*(E)^+ | t(x) < \infty\}$ is norm dense in $C^*(E)^+$.

lower semicontinuous = $t(\lim_{n\to\infty} a_n) \le \liminf_{n\to\infty} t(a_n)$ for all $a_n \in C^*(E)^+$ norm convergent.

Let us better polish that Rosetta stone

Operator theory trace

Defined on the positive cone.

$$\mathbf{t}(\mathbf{x}\mathbf{x}^*) = \mathbf{t}(\mathbf{x}^*\mathbf{x})$$

 $t(xx^*)=0 \Rightarrow x=0.$

Faithful if

Algebra trace

Defined everywhere.

Central.

Faithful if

 $t\left(\sum xx^*\right) = 0 \Rightarrow \sum xx^* = 0.$

Luckily, char $\mathbb{C} = 0$ so no Rosetta stone needed for:

canonical = gauge invariant.

Using Rosetta stone

Fixing the domain. Write
$$x = a + ib$$
 and $a = a^+ - a^-$, $b = b^+ - b^-$. Define
$$t(x) = t(a^+) - t(a^-) + i(t(b^+) - t(b^-)).$$

This is \mathbb{C} -linear and positive.

<u>Fixing faithfulness.</u> If R and T are *-rings, $t: R \to T$ a positive trace, and

- 1. T positive definite $(\sum_{i=1}^{n} x_i x_i^* = 0 \Rightarrow x_i = 0 \text{ for all } i$, for all n),
- 2. R proper $(xx^* = 0 \Rightarrow x = 0)$ then

$$t(xx^*) = 0 \Rightarrow x = 0$$
 \iff $t(\sum xx^*) = 0 \Rightarrow \sum xx^* = 0.$

Luckily, \mathbb{C} is positive definite and any C^* -algebra is proper.

Connecting the worlds

Corollary [Lia]. E row-finite and countable. All maps are \mathbb{C} -valued.

```
semifinite, lower semicont., faithful, faithful, gauge-invariant canonical trace \longleftrightarrow trace \longleftrightarrow graph trace on C^*(E) on E
```

Proof. We already have that (2) = (3).

Every t as in (1) restricts to t as in (3) without using row-finiteness.

Every t as in (2) extends to t as in (1) using Gauge Invariant Uniqueness Theorem proven for countable graphs.

Where to next with this?

Remember my driving force:

A **von Neumann** algebra is finite iff there is a finite, normal, faithful trace.

I wandered:

A **Leavitt path** algebra
$$L_K(E)$$
 is **finite**
iff there is a K -valued canonical, faithful trace (?)
iff the graph is _____.

Recall that a *-ring is **finite** if

$$xx^* = 1$$
 implies $x^*x = 1$.

Easy: the existence of a faithful trace implies finiteness.

$$xx^* = 1 \implies 1 - x^*x \ge 0$$
 and $t(1 - xx^*) = 0$ so $t(1 - x^*x) = t(1 - xx^*) = 0 \implies 1 - x^*x = 0 \implies x^*x = 1$.

Houston, we have a problem

finite iff
$$xx^* = 1 \Rightarrow x^*x = 1$$
.

What is "1" if *E* is not finite?

There are still **local units**: for every finite set of elements, there is an idempotent acting like a unit.

A *-ring with local units R is **finite** if for every x and an idempotent u with xu = ux = x,

$$xx^* = u$$
 implies $x^*x = u$.

In this case u is a projection (selfadjoint idempotent).

While we are at it...

A unital ring *R* is **directly (Dedekind) finite** if

$$xy = 1$$
 implies $yx = 1$.

Equivalently: if no direct summand of R is isomorphic to R.

A ring with local units R is **directly finite** if for every x, y and an idempotent u with xu = ux = x and yu = uy = y,

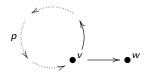
$$xy = u$$
 implies $yx = u$.

Finite Not Finite

Necessary condition for LPAs to be finite – no exits

If a cycle p has an **exit**, then a LPA is

not (directly) finite.



Let $x = p + (1 - \delta_{v,w})w$, and $u = v + (1 - \delta_{v,w})w$. Then $x^*x = u$ and $xx^* \neq u$.

If E is finite, this is sufficient too:

E no-exit $\Rightarrow L_K(E)$ finite sum of matricial algebras over K or $K[x, x^{-1}] \Rightarrow L_K(E)$ is directly finite.

Idea for the converse

- 1. Start with x, y in $L_K(E)$ for some E no-exit.
- 2. Consider u, local unit for x and y, with xy = u. Want yx = u.
- 3. Consider a finite subgraph F determined by the paths appearing in x, y, u.
- 4. F is no-exit and so $L_K(F)$ is directly finite so yx = u. Done.

Problem: $L_K(F)$ may not be a subalgebra of $L_K(E)$. So yx = u in $L_K(F)$ does not mean yx = u in $L_K(E)$.

Houston, can we "localize"?

Yes: using Cohn, Leavitt and everything in between

Cohn C _K (E)	$\begin{array}{c} \textbf{Cohn-Leavitt} \\ \textbf{CL}_{\textbf{K}}(\textbf{E},\textbf{S}) \end{array}$	Leavitt L _K (E)
CK2 holds for no regular v's	CK2 holds for	CK2 holds for <u>all</u> regular <i>v</i> 's

Have their C^* -counterparts: relative graph C^* -algebras

No-exits for Cohn-Leavitt algebras over finite E

Not really that much larger class:

$$CL_{\kappa}(E,S)\cong L_{\kappa}(E_{S})$$

Using the above iso and no-exit characterization for finite graphs, we have that for *E* **finite**,

 $CL_K(E, S)$ is (directly) finite.

E is no-exit and vertices of all cycles are in S.

Goodearl-Ara work

For every finite subgraph G of E, there are

- ▶ a finite subgraph F of E which contains G
- ▶ a subset T of regular vertices of E

such that

and

 $\mathsf{CL}_\mathsf{K}(\mathsf{F},\mathsf{T})$ is a subalgebra of $\mathsf{L}_\mathsf{K}(\mathsf{E})$.

Proven in larger generality for separated graphs.

Original idea now works!

Same as originally:

- 1. Start with x, y in $L_K(E)$ for some E no-exit.
- 2. Consider a local unit u, local for x and y with xy = u. Want yx = u.
- 3. Consider a finite subgraph G determined by the paths appearing in x, y, u.

Different:

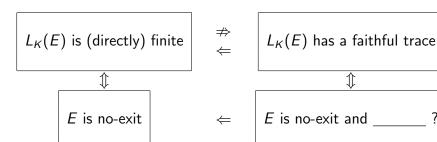
- 4. Look at finite F and its T such that $CL_K(F, T)$ is a subalgebra of $L_K(E)$.
- 5. *F* is no-exit and all the vertices of its cycles are in *T* by construction.
- 6. Thus $CL_K(F, T)$ is directly finite.
- 7. So yx = u in $CL_K(F, T)$ and thus in $L_K(E)$ too. Done.

Corollaries

Idea of "localizing": more general than just for finiteness. **For example.** Proof of the Abrams-Rangaswami result

 $L_K(E)$ regular iff E acyclic.

Where will the trace take us next?



No exits here.

No trace since value of $t(v) \ge nt(w)$ for all n.

Local home

 $http://www.usciences.edu/{\sim}lvas \quad and \quad arXiv.$