Algebras Associated to Ample Groupoids

Lisa Orloff Clark

University of Otago

May 2015

Lisa Orloff Clark Algebras Associated to Ample Groupoids

Suppose a group H acts on a set X.

Thus there is a map $\cdot : H \times X \to X$ such that for each $x \in X$ and $g, h \in H$ we have

• $h \cdot x \in X$,

•
$$g \cdot (h \cdot x) = gh \cdot x$$
 and

• $e \cdot x = x$.

Suppose a group H acts on a set X.

Suppose a group H acts on a set X.

Each element $(h, x) \in H \times X$ can be viewed as a **morphism** (an arrow) from x to $h \cdot x$ such that:

• we can formally compose morphisms: $(g, h \cdot x)(h, x) = (gh, x);$

Suppose a group H acts on a set X.

Each element $(h, x) \in H \times X$ can be viewed as a **morphism** (an arrow) from x to $h \cdot x$ such that:

• we can formally compose morphisms: $(g, h \cdot x)(h, x) = (gh, x);$

composition is associative;

Suppose a group H acts on a set X.

- we can formally compose morphisms: $(g, h \cdot x)(h, x) = (gh, x);$
- composition is associative;
- (*e*, *x*) is a morphism from *x* to itself and acts as an identity under composition;

Suppose a group H acts on a set X.

- we can formally compose morphisms: $(g, h \cdot x)(h, x) = (gh, x);$
- composition is associative;
- (*e*, *x*) is a morphism from *x* to itself and acts as an identity under composition;
- for any $(h, x) \in H \times X$, $(h^{-1}, h \cdot x) \in H \times X$ so that:

Suppose a group H acts on a set X.

- we can formally compose morphisms: $(g, h \cdot x)(h, x) = (gh, x);$
- composition is associative;
- (*e*, *x*) is a morphism from *x* to itself and acts as an identity under composition;
- for any $(h,x) \in H \times X$, $(h^{-1}, h \cdot x) \in H \times X$ so that:

•
$$(h^{-1}, h \cdot x)(h, x) = (e, x)$$
 and

•
$$(h, x)(h^{-1}, h \cdot x) = (e, h \cdot x).$$

Suppose a group H acts on a set X.

Each element $(h, x) \in H \times X$ can be viewed as a **morphism** (an arrow) from x to $h \cdot x$ such that:

- we can formally compose morphisms: $(g, h \cdot x)(h, x) = (gh, x);$
- composition is associative;
- (e, x) is a morphism from x to itself and acts as an identity under composition;
- for any $(h,x) \in H imes X$, $(h^{-1},h\cdot x) \in H imes X$ so that:

•
$$(h^{-1}, h \cdot x)(h, x) = (e, x)$$
 and

•
$$(h,x)(h^{-1},h\cdot x) = (e,h\cdot x).$$

A **groupoid** is a set of morphisms between elements of a set X satisfying the above conditions.

A groupoid is a small category with inverses

• morphisms can be formally composed;

- morphisms can be formally composed;
- composition is associative;

- morphisms can be formally composed;
- composition is associative;
- each element $x \in X$ has an identity morphism;

- morphisms can be formally composed;
- composition is associative;
- each element $x \in X$ has an identity morphism;
- every morphism has an inverse.

- morphisms can be formally composed;
- composition is associative;
- each element $x \in X$ has an identity morphism;
- every morphism has an inverse.

• G is a groupoid.

- G is a groupoid.
- We write $G^{(0)}$ to denote the set of identity morphisms and identify it with X.

- G is a groupoid.
- We write $G^{(0)}$ to denote the set of identity morphisms and identify it with X.
- $G^{(0)}$ is called the unit space of G.

- *G* is a groupoid.
- We write $G^{(0)}$ to denote the set of identity morphisms and identify it with X.
- $G^{(0)}$ is called the unit space of G.
- For each morphism γ ∈ G, we write s(γ) and r(γ) to denote the source and range of γ.

- G is a groupoid.
- We write $G^{(0)}$ to denote the set of identity morphisms and identify it with X.
- $G^{(0)}$ is called the unit space of G.
- For each morphism γ ∈ G, we write s(γ) and r(γ) to denote the source and range of γ.
- $s,r:G
 ightarrow G^{(0)}$ such that

$$s(\gamma)=\gamma\gamma^{-1}$$
 and $r(\gamma)=\gamma^{-1}\gamma.$

- *G* is a groupoid.
- We write $G^{(0)}$ to denote the set of identity morphisms and identify it with X.
- $G^{(0)}$ is called the unit space of G.
- For each morphism γ ∈ G, we write s(γ) and r(γ) to denote the source and range of γ.
- $s,r:G
 ightarrow G^{(0)}$ such that

$$s(\gamma) = \gamma \gamma^{-1}$$
 and $r(\gamma) = \gamma^{-1} \gamma$.

• For γ and α in G, $\gamma \alpha \in G$ if and only if $s(\gamma) = r(\alpha)$.

• Group

Here $G^{(0)} = \{e\}$ and each element of the group is a morphism from e to e.

Group

Here $G^{(0)} = \{e\}$ and each element of the group is a morphism from e to e.

• A group action $H \times X$. Here $G^{(0)} = \{e\} \times X \equiv X$ and for $(h, x) \in H \times X$ we have s((h, x)) = x and $r((h, x)) = h \cdot x$.

Let $R \subseteq X \times X$ be an equivalence relation. Then R is a groupoid where:

• Each $(x, y) \in R$ is a morphism from y to x.

- Each $(x, y) \in R$ is a morphism from y to x.
- Reflexive \iff each element has an identity morphism.

- Each $(x, y) \in R$ is a morphism from y to x.
- Reflexive \iff each element has an identity morphism.
- Symmetric \iff each morphism has an inverse.

- Each $(x, y) \in R$ is a morphism from y to x.
- Reflexive \iff each element has an identity morphism.
- Symmetric \iff each morphism has an inverse.
- Transitive \iff composition 'works' and is associative.

Let $R \subseteq X \times X$ be an equivalence relation. Then R is a groupoid where:

- Each $(x, y) \in R$ is a morphism from y to x.
- Reflexive \iff each element has an identity morphism.
- Symmetric \iff each morphism has an inverse.
- Transitive \iff composition 'works' and is associative.

A groupoid that is an equivalence relation is called a Principal Groupoid.

• A topological groupoid is a groupoid equipped with a topology so that composition and inversion are both continuous.

- A topological groupoid is a groupoid equipped with a topology so that composition and inversion are both continuous.
- An open bisection B ⊆ G is an open set such that s_{|B} and r_{|B} are homeomorphisms.

- A topological groupoid is a groupoid equipped with a topology so that composition and inversion are both continuous.
- An open bisection B ⊆ G is an open set such that s_{|B} and r_{|B} are homeomorphisms.
- A topological groupoid *G* is called **ample** if *G* has a base of compact open bisections.

- A topological groupoid is a groupoid equipped with a topology so that composition and inversion are both continuous.
- An open bisection B ⊆ G is an open set such that s_{|B} and r_{|B} are homeomorphisms.
- A topological groupoid *G* is called **ample** if *G* has a base of compact open bisections.
- Assume *G* is a Hausdorff ample groupoid.
• Is a topological group an ample groupoid?

• Is a topological group an ample groupoid? Only when the group is discrete.

- Is a topological group an ample groupoid? Only when the group is discrete.
- An action of discrete group on the Cantor set. (For example, the Cantor minimal systems of Giordano, Putnam, Skau and others.)

- Is a topological group an ample groupoid? Only when the group is discrete.
- An action of discrete group on the Cantor set. (For example, the Cantor minimal systems of Giordano, Putnam, Skau and others.)
- A partial action of a discrete group on the Cantor set. (Exel)

- Is a topological group an ample groupoid? Only when the group is discrete.
- An action of discrete group on the Cantor set. (For example, the Cantor minimal systems of Giordano, Putnam, Skau and others.)
- A partial action of a discrete group on the Cantor set. (Exel)
- Quasilattice ordered groups. (Nica, Muhly-Renault)

- Is a topological group an ample groupoid? Only when the group is discrete.
- An action of discrete group on the Cantor set. (For example, the Cantor minimal systems of Giordano, Putnam, Skau and others.)
- A partial action of a discrete group on the Cantor set. (Exel)
- Quasilattice ordered groups. (Nica, Muhly-Renault)
- The groupoid associated to a directed graph. (Kumjian-Pask-Raeburn-Renault)

- Is a topological group an ample groupoid? Only when the group is discrete.
- An action of discrete group on the Cantor set. (For example, the Cantor minimal systems of Giordano, Putnam, Skau and others.)
- A partial action of a discrete group on the Cantor set. (Exel)
- Quasilattice ordered groups. (Nica, Muhly-Renault)
- The groupoid associated to a directed graph. (Kumjian-Pask-Raeburn-Renault)
- *Self-similar groups. (Nekrshevych)

- Is a topological group an ample groupoid? Only when the group is discrete.
- An action of discrete group on the Cantor set. (For example, the Cantor minimal systems of Giordano, Putnam, Skau and others.)
- A partial action of a discrete group on the Cantor set. (Exel)
- Quasilattice ordered groups. (Nica, Muhly-Renault)
- The groupoid associated to a directed graph. (Kumjian-Pask-Raeburn-Renault)
- *Self-similar groups. (Nekrshevych)
- The groupoid associated to a higher-rank graph. (Kumjian and Pask)

- Is a topological group an ample groupoid? Only when the group is discrete.
- An action of discrete group on the Cantor set. (For example, the Cantor minimal systems of Giordano, Putnam, Skau and others.)
- A partial action of a discrete group on the Cantor set. (Exel)
- Quasilattice ordered groups. (Nica, Muhly-Renault)
- The groupoid associated to a directed graph. (Kumjian-Pask-Raeburn-Renault)
- *Self-similar groups. (Nekrshevych)
- The groupoid associated to a higher-rank graph. (Kumjian and Pask)
- The groupoid associated to a category of paths. (Spielberg)

- Is a topological group an ample groupoid? Only when the group is discrete.
- An action of discrete group on the Cantor set. (For example, the Cantor minimal systems of Giordano, Putnam, Skau and others.)
- A partial action of a discrete group on the Cantor set. (Exel)
- Quasilattice ordered groups. (Nica, Muhly-Renault)
- The groupoid associated to a directed graph. (Kumjian-Pask-Raeburn-Renault)
- *Self-similar groups. (Nekrshevych)
- The groupoid associated to a higher-rank graph. (Kumjian and Pask)
- The groupoid associated to a category of paths. (Spielberg)
- The universal groupoid of an inverse semigroup. (Paterson)

- Is a topological group an ample groupoid? Only when the group is discrete.
- An action of discrete group on the Cantor set. (For example, the Cantor minimal systems of Giordano, Putnam, Skau and others.)
- A partial action of a discrete group on the Cantor set. (Exel)
- Quasilattice ordered groups. (Nica, Muhly-Renault)
- The groupoid associated to a directed graph. (Kumjian-Pask-Raeburn-Renault)
- *Self-similar groups. (Nekrshevych)
- The groupoid associated to a higher-rank graph. (Kumjian and Pask)
- The groupoid associated to a category of paths. (Spielberg)
- The universal groupoid of an inverse semigroup. (Paterson)
- *The groupoid associated to an action of a group on a graph. (Exel-Pardo)

- a countable set of vertices E_0 ,
- a countable set of edges E_1 , and
- maps $r, s: E_1 \rightarrow E_0$ identifying the range and source of each edge.

- a countable set of vertices E_0 ,
- a countable set of edges E_1 , and
- maps $r, s : E_1 \rightarrow E_0$ identifying the range and source of each edge.
- An infinite path is a sequence x of edges in E so that $s(x_n) = r(x_{n+1})$.

- a countable set of vertices E_0 ,
- a countable set of edges E_1 , and
- maps $r, s : E_1 \rightarrow E_0$ identifying the range and source of each edge.
- An infinite path is a sequence x of edges in E so that $s(x_n) = r(x_{n+1})$.
- E^{∞} denotes the set of all infinite paths.

- a countable set of vertices E_0 ,
- a countable set of edges E_1 , and
- maps $r, s : E_1 \rightarrow E_0$ identifying the range and source of each edge.
- An infinite path is a sequence x of edges in E so that $s(x_n) = r(x_{n+1})$.
- E^{∞} denotes the set of all infinite paths.
- Shift equivalent with lag k: Let k ∈ Z. Define a relation ~k on the set of all infinite paths so that x ~k y if and only if there exists N ∈ Z⁺ such that x_i = y_{i+k} for all i ≥ N.

- a countable set of vertices E_0 ,
- a countable set of edges E_1 , and
- maps $r, s : E_1 \rightarrow E_0$ identifying the range and source of each edge.
- An infinite path is a sequence x of edges in E so that $s(x_n) = r(x_{n+1})$.
- E^{∞} denotes the set of all infinite paths.
- Shift equivalent with lag k: Let k ∈ Z. Define a relation ~k on the set of all infinite paths so that x ~k y if and only if there exists N ∈ Z⁺ such that x_i = y_{i+k} for all i ≥ N.

Assume E is row finite and no sources.

The groupoid G_E is defined as follows:

UNITS (ie, the objects of the category): E^{∞} .

The groupoid G_E is defined as follows:

UNITS (ie, the objects of the category): E^{∞} .

MORPHISMS: Suppose x and y are infinite paths. There is a morphism from y to x if and only if $x \sim_k y$. In this case, we label the morphism (x, k, y).

Let E be the directed graph with one vertex and 2 edges.

Let E be the directed graph with one vertex and 2 edges.

The groupoid G_E is defined as follows:

UNITS: E^{∞} .

Let E be the directed graph with one vertex and 2 edges.

The groupoid G_E is defined as follows:

UNITS: E^{∞} .

• Sequences with entries from the set $\{0,1\}$.

Let E be the directed graph with one vertex and 2 edges.

The groupoid G_E is defined as follows:

UNITS: E^{∞} .

• Sequences with entries from the set $\{0,1\}$.

MORPHISMS: Elements of form (x, k, y) where x and y are sequences that are 'eventually' the same and differ only in index by a fixed integer k.

Example

• Let

$$x = (0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$$
 and
 $y = (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$

Example

• Let

$$x = (0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$$
 and
 $y = (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$

•
$$(x,4,y)\in {\sf G}_{\sf E}$$
 because $x_i=y_{i+4}$ for all $i\in \mathbb{Z}^+$

Example

Let

$$x = (0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$$
 and
 $y = (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$

- $(x,4,y) \in G_E$ because $x_i = y_{i+4}$ for all $i \in \mathbb{Z}^+$
- $(x, 1, y) \in G_E$ because $x_i = y_{i+1}$ for all $i \ge 4$

Example

Let

$$x = (0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$$
 and
 $y = (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$

- $(x,4,y) \in G_E$ because $x_i = y_{i+4}$ for all $i \in \mathbb{Z}^+$
- $(x, 1, y) \in G_E$ because $x_i = y_{i+1}$ for all $i \ge 4$
- $(x, k, y) \in G_E$ if and only if $k \equiv 1 \pmod{3}$

Example

Let

$$x = (0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$$
 and
 $y = (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$

- $(x,4,y) \in G_E$ because $x_i = y_{i+4}$ for all $i \in \mathbb{Z}^+$
- $(x, 1, y) \in G_E$ because $x_i = y_{i+1}$ for all $i \ge 4$
- $(x, k, y) \in G_E$ if and only if $k \equiv 1 \pmod{3}$
- $(x,0,x) \in G_E$ because $x_i = x_i$ for all $i \in \mathbb{Z}^+$

Example

Let

$$x = (0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$$
 and
 $y = (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$

- $(x,4,y) \in G_E$ because $x_i = y_{i+4}$ for all $i \in \mathbb{Z}^+$
- $(x, 1, y) \in G_E$ because $x_i = y_{i+1}$ for all $i \ge 4$
- $(x, k, y) \in G_E$ if and only if $k \equiv 1 \pmod{3}$
- $(x,0,x) \in G_E$ because $x_i = x_i$ for all $i \in \mathbb{Z}^+$
- $(x, k, x) \in G_E$ if and only if $k \equiv 0 \pmod{3}$ if and only if $k \in 3\mathbb{Z}$.

Example

Let

$$x = (0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$$
 and
 $y = (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$

Then

- $(x,4,y) \in G_E$ because $x_i = y_{i+4}$ for all $i \in \mathbb{Z}^+$
- $(x, 1, y) \in G_E$ because $x_i = y_{i+1}$ for all $i \ge 4$
- $(x, k, y) \in G_E$ if and only if $k \equiv 1 \pmod{3}$
- $(x,0,x) \in G_E$ because $x_i = x_i$ for all $i \in \mathbb{Z}^+$
- $(x, k, x) \in G_E$ if and only if $k \equiv 0 \pmod{3}$ if and only if $k \in 3\mathbb{Z}$.

Note: The set of morphisms that begin and end at a particular unit u is called the isotropy group at u.

Topology on graph groupoid

 $\bullet\,$ For a finite path μ

$$Z(\mu):=\{\mu x: x\in E^\infty ext{ and } s(\mu)=r(x)\}\subseteq G^{(0)}$$

 $\bullet\,$ For a finite path μ

$$Z(\mu):=\{\mu x: x\in E^\infty ext{ and } s(\mu)=r(x)\}\subseteq G^{(0)}$$

• For finite paths μ and ν with $s(\mu) = s(\nu)$

$$Z(\mu,\nu) := \{(\mu x, |\mu| - |\nu|, \nu x) : x \in E^{\infty}, s(\mu) = r(x)\} \subseteq G_E$$

$$Z(\mu) := \{\mu x : x \in E^{\infty} \text{ and } s(\mu) = r(x)\} \subseteq G^{(0)}$$

• For finite paths μ and ν with $s(\mu) = s(\nu)$

$$Z(\mu,
u) := \{(\mu x, |\mu| - |
u|,
u x) : x \in E^{\infty}, s(\mu) = r(x)\} \subseteq G_E$$

• $Z(\mu, \mu)$ is identified with $Z(\mu)$.

$$Z(\mu):=\{\mu x: x\in E^\infty ext{ and } s(\mu)=r(x)\}\subseteq G^{(0)}$$

• For finite paths μ and ν with $s(\mu) = s(\nu)$

$$Z(\mu,\nu) := \{(\mu x, |\mu| - |\nu|, \nu x) : x \in E^{\infty}, s(\mu) = r(x)\} \subseteq G_E$$

- $Z(\mu, \mu)$ is identified with $Z(\mu)$.
- $r(Z(\mu,\nu)) = Z(\mu)$ and $s(Z(\mu,\nu)) = Z(\nu)$

$$Z(\mu):=\{\mu x: x\in E^\infty ext{ and } s(\mu)=r(x)\}\subseteq G^{(0)}$$

• For finite paths μ and ν with $s(\mu) = s(\nu)$

$$Z(\mu,\nu) := \{(\mu x, |\mu| - |\nu|, \nu x) : x \in E^{\infty}, s(\mu) = r(x)\} \subseteq G_E$$

- $Z(\mu, \mu)$ is identified with $Z(\mu)$.
- $r(Z(\mu,\nu)) = Z(\mu)$ and $s(Z(\mu,\nu)) = Z(\nu)$
- r and s are injective on $Z(\mu, \nu)$

$$Z(\mu):=\{\mu x: x\in E^\infty ext{ and } s(\mu)=r(x)\}\subseteq G^{(0)}$$

• For finite paths μ and ν with $s(\mu) = s(\nu)$

$$Z(\mu,
u) := \{(\mu x, |\mu| - |
u|,
u x) : x \in E^{\infty}, s(\mu) = r(x)\} \subseteq G_E$$

•
$$Z(\mu, \mu)$$
 is identified with $Z(\mu)$.

- $r(Z(\mu,\nu)) = Z(\mu)$ and $s(Z(\mu,\nu)) = Z(\nu)$
- r and s are injective on $Z(\mu, \nu)$

The collection of all such $Z(\mu, \nu)$ give a base of compact open bisections. (Kumjian-Pask-Raeburn-Renault)

Ample groupoid algebras

From now on, we assume G is ample.
From now on, we assume G is ample. The complex **Steinberg algebra** of G is the convolution *-algebra

 $A(G) := \operatorname{span}\{1_B \mid B \text{ is a compact open bisection}\} \subseteq C_c(G)$

From now on, we assume G is ample. The complex **Steinberg algebra** of G is the convolution *-algebra

$$A(G) := \operatorname{span}\{1_B \mid B \text{ is a compact open bisection}\} \subseteq C_c(G)$$

where addition and scalar multiplication are pointwise and convolution and \ast of characteristic functions is given by

$$1_B * 1_D = 1_{BD}$$
 and $1_B^* = 1_{B^{-1}}$.

From now on, we assume G is ample. The complex **Steinberg algebra** of G is the convolution *-algebra

$$A(G) := \operatorname{span}\{1_B \mid B \text{ is a compact open bisection}\} \subseteq C_c(G)$$

where addition and scalar multiplication are pointwise and convolution and \ast of characteristic functions is given by

$$1_B * 1_D = 1_{BD}$$
 and $1_B^* = 1_{B^{-1}}$.

Proposition

Suppose G is a Hausdorff ample groupoid. Then

 $A(G) = \{ f \in C_c(G) : f \text{ is locally constant } \}.$

From now on, we assume G is ample. The complex **Steinberg algebra** of G is the convolution *-algebra

 $A(G) := \operatorname{span}\{1_B \mid B \text{ is a compact open bisection}\} \subseteq C_c(G)$

where addition and scalar multiplication are pointwise and convolution and \ast of characteristic functions is given by

$$1_B * 1_D = 1_{BD}$$
 and $1_B^* = 1_{B^{-1}}$.

Proposition

Suppose G is a Hausdorff ample groupoid. Then

 $A(G) = \{ f \in C_c(G) : f \text{ is locally constant } \}.$

Contributors: Steinberg, Exel, C-Farthing-Sims-Tomforde ... and many others.

Proposition

Let E be a directed graph. Then there is an isomorphism from $L(E) \to A(G_E)$ such that

$$(**) \quad p_{\nu} \mapsto 1_{Z(\nu)}, \quad s_e \mapsto 1_{Z(e,s(e))}, \text{ and } \quad s_{\mu}s_{\nu^*} \mapsto 1_{Z(\mu,\nu)}.$$

Proposition

Let E be a directed graph. Then there is an isomorphism from $L(E) \to A(G_E)$ such that

$$(**) \quad p_{\nu} \mapsto 1_{Z(\nu)}, \quad s_e \mapsto 1_{Z(e,s(e))}, \text{ and } \quad s_{\mu}s_{\nu^*} \mapsto 1_{Z(\mu,\nu)}.$$

Sketch of proof.

• The collection $\{1_{Z(v)}, 1_{Z(e,s(e))}\}$ is a Leavitt *E*-family in A(G).

Proposition

Let E be a directed graph. Then there is an isomorphism from $L(E) \rightarrow A(G_E)$ such that

$$(**) \quad p_{\nu} \mapsto 1_{Z(\nu)}, \quad s_e \mapsto 1_{Z(e,s(e))}, \text{ and } \quad s_{\mu}s_{\nu^*} \mapsto 1_{Z(\mu,\nu)}.$$

Sketch of proof.

- The collection $\{1_{Z(v)}, 1_{Z(e,s(e))}\}$ is a Leavitt *E*-family in A(G).
- The universal property of L(E) gives a homomorphism $\phi: L(E) \rightarrow A(G_E)$ that satisfies (**).

Proposition

Let E be a directed graph. Then there is an isomorphism from $L(E) \to A(G_E)$ such that

$$(**) \quad p_{\nu} \mapsto 1_{Z(\nu)}, \quad s_e \mapsto 1_{Z(e,s(e))}, \text{ and } \quad s_{\mu}s_{\nu^*} \mapsto 1_{Z(\mu,\nu)}.$$

Sketch of proof.

- The collection $\{1_{Z(v)}, 1_{Z(e,s(e))}\}$ is a Leavitt *E*-family in A(G).
- The universal property of L(E) gives a homomorphism $\phi: L(E) \rightarrow A(G_E)$ that satisfies (**).
- This homomorphism ϕ is graded. Thus, the graded uniqueness theorem tells us ϕ is injective.

Proposition

Let E be a directed graph. Then there is an isomorphism from $L(E) \to A(G_E)$ such that

$$(**) \quad p_{\nu} \mapsto 1_{Z(\nu)}, \quad s_e \mapsto 1_{Z(e,s(e))}, \text{ and } \quad s_{\mu}s_{\nu^*} \mapsto 1_{Z(\mu,\nu)}.$$

Sketch of proof.

- The collection $\{1_{Z(v)}, 1_{Z(e,s(e))}\}$ is a Leavitt *E*-family in A(G).
- The universal property of L(E) gives a homomorphism $\phi: L(E) \rightarrow A(G_E)$ that satisfies (**).
- This homomorphism ϕ is graded. Thus, the graded uniqueness theorem tells us ϕ is injective.
- Surjectivity is a little grubby.

• We can construct a Steinberg algebra from any ample groupoid.

- We can construct a Steinberg algebra from any ample groupoid.
- An argument similar to LPA example can be used to show each 'Kumjian-Pask' algebra associated to a higher-rank graph is a Steinberg algebras.

- We can construct a Steinberg algebra from any ample groupoid.
- An argument similar to LPA example can be used to show each 'Kumjian-Pask' algebra associated to a higher-rank graph is a Steinberg algebras.
- The class of Steinberg algebras includes algebras that are NOT Leavitt path algebras.

- We can construct a Steinberg algebra from any ample groupoid.
- An argument similar to LPA example can be used to show each 'Kumjian-Pask' algebra associated to a higher-rank graph is a Steinberg algebras.
- The class of Steinberg algebras includes algebras that are NOT Leavitt path algebras.

Example

• If a Leavitt path algebra is simple, then it is either locally matricial or purely infinite. (Abrams-Aranda Pino)

- We can construct a Steinberg algebra from any ample groupoid.
- An argument similar to LPA example can be used to show each 'Kumjian-Pask' algebra associated to a higher-rank graph is a Steinberg algebras.
- The class of Steinberg algebras includes algebras that are NOT Leavitt path algebras.

Example

- If a Leavitt path algebra is simple, then it is either locally matricial or purely infinite. (Abrams-Aranda Pino)
- Let Λ be a rank-2 Bratteli diagram that is cofinal and aperiodic. Then $A(G_{\Lambda})$ is simple but is neither locally matricial nor purely infinite. (C-Flynn-an Huef)

• A(G) is dense in $C^*(G)$ (and in $C^*_r(G)$)

- A(G) is dense in $C^*(G)$ (and in $C^*_r(G)$)
- A(G) is simple if and only if G is minimal and effective

- A(G) is dense in $C^*(G)$ (and in $C^*_r(G)$)
- A(G) is simple if and only if G is minimal and effective
 - Lead to the proof of simplicity result for $C^*(G)$ where G is *étale*

- A(G) is dense in $C^*(G)$ (and in $C^*_r(G)$)
- A(G) is simple if and only if G is *minimal* and *effective*
 - ▶ Lead to the proof of simplicity result for C^{*}(G) where G is *étale*
- We also have $A_R(G)$ where R is any commutative ring with 1

- A(G) is dense in $C^*(G)$ (and in $C^*_r(G)$)
- A(G) is simple if and only if G is minimal and effective
 Lead to the proof of simplicity result for C*(G) where G is étale
- We also have $A_R(G)$ where R is any commutative ring with 1
- $A_R(G)$ has a universal property

- A(G) is dense in $C^*(G)$ (and in $C^*_r(G)$)
- A(G) is simple if and only if G is *minimal* and *effective*Lead to the proof of simplicity result for C*(G) where G is *étale*
- We also have $A_R(G)$ where R is any commutative ring with 1
- $A_R(G)$ has a universal property
- We have graded and 'Cuntz-Krieger' uniqueness theorems for $A_R(G)$

- A(G) is dense in $C^*(G)$ (and in $C^*_r(G)$)
- A(G) is simple if and only if G is *minimal* and *effective*Lead to the proof of simplicity result for C*(G) where G is *étale*
- We also have $A_R(G)$ where R is any commutative ring with 1
- $A_R(G)$ has a universal property
- We have graded and 'Cuntz-Krieger' uniqueness theorems for $A_R(G)$
- The center of $A_R(G)$ is the set of 'class functions'

- A(G) is dense in $C^*(G)$ (and in $C^*_r(G)$)
- A(G) is simple if and only if G is minimal and effective
 Lead to the proof of simplicity result for C*(G) where G is étale
- We also have $A_R(G)$ where R is any commutative ring with 1
- A_R(G) has a universal property
- We have graded and 'Cuntz-Krieger' uniqueness theorems for $A_R(G)$
- The center of $A_R(G)$ is the set of 'class functions'
- Equivalent groupoids yield Morita equivalent Steinberg algebras

- A(G) is dense in $C^*(G)$ (and in $C^*_r(G)$)
- A(G) is simple if and only if G is minimal and effective
 Lead to the proof of simplicity result for C*(G) where G is étale
- We also have $A_R(G)$ where R is any commutative ring with 1
- $A_R(G)$ has a universal property
- We have graded and 'Cuntz-Krieger' uniqueness theorems for $A_R(G)$
- The center of $A_R(G)$ is the set of 'class functions'
- Equivalent groupoids yield Morita equivalent Steinberg algebras

Contributors: J.H. Brown, C, Edie-Michell, Farthing, Sims, Steinberg and Tomforde

• Fix a directed graph E and a set $F^0 \subseteq E^0$.

- Fix a directed graph E and a set $F^0 \subseteq E^0$.
- Let *H* be the restriction of G_E to the infinite paths that have range in F^0 .

- Fix a directed graph E and a set $F^0 \subseteq E^0$.
- Let *H* be the restriction of G_E to the infinite paths that have range in F^0 .
- What is the relationship between $A_R(H)$ and $A_r(G_E)$?

- Fix a directed graph E and a set $F^0 \subseteq E^0$.
- Let *H* be the restriction of G_E to the infinite paths that have range in F^0 .
- What is the relationship between $A_R(H)$ and $A_r(G_E)$?
- $A_R(H)$ is subalgebra of $A_R(G_E)$ but not an ideal.

- Fix a directed graph E and a set $F^0 \subseteq E^0$.
- Let *H* be the restriction of G_E to the infinite paths that have range in F^0 .
- What is the relationship between $A_R(H)$ and $A_r(G_E)$?
- $A_R(H)$ is subalgebra of $A_R(G_E)$ but not an ideal.
- We can do better....but first some examples.

Crisp and Gow's collapsible subgraph

Proposition (C-Sims)

Let $F^0 \subseteq E^0$ such that:

(T1) each vertex in F^0 is the range of at most one $y \in E^{\infty}$ such that the source of $y_i \notin F^0$ for all *i*;

for each $x \notin F^0$ we have

(T2) a path from the range of x to a vertex in F^0 ; and

[T3)
$$|s^{-1}(r(x_i))| = 1$$
 for all *i*.

Suppose $H \subseteq G_E$ is the restriction of G_E to unit space $\{Z(v) : v \in F^0\}$. Then $A_R(G_E)$ is Morita equivalent to $A_R(H)$.

Crisp and Gow's collapsible subgraph

Proposition (C-Sims)

Let $F^0 \subseteq E^0$ such that:

(T1) each vertex in F^0 is the range of at most one $y \in E^{\infty}$ such that the source of $y_i \notin F^0$ for all *i*;

for each $x \notin F^0$ we have

(T2) a path from the range of x to a vertex in F^0 ; and

[T3)
$$|s^{-1}(r(x_i))| = 1$$
 for all *i*.

Suppose $H \subseteq G_E$ is the restriction of G_E to unit space $\{Z(v) : v \in F^0\}$. Then $A_R(G_E)$ is Morita equivalent to $A_R(H)$.

This construction includes:

- Bates and Pask's "Outsplitting"
- Sørensen's move (S) Removing sinks
- Sørensen's move (R) Reduction

Crisp and Gow's collapsible subgraph

Proposition (C-Sims)

Let $F^0 \subseteq E^0$ such that:

(T1) each vertex in F^0 is the range of at most one $y \in E^{\infty}$ such that the source of $y_i \notin F^0$ for all *i*;

for each $x \notin F^0$ we have

(T2) a path from the range of x to a vertex in F^0 ; and

[T3)
$$|s^{-1}(r(x_i))| = 1$$
 for all *i*.

Suppose $H \subseteq G_E$ is the restriction of G_E to unit space $\{Z(v) : v \in F^0\}$. Then $A_R(G_E)$ is Morita equivalent to $A_R(H)$.

This construction includes:

- Bates and Pask's "Outsplitting"
- Sørensen's move (S) Removing sinks
- Sørensen's move (R) Reduction

Proposition (Muhly-Renault-Williams, C-Sims)

Let $F^0 \subseteq E^0$ such that $\{Z(v) : v \in F^0\}$ meets each orbit in G_E and suppose $H \subseteq G_E$ is the restriction of G_E to unit space $\{Z(v) : v \in F^0\}$.

Then $A_R(G_E)$ is Morita equivalent to $A_R(H)$.

Proposition (Muhly-Renault-Williams, C-Sims)

Let $F^0 \subseteq E^0$ such that $\{Z(v) : v \in F^0\}$ meets each orbit in G_E and suppose $H \subseteq G_E$ is the restriction of G_E to unit space $\{Z(v) : v \in F^0\}$.

Then $A_R(G_E)$ is Morita equivalent to $A_R(H)$.

NOTE:

 If E is cofinal, than the hypotheses of the proposition are satisfied for any F⁰ ⊆ E⁰.

Proposition (Muhly-Renault-Williams, C-Sims)

Let $F^0 \subseteq E^0$ such that $\{Z(v) : v \in F^0\}$ meets each orbit in G_E and suppose $H \subseteq G_E$ is the restriction of G_E to unit space $\{Z(v) : v \in F^0\}$.

Then $A_R(G_E)$ is Morita equivalent to $A_R(H)$.

NOTE:

 If E is cofinal, than the hypotheses of the proposition are satisfied for any F⁰ ⊆ E⁰. • What effect does the Cuntz-splice have on the associated groupoids?

• What effect does the Cuntz-splice have on the associated groupoids?

• How do various isomorphism results play out in $A_R(G)$?
• What effect does the Cuntz-splice have on the associated groupoids?

• How do various isomorphism results play out in $A_R(G)$?

• Can we characterize the ideals of $A_R(G)$?

• What effect does the Cuntz-splice have on the associated groupoids?

• How do various isomorphism results play out in $A_R(G)$?

• Can we characterize the ideals of $A_R(G)$?

• Can we find necessary and sufficient conditions for simplicity of A(G) when G is not Hausdorff?

The End

The End

Thank you!

Lisa Orloff Clark Algebras Associated to Ample Groupoids