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Group Actions

Suppose a group H acts on a set X .

Thus there is a map · : H × X → X such that for each x ∈ X and
g , h ∈ H we have

h · x ∈ X ,

g · (h · x) = gh · x and

e · x = x .
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Group actions, another view

Suppose a group H acts on a set X .

Each element (h, x) ∈ H × X can be viewed as a morphism (an arrow)
from x to h · x such that:

we can formally compose morphisms: (g , h · x)(h, x) = (gh, x);

composition is associative;

(e, x) is a morphism from x to itself and acts as an identity under
composition;

for any (h, x) ∈ H × X , (h−1, h · x) ∈ H × X so that:

I (h−1, h · x)(h, x) = (e, x) and

I (h, x)(h−1, h · x) = (e, h · x).

A groupoid is a set of morphisms between elements of a set X satisfying
the above conditions.
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A groupoid is a small category with inverses

A groupoid is a set of morphisms between elements of a set X (objects)
such that:

morphisms can be formally composed;

composition is associative;

each element x ∈ X has an identity morphism;

every morphism has an inverse.
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Notation:

G is a groupoid.

We write G (0) to denote the set of identity morphisms and identify it
with X .

G (0) is called the unit space of G .

For each morphism γ ∈ G , we write s(γ) and r(γ) to denote the
source and range of γ.

s, r : G → G (0) such that

s(γ) = γγ−1 and r(γ) = γ−1γ.

For γ and α in G , γα ∈ G if and only if s(γ) = r(α).
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Examples

Group

Here G (0) = {e} and each element of the group is a morphism from e
to e.

A group action H × X .

Here G (0) = {e} × X ≡ X and for (h, x) ∈ H × X we have

s((h, x)) = x and r((h, x)) = h · x .
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Another important example: Principal Groupoids

Example

Let R ⊆ X × X be an equivalence relation. Then R is a groupoid where:

Each (x , y) ∈ R is a morphism from y to x .

Reflexive ⇐⇒ each element has an identity morphism.

Symmetric ⇐⇒ each morphism has an inverse.

Transitive ⇐⇒ composition ‘works’ and is associative.

A groupoid that is an equivalence relation is called a Principal Groupoid.

Lisa Orloff Clark Algebras Associated to Ample Groupoids



Another important example: Principal Groupoids

Example

Let R ⊆ X × X be an equivalence relation. Then R is a groupoid where:

Each (x , y) ∈ R is a morphism from y to x .

Reflexive ⇐⇒ each element has an identity morphism.

Symmetric ⇐⇒ each morphism has an inverse.

Transitive ⇐⇒ composition ‘works’ and is associative.

A groupoid that is an equivalence relation is called a Principal Groupoid.

Lisa Orloff Clark Algebras Associated to Ample Groupoids



Another important example: Principal Groupoids

Example

Let R ⊆ X × X be an equivalence relation. Then R is a groupoid where:

Each (x , y) ∈ R is a morphism from y to x .

Reflexive ⇐⇒ each element has an identity morphism.

Symmetric ⇐⇒ each morphism has an inverse.

Transitive ⇐⇒ composition ‘works’ and is associative.

A groupoid that is an equivalence relation is called a Principal Groupoid.

Lisa Orloff Clark Algebras Associated to Ample Groupoids



Another important example: Principal Groupoids

Example

Let R ⊆ X × X be an equivalence relation. Then R is a groupoid where:

Each (x , y) ∈ R is a morphism from y to x .

Reflexive ⇐⇒ each element has an identity morphism.

Symmetric ⇐⇒ each morphism has an inverse.

Transitive ⇐⇒ composition ‘works’ and is associative.

A groupoid that is an equivalence relation is called a Principal Groupoid.

Lisa Orloff Clark Algebras Associated to Ample Groupoids



Another important example: Principal Groupoids

Example

Let R ⊆ X × X be an equivalence relation. Then R is a groupoid where:

Each (x , y) ∈ R is a morphism from y to x .

Reflexive ⇐⇒ each element has an identity morphism.

Symmetric ⇐⇒ each morphism has an inverse.

Transitive ⇐⇒ composition ‘works’ and is associative.

A groupoid that is an equivalence relation is called a Principal Groupoid.

Lisa Orloff Clark Algebras Associated to Ample Groupoids



Another important example: Principal Groupoids

Example

Let R ⊆ X × X be an equivalence relation. Then R is a groupoid where:

Each (x , y) ∈ R is a morphism from y to x .

Reflexive ⇐⇒ each element has an identity morphism.

Symmetric ⇐⇒ each morphism has an inverse.

Transitive ⇐⇒ composition ‘works’ and is associative.

A groupoid that is an equivalence relation is called a Principal Groupoid.

Lisa Orloff Clark Algebras Associated to Ample Groupoids



Ample groupoids

A topological groupoid is a groupoid equipped with a topology so
that composition and inversion are both continuous.

An open bisection B ⊆ G is an open set such that s|B and r|B are
homeomorphisms.

A topological groupoid G is called ample if G has a base of compact
open bisections.

Assume G is a Hausdorff ample groupoid.
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Examples of ample groupoids:

Is a topological group an ample groupoid?

Only when the group is discrete.

An action of discrete group on the Cantor set. (For example, the
Cantor minimal systems of Giordano, Putnam, Skau and others.)

A partial action of a discrete group on the Cantor set. (Exel)

Quasilattice ordered groups. (Nica, Muhly-Renault)

The groupoid associated to a directed graph.
(Kumjian-Pask-Raeburn-Renault)

*Self-similar groups. (Nekrshevych)

The groupoid associated to a higher-rank graph. (Kumjian and Pask)

The groupoid associated to a category of paths. (Spielberg)

The universal groupoid of an inverse semigroup. (Paterson)

*The groupoid associated to an action of a group on a graph.
(Exel-Pardo)
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Groupoid of a directed Graph

Let E = (E0,E1, r , s) be a directed graph consisting of

a countable set of vertices E0,

a countable set of edges E1, and

maps r , s : E1 → E0 identifying the range and source of each edge.

An infinite path is a sequence x of edges in E so that s(xn) = r(xn+1).

E∞ denotes the set of all infinite paths.

Shift equivalent with lag k : Let k ∈ Z. Define a relation ∼k on the
set of all infinite paths so that x ∼k y if and only if there exists
N ∈ Z+ such that xi = yi+k for all i ≥ N.

Assume E is row finite and no sources.
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Groupoid of a directed Graph

The groupoid GE is defined as follows:

UNITS (ie, the objects of the category): E∞.

MORPHISMS: Suppose x and y are infinite paths. There is a morphism
from y to x if and only if x ∼k y . In this case, we label the morphism
(x , k , y).
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The Cuntz groupoid

Example

Let E be the directed graph with one vertex and 2 edges.

The groupoid GE is defined as follows:

UNITS: E∞.

Sequences with entries from the set {0, 1}.

MORPHISMS: Elements of form (x , k , y) where x and y are sequences
that are ‘eventually’ the same and differ only in index by a fixed integer k .
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The Cuntz groupoid

Example

Let

x = (0, 0, 1, 0, 0, 1, 0, 0, 1, ...) and

y = (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...).

Then

(x , 4, y) ∈ GE because xi = yi+4 for all i ∈ Z+

(x , 1, y) ∈ GE because xi = yi+1 for all i ≥ 4

(x , k, y) ∈ GE if and only if k ≡ 1 (mod 3)

(x , 0, x) ∈ GE because xi = xi for all i ∈ Z+

(x , k, x) ∈ GE if and only if k ≡ 0 (mod 3) if and only if k ∈ 3Z.

Note: The set of morphisms that begin and end at a particular unit u is
called the isotropy group at u.
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Topology on graph groupoid

For a finite path µ

Z (µ) := {µx : x ∈ E∞ and s(µ) = r(x)} ⊆ G (0)

For finite paths µ and ν with s(µ) = s(ν)

Z (µ, ν) := {(µx , |µ| − |ν|, νx) : x ∈ E∞, s(µ) = r(x)} ⊆ GE

Z (µ, µ) is identified with Z (µ).

r(Z (µ, ν)) = Z (µ) and s(Z (µ, ν)) = Z (ν)

r and s are injective on Z (µ, ν)

The collection of all such Z (µ, ν) give a base of compact open bisections.
(Kumjian-Pask-Raeburn-Renault)
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Ample groupoid algebras

From now on, we assume G is ample.

The complex Steinberg algebra of G is the convolution ∗-algebra

A(G ) := span{1B | B is a compact open bisection} ⊆ Cc(G )

where addition and scalar multiplication are pointwise and convolution and
∗ of characteristic functions is given by

1B ∗ 1D = 1BD and 1∗B = 1B−1 .

Proposition

Suppose G is a Hausdorff ample groupoid. Then

A(G ) = {f ∈ Cc(G ) : f is locally constant }.

Contributors: Steinberg, Exel, C-Farthing-Sims-Tomforde ... and many
others.
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Leavitt path algebras are Steinberg algebras

Proposition

Let E be a directed graph. Then there is an isomorphism from
L(E )→ A(GE ) such that

(∗∗) pv 7→ 1Z(v), se 7→ 1Z(e,s(e)), and sµsν∗ 7→ 1Z(µ,ν).

Sketch of proof.

The collection {1Z(v), 1Z(e,s(e))} is a Leavitt E -family in A(G ).

The universal property of L(E ) gives a homomorphism
φ : L(E )→ A(GE ) that satisfies (∗∗).

This homomorphism φ is graded. Thus, the graded uniqueness
theorem tells us φ is injective.

Surjectivity is a little grubby.
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The class of Steinberg algebras is broad

We can construct a Steinberg algebra from any ample groupoid.

An argument similar to LPA example can be used to show each
‘Kumjian-Pask’ algebra associated to a higher-rank graph is a
Steinberg algebras.

The class of Steinberg algebras includes algebras that are NOT
Leavitt path algebras.

Example

If a Leavitt path algebra is simple, then it is either locally matricial or
purely infinite. (Abrams-Aranda Pino)

Let Λ be a rank-2 Bratteli diagram that is cofinal and aperiodic. Then
A(GΛ) is simple but is neither locally matricial nor purely infinite.
(C-Flynn-an Huef)

Lisa Orloff Clark Algebras Associated to Ample Groupoids



The class of Steinberg algebras is broad

We can construct a Steinberg algebra from any ample groupoid.

An argument similar to LPA example can be used to show each
‘Kumjian-Pask’ algebra associated to a higher-rank graph is a
Steinberg algebras.

The class of Steinberg algebras includes algebras that are NOT
Leavitt path algebras.

Example

If a Leavitt path algebra is simple, then it is either locally matricial or
purely infinite. (Abrams-Aranda Pino)

Let Λ be a rank-2 Bratteli diagram that is cofinal and aperiodic. Then
A(GΛ) is simple but is neither locally matricial nor purely infinite.
(C-Flynn-an Huef)

Lisa Orloff Clark Algebras Associated to Ample Groupoids



The class of Steinberg algebras is broad

We can construct a Steinberg algebra from any ample groupoid.

An argument similar to LPA example can be used to show each
‘Kumjian-Pask’ algebra associated to a higher-rank graph is a
Steinberg algebras.

The class of Steinberg algebras includes algebras that are NOT
Leavitt path algebras.

Example

If a Leavitt path algebra is simple, then it is either locally matricial or
purely infinite. (Abrams-Aranda Pino)

Let Λ be a rank-2 Bratteli diagram that is cofinal and aperiodic. Then
A(GΛ) is simple but is neither locally matricial nor purely infinite.
(C-Flynn-an Huef)

Lisa Orloff Clark Algebras Associated to Ample Groupoids



The class of Steinberg algebras is broad

We can construct a Steinberg algebra from any ample groupoid.

An argument similar to LPA example can be used to show each
‘Kumjian-Pask’ algebra associated to a higher-rank graph is a
Steinberg algebras.

The class of Steinberg algebras includes algebras that are NOT
Leavitt path algebras.

Example

If a Leavitt path algebra is simple, then it is either locally matricial or
purely infinite. (Abrams-Aranda Pino)

Let Λ be a rank-2 Bratteli diagram that is cofinal and aperiodic. Then
A(GΛ) is simple but is neither locally matricial nor purely infinite.
(C-Flynn-an Huef)

Lisa Orloff Clark Algebras Associated to Ample Groupoids



The class of Steinberg algebras is broad

We can construct a Steinberg algebra from any ample groupoid.

An argument similar to LPA example can be used to show each
‘Kumjian-Pask’ algebra associated to a higher-rank graph is a
Steinberg algebras.

The class of Steinberg algebras includes algebras that are NOT
Leavitt path algebras.

Example

If a Leavitt path algebra is simple, then it is either locally matricial or
purely infinite. (Abrams-Aranda Pino)

Let Λ be a rank-2 Bratteli diagram that is cofinal and aperiodic. Then
A(GΛ) is simple but is neither locally matricial nor purely infinite.
(C-Flynn-an Huef)

Lisa Orloff Clark Algebras Associated to Ample Groupoids



Properties of Steinberg algebras

A(G ) is dense in C ∗(G ) (and in C ∗r (G ))

A(G ) is simple if and only if G is minimal and effective
I Lead to the proof of simplicity result for C∗(G ) where G is étale

We also have AR(G ) where R is any commutative ring with 1

AR(G ) has a universal property

We have graded and ‘Cuntz-Krieger’ uniqueness theorems for AR(G )

The center of AR(G ) is the set of ‘class functions’

Equivalent groupoids yield Morita equivalent Steinberg algebras

Contributors: J.H. Brown, C, Edie-Michell, Farthing, Sims, Steinberg and
Tomforde
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Other groupoids associated to graphs

Fix a directed graph E and a set F 0 ⊆ E 0.

Let H be the restriction of GE to the infinite paths that have range in
F 0.

What is the relationship between AR(H) and Ar (GE )?

AR(H) is subalgebra of AR(GE ) but not an ideal.

We can do better....but first some examples.
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Crisp and Gow’s collapsible subgraph

Proposition (C-Sims)

Let F 0 ⊆ E 0 such that:

(T1) each vertex in F 0 is the range of at most one y ∈ E∞ such that the
source of yi /∈ F 0 for all i ;

for each x /∈ F 0 we have

(T2) a path from the range of x to a vertex in F 0; and

(T3) |s−1(r(xi ))| = 1 for all i .

Suppose H ⊆ GE is the restriction of GE to unit space {Z (v) : v ∈ F 0}.
Then AR(GE ) is Morita equivalent to AR(H).

This construction includes:

Bates and Pask’s “Outsplitting”

Sørensen’s move (S) Removing sinks

Sørensen’s move (R) Reduction
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Proposition (Muhly-Renault-Williams, C-Sims)

Let F 0 ⊆ E 0 such that {Z (v) : v ∈ F 0} meets each orbit in GE and
suppose H ⊆ GE is the restriction of GE to unit space {Z (v) : v ∈ F 0}.

Then AR(GE ) is Morita equivalent to AR(H).

NOTE:

If E is cofinal, than the hypotheses of the proposition are satisfied for
any F 0 ⊆ E 0.
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Some open questions

What effect does the Cuntz-splice have on the associated groupoids?

How do various isomorphism results play out in AR(G )?

Can we characterize the ideals of AR(G )?

Can we find necessary and sufficient conditions for simplicity of A(G )
when G is not Hausdorff?
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The End

Thank you!
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