$\begin{array}{l} \mbox{Definitions} \\ \mbox{Background} \\ \mbox{Cycles} \\ \mbox{Finiteness of } \mathcal{T}C^*(\Lambda) \end{array}$

Which k-Graphs Have AF C*-algebras?

James Lutley

May 14 2015

James Lutley Which k-Graphs Have AF C*-algebras?

(日) (同) (三) (三)

 $\begin{array}{l} \mbox{Definitions} \\ \mbox{Background} \\ \mbox{Cycles} \\ \mbox{Finiteness of } \mathcal{T}C^*(\Lambda) \end{array}$

A C*-algebra is AF if it is the limit of finite dimensional algebras.

<ロ> <同> <同> < 同> < 同>

 $\begin{array}{l} \mbox{Definitions} \\ \mbox{Background} \\ \mbox{Cycles} \\ \mbox{Finiteness of } \mathcal{T}C^*(\Lambda) \end{array}$

A C*-algebra is AF if it is the limit of finite dimensional algebras. Given a k-graph, when is $C^*(\Lambda)$ AF?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{array}{l} \mbox{Definitions} \\ \mbox{Background} \\ \mbox{Cycles} \\ \mbox{Finiteness of } \mathcal{T}C^*(\Lambda) \end{array}$

A C*-algebra is AF if it is the limit of finite dimensional algebras. Given a *k*-graph, when is $C^*(\Lambda)$ AF? When is $\mathcal{T}C^*(\Lambda)$ AF?

(日) (同) (三) (三)

Definitions Background Cycles Finiteness of $\mathcal{T}C^*(\Lambda)$

A C*-algebra is AF if it is the limit of finite dimensional algebras. Given a *k*-graph, when is $C^*(\Lambda)$ AF? When is $\mathcal{T}C^*(\Lambda)$ AF? Is it ever the case that $C^*(\Lambda)$ is AF when $\mathcal{T}C^*(\Lambda)$ is not?

- 4 同 6 4 日 6 4 日 6

 $\begin{array}{l} \mbox{Definitions} \\ \mbox{Background} \\ \mbox{Cycles} \\ \mbox{Finiteness of } \mathcal{T}C^*(\Lambda) \end{array}$

Define $\mathcal{T}C^*(\Lambda)$ from its representation on $\ell^2(\Lambda)$ $t_{\lambda}e_{\mu} = e_{\lambda\mu}$ when $s(\lambda) = r(\mu)$, 0 otherwise.

Define
$$\mathcal{T}C^*(\Lambda)$$
 from its representation on $\ell^2(\Lambda)$
 $t_{\lambda}e_{\mu} = e_{\lambda\mu}$ when $s(\lambda) = r(\mu)$, 0 otherwise.
When Λ is well behaved, (row finite, locally convex) an ideal $I(\Lambda)$ is generated by

$$\{t_{\nu}-\sum_{\lambda\in\nu\Lambda^{e_i}}t_{\lambda}t_{\lambda}^*:\nu\in\Lambda^0,i\in\{0,\ldots,k-1\}\}$$

where e_i is the *i*th coordinate vector in \mathbb{N}^k .

*ロ * * @ * * 注 * * 注 *

æ

Define
$$\mathcal{T}C^*(\Lambda)$$
 from its representation on $\ell^2(\Lambda)$
 $t_{\lambda}e_{\mu} = e_{\lambda\mu}$ when $s(\lambda) = r(\mu)$, 0 otherwise.
When Λ is well behaved, (row finite, locally convex) an ideal $I(\Lambda)$ is generated by

$$\{t_{\boldsymbol{v}}-\sum_{\lambda\in\boldsymbol{v}\Lambda^{e_i}}t_{\lambda}t_{\lambda}^*:\boldsymbol{v}\in\Lambda^0,i\in\{0,\ldots,k-1\}\}$$

where e_i is the *i*th coordinate vector in \mathbb{N}^k . Let q denote the quotient map. We write $q(t_\lambda) = s_\lambda$. Then $q(\mathcal{T}C^*(\Lambda)) = C^*(\Lambda)$.

(日) (同) (三) (三)

Definitions Background Cycles Finiteness of $TC^*(\Lambda)$

Ordinary Graphs

What is the situation for 1-graphs?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definitions Background Cycles Finiteness of $TC^*(\Lambda)$

Ordinary Graphs

What is the situation for 1-graphs?

TheoremTFAE**1** Λ has no cycles;**2** $C^*(\Lambda)$ is AF;**3** $\mathcal{T}C^*(\Lambda)$ is AF;**3** $\mathcal{T}C^*(\Lambda)$ is finite.

A (1) > A (2) > A

Definitions Background Cycles Finiteness of $\mathcal{T}C^*(\Lambda)$

 Λ must not contain cycles.

Theorem (Evans-Sims)

When Λ contains a cycle with an entry, $C^*(\Lambda)$ is infinite.

< 日 > < 同 > < 三 > < 三 >

Definitions Background **Cycles** Finiteness of *TC*^{*}(Λ)

Λ must not contain cycles.

Theorem (Evans-Sims)

When Λ contains a cycle with an entry, $C^*(\Lambda)$ is infinite. When Λ contains a cycle λ without an entry, $p_{s(\lambda)}C^*(\Lambda)p_{s(\lambda)}$ either does not have a trace or has non-trivial K_1 .

< ロ > < 同 > < 三 > <

Definitions Background **Cycles** Finiteness of *TC*^{*}(Λ)

Λ must not contain cycles.

Theorem (Evans-Sims)

When Λ contains a cycle with an entry, $C^*(\Lambda)$ is infinite. When Λ contains a cycle λ without an entry, $p_{s(\lambda)}C^*(\Lambda)p_{s(\lambda)}$ either does not have a trace or has non-trivial K_1 .

Since the AF property passes to quotients, it is enough to show that $C^*(\Lambda)$ is not AF.

<ロト < 同ト < 三ト

Definitions Background **Cycles** Finiteness of *TC*^{*}(Λ)

Λ must not contain cycles.

Theorem (Evans-Sims)

When Λ contains a cycle with an entry, $C^*(\Lambda)$ is infinite. When Λ contains a cycle λ without an entry, $p_{s(\lambda)}C^*(\Lambda)p_{s(\lambda)}$ either does not have a trace or has non-trivial K_1 .

Since the AF property passes to quotients, it is enough to show that $C^*(\Lambda)$ is not AF. However, we can easily observe that this is also an obstruction in $\mathcal{T}C^*(\Lambda)$.

<ロト < 同ト < 三ト

Definitions Background Cycles Finiteness of $TC^*(\Lambda)$

Λ must not contain cycles.

Theorem (Evans-Sims)

When Λ contains a cycle with an entry, $C^*(\Lambda)$ is infinite. When Λ contains a cycle λ without an entry, $p_{s(\lambda)}C^*(\Lambda)p_{s(\lambda)}$ either does not have a trace or has non-trivial K_1 .

Since the AF property passes to quotients, it is enough to show that $C^*(\Lambda)$ is not AF. However, we can easily observe that this is also an obstruction in

 $\mathcal{T}C^*(\Lambda)$. If λ is a cycle, $t_{\lambda}^*t_{\lambda} > t_{\lambda}t_{\lambda}^*$ so $\mathcal{T}C^*(\Lambda)$ is not finite.

< 日 > < 同 > < 三 > < 三 >

Definitions Background Cycles Finiteness of *TC**(Λ)

Working with subsets of Λ

We say a set $E \subset \Lambda$ is *self-invariant* if whenever μ, λ and $\lambda \alpha$ are in E, so is $\mu \alpha$.

< 日 > < 同 > < 三 > < 三 >

Definitions Background Cycles Finiteness of *TC**(Λ)

Working with subsets of Λ

We say a set $E \subset \Lambda$ is *self-invariant* if whenever μ, λ and $\lambda \alpha$ are in E, so is $\mu \alpha$.

Lemma

A has no cycles if and only if every finite set $E \subset \Lambda$ is contained in a finite self-invariant set.

Image: A image: A

Growth Lemma

Recall how multiplication works in $\mathcal{T}C^*(\Lambda)$. We will refer to an element $t_{\mu}t_{\lambda}^*$ as a monomial.

< 日 > < 同 > < 三 > < 三 >

 Introduction
 Definitions

 Sufficient Conditions
 Background

 Necessary Conditions
 Cycles

 2-Graphs
 Finiteness of TC*(Λ)

Growth Lemma

Recall how multiplication works in $\mathcal{T}C^*(\Lambda)$. We will refer to an element $t_{\mu}t_{\lambda}^*$ as a monomial. We can regulate the lengths of the indices in product monomials.

Growth Lemma

Recall how multiplication works in $\mathcal{T}C^*(\Lambda)$. We will refer to an element $t_{\mu}t_{\lambda}^*$ as a monomial. We can regulate the lengths of the indices in product monomials.

Lemma

Suppose
$$t_{\mu_1} t_{\lambda_1}^* t_{\mu_2} t_{\lambda_2}^* = t_{\mu'} t_{\lambda'}^*$$
.

(日)

Growth Lemma

Recall how multiplication works in $\mathcal{T}C^*(\Lambda)$. We will refer to an element $t_{\mu}t_{\lambda}^*$ as a monomial. We can regulate the lengths of the indices in product monomials.

Lemma

Suppose $t_{\mu_1}t_{\lambda_1}^*t_{\mu_2}t_{\lambda_2}^* = t_{\mu'}t_{\lambda'}^*$. Then $d(\lambda') > d(\lambda_2)$ if and only if λ_1 is not an initial subpath of μ_2 .

Growth Lemma

Recall how multiplication works in $\mathcal{T}C^*(\Lambda)$. We will refer to an element $t_{\mu}t_{\lambda}^*$ as a monomial. We can regulate the lengths of the indices in product monomials.

Lemma

Suppose $t_{\mu_1}t_{\lambda_1}^*t_{\mu_2}t_{\lambda_2}^* = t_{\mu'}t_{\lambda'}^*$. Then $d(\lambda') > d(\lambda_2)$ if and only if λ_1 is not an initial subpath of μ_2 . Similarly $d(\mu') > d(\mu_1)$ if and only if μ_2 is not an initial subpath of λ_1

・ロト ・同ト ・ヨト ・ヨト

Growth Lemma

Recall how multiplication works in $\mathcal{T}C^*(\Lambda)$. We will refer to an element $t_{\mu}t_{\lambda}^*$ as a monomial. We can regulate the lengths of the indices in product monomials.

Lemma

Suppose $t_{\mu_1}t_{\lambda_1}^*t_{\mu_2}t_{\lambda_2}^* = t_{\mu'}t_{\lambda'}^*$. Then $d(\lambda') > d(\lambda_2)$ if and only if λ_1 is not an initial subpath of μ_2 . Similarly $d(\mu') > d(\mu_1)$ if and only if μ_2 is not an initial subpath of λ_1

Corollary

Given a finite set of monomials S, a basis vector e_{α} can only be sent to finitely other basis vectors by elements of S.

< 日 > < 同 > < 三 > < 三 >

Growth Lemma

Recall how multiplication works in $\mathcal{T}C^*(\Lambda)$. We will refer to an element $t_{\mu}t_{\lambda}^*$ as a monomial. We can regulate the lengths of the indices in product monomials.

Lemma

Suppose $t_{\mu_1}t_{\lambda_1}^*t_{\mu_2}t_{\lambda_2}^* = t_{\mu'}t_{\lambda'}^*$. Then $d(\lambda') > d(\lambda_2)$ if and only if λ_1 is not an initial subpath of μ_2 . Similarly $d(\mu') > d(\mu_1)$ if and only if μ_2 is not an initial subpath of λ_1

Corollary

Given a finite set of monomials S, a basis vector e_{α} can only be sent to finitely other basis vectors by elements of S.

< 日 > < 同 > < 三 > < 三 >

Definitions Background Cycles Finiteness of *TC**(Λ)

Finiteness Theorem

Theorem

Suppose Λ is a finitely aligned k-graph. TFAE

Λ has no cycles;

James Lutley Which k-Graphs Have AF C*-algebras?

(日)

Definitions Background Cycles Finiteness of $\mathcal{T}C^*(\Lambda)$

Finiteness Theorem

Theorem

Suppose Λ is a finitely aligned k-graph. TFAE

- Λ has no cycles;
- **2** $\mathcal{T}C^*(\Lambda)$ is finite;

(日)

Definitions Background Cycles Finiteness of $\mathcal{T}C^*(\Lambda)$

Finiteness Theorem

Theorem

Suppose Λ is a finitely aligned k-graph. TFAE

- Λ has no cycles;
- **2** $\mathcal{T}C^*(\Lambda)$ is finite;
- **3** $\mathcal{T}C^*(\Lambda)$ is quasidiagonal.

< ロ > < 同 > < 三 > <

∃ >

Definitions Background Cycles Finiteness of *TC**(Λ)

Finiteness Theorem

Theorem

Suppose Λ is a finitely aligned k-graph. TFAE

- Λ has no cycles;
- **2** $\mathcal{T}C^*(\Lambda)$ is finite;
- **3** $\mathcal{T}C^*(\Lambda)$ is quasidiagonal.

It follows that there are many k-graphs for which $\mathcal{T}C^*(\Lambda)$ is finite but $C^*(\Lambda)$ is not, something which never happens with 1-graphs.

Image: A image: A

Finite Dimensional Subalgebras Local Structure of Λ .

Locating finite dimensional subalgebras

If we know that a finite set of monomials only ever generates a finite set of monomials, we can immediately conclude that $\mathcal{TC}^*(\Lambda)$ is AF.

同 ト イ ヨ ト イ ヨ ト

Finite Dimensional Subalgebras Local Structure of A.

Locating finite dimensional subalgebras

If we know that a finite set of monomials only ever generates a finite set of monomials, we can immediately conclude that $\mathcal{T}C^*(\Lambda)$ is AF.

It would perhaps be surprising if there were an AF k-graph algebra which failed to satisfy this condition.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Finite Dimensional Subalgebras Local Structure of Λ .

Locating finite dimensional subalgebras

If we know that a finite set of monomials only ever generates a finite set of monomials, we can immediately conclude that $\mathcal{T}C^*(\Lambda)$ is AF.

It would perhaps be surprising if there were an AF k-graph algebra which failed to satisfy this condition.

In a k-graph, even in the absence of cycles, a finite set of monomials can generate an infinite dimensional algebra.

| 4 同 1 4 三 1 4 三 1

Finite Dimensional Subalgebras Local Structure of Λ .

Locating finite dimensional subalgebras

If we know that a finite set of monomials only ever generates a finite set of monomials, we can immediately conclude that $\mathcal{T}C^*(\Lambda)$ is AF.

It would perhaps be surprising if there were an AF k-graph algebra which failed to satisfy this condition.

In a *k*-graph, even in the absence of cycles, a finite set of monomials can generate an infinite dimensional algebra. Evans and Sims introduced *generalized cycles*, a certain class of infinite generating monomials and showed that they are an obstruction to $C^*(\Lambda)$ being AF.

< ロ > < 同 > < 回 > < 回 >

Finite Dimensional Subalgebras Local Structure of Λ .

What do these k-graphs look like?

Theorem

If Λ is finite and has no cycles then $\mathcal{T}C^*(\Lambda)$ is finite dimensional.

- 4 同 6 4 日 6 4 日 6

Finite Dimensional Subalgebras Local Structure of Λ .

What do these k-graphs look like?

Theorem

If Λ is finite and has no cycles then $\mathcal{T}C^*(\Lambda)$ is finite dimensional.

Lemma

Every finite set of monomials in $\mathcal{T}C^*(\Lambda)$ generates a finite dimensional subalgebra if and only if every finite set of paths in Λ is contained in a finite set that is self-invariant and closed under taking minimal common extensions.

▲ 同 ▶ → 三 ▶

Finite Dimensional Subalgebras Local Structure of Λ .

What do these k-graphs look like?

Theorem

If Λ is finite and has no cycles then $\mathcal{T}C^*(\Lambda)$ is finite dimensional.

Lemma

Every finite set of monomials in $\mathcal{T}C^*(\Lambda)$ generates a finite dimensional subalgebra if and only if every finite set of paths in Λ is contained in a finite set that is self-invariant and closed under taking minimal common extensions.

Theorem (Evans-Sims)

 $C^*(\Lambda)$ is AF if and only if every corner $p_v C^*(\Lambda)p_v$ is AF.
Finite Dimensional Subalgebras Local Structure of Λ .

What do these k-graphs look like?

Theorem

If Λ is finite and has no cycles then $\mathcal{T}C^*(\Lambda)$ is finite dimensional.

Lemma

Every finite set of monomials in $\mathcal{T}C^*(\Lambda)$ generates a finite dimensional subalgebra if and only if every finite set of paths in Λ is contained in a finite set that is self-invariant and closed under taking minimal common extensions.

Theorem (Evans-Sims)

 $C^*(\Lambda)$ is AF if and only if every corner $p_v C^*(\Lambda)p_v$ is AF.

So it is sufficient to check sets of paths in $v\Lambda$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Finite Dimensional Subalgebras Local Structure of Λ .

Types of Finite Sets

A set $E \subset v\Lambda$ is *orthogonal* if no two paths have a common extension.

Finite Dimensional Subalgebras Local Structure of Λ .

Types of Finite Sets

A set $E \subset v\Lambda$ is *orthogonal* if no two paths have a common extension. This is equivalent to saying that $\sum_{\lambda \in E} s_{\lambda} s_{\lambda}^*$ is a projection.

| 4 同 1 4 三 1 4 三 1

Finite Dimensional Subalgebras Local Structure of Λ .

Types of Finite Sets

A set $E \subset v\Lambda$ is *orthogonal* if no two paths have a common extension. This is equivalent to saying that $\sum_{\lambda \in E} s_{\lambda} s_{\lambda}^*$ is a projection.

A set is *complete* if it is self-invariant and closed under minimal common extensions.

| 4 同 1 4 三 1 4 三 1

Finite Dimensional Subalgebras Local Structure of Λ .

Types of Finite Sets

A set $E \subset v\Lambda$ is *orthogonal* if no two paths have a common extension. This is equivalent to saying that $\sum_{\lambda \in E} s_{\lambda} s_{\lambda}^*$ is a projection.

A set is *complete* if it is self-invariant and closed under minimal common extensions.

Observe that orthogonal sets are automatically complete.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Finite Dimensional Subalgebras Local Structure of Λ .

Relating Finite Completions to Nilpotency

If
$$S \subset \{0, \ldots, k-1\}$$
, write $d(\lambda)_S$ to denote $(d(\lambda)_0 \cdot \chi_S(0), \ldots, d(\lambda)_{k-1} \cdot \chi_S(k-1)).$

- 4 同 6 4 日 6 4 日 6

Finite Dimensional Subalgebras Local Structure of Λ .

Relating Finite Completions to Nilpotency

If
$$S \subset \{0, \ldots, k-1\}$$
, write $d(\lambda)_S$ to denote
 $(d(\lambda)_0 \cdot \chi_S(0), \ldots, d(\lambda)_{k-1} \cdot \chi_S(k-1)).$
We will say that a pair of sets $E_0, E_1 \subset v\Lambda$ are properly unbalanced
if there is a partition $S_0 \sqcup S_1$ of $\{0, \ldots, k-1\}$ such that for every
 $\lambda_0 \in E_0$ and $\lambda_1 \in E_1$, $d(\lambda_i)_{S_i} > d(\lambda_{1-i})_{S_i}$ for $i = 0, 1$.

- 4 同 6 4 日 6 4 日 6

Finite Dimensional Subalgebras Local Structure of Λ .

Relating Finite Completions to Nilpotency

If
$$S \subset \{0, \ldots, k-1\}$$
, write $d(\lambda)_S$ to denote
 $(d(\lambda)_0 \cdot \chi_S(0), \ldots, d(\lambda)_{k-1} \cdot \chi_S(k-1)).$
We will say that a pair of sets $E_0, E_1 \subset v\Lambda$ are properly unbalanced
if there is a partition $S_0 \sqcup S_1$ of $\{0, \ldots, k-1\}$ such that for every
 $\lambda_0 \in E_0$ and $\lambda_1 \in E_1$, $d(\lambda_i)_{S_i} > d(\lambda_{1-i})_{S_i}$ for $i = 0, 1$.

Lemma

Let Λ be a row-finite k-graph. When $E_0, E_1 \subset \Lambda$ are finite properly unbalanced orthogonal sets, then $E_0 \cup E_1$ has a finite completion if and only if $(\sum_{\mu \in E_0} t_\mu \sum_{\lambda \in E_1} t_\lambda^*)^n$ is 0 for some n.

・ロト ・同ト ・ヨト ・ヨト

Finite Dimensional Subalgebras Local Structure of Λ .

Relating Finite Completions to Nilpotency

If
$$S \subset \{0, \ldots, k-1\}$$
, write $d(\lambda)_S$ to denote
 $(d(\lambda)_0 \cdot \chi_S(0), \ldots, d(\lambda)_{k-1} \cdot \chi_S(k-1)).$
We will say that a pair of sets $E_0, E_1 \subset v\Lambda$ are properly unbalanced
if there is a partition $S_0 \sqcup S_1$ of $\{0, \ldots, k-1\}$ such that for every
 $\lambda_0 \in E_0$ and $\lambda_1 \in E_1$, $d(\lambda_i)_{S_i} > d(\lambda_{1-i})_{S_i}$ for $i = 0, 1$.

Lemma

Let Λ be a row-finite k-graph. When $E_0, E_1 \subset \Lambda$ are finite properly unbalanced orthogonal sets, then $E_0 \cup E_1$ has a finite completion if and only if $(\sum_{\mu \in E_0} t_\mu \sum_{\lambda \in E_1} t_\lambda^*)^n$ is 0 for some n.

・ロト ・同ト ・ヨト ・ヨト

Nilpotency Theorem Proof

Nilpotency Theorem

When $S \subset \{0, \ldots, k-1\}$, we define Λ_S to be the |S|-graph consisting of paths for which $d(\lambda) = d(\lambda)_S$.

Nilpotency Theorem Proof

Nilpotency Theorem

When $S \subset \{0, \ldots, k-1\}$, we define Λ_S to be the |S|-graph consisting of paths for which $d(\lambda) = d(\lambda)_S$.

Theorem

Let Λ be a row-finite k-graph with no sources. Suppose $E_0 = \{\mu_1, \dots, \mu_m\}$ and $E_1 = \{\lambda_1, \dots, \lambda_m\} \subset v\Lambda$ are properly unbalanced orthogonal sets, and $(\sum_{i=1}^m t_{\mu_i} t_{\lambda_i}^*)^n$ is never 0 for any n. If either of $C^*(\Lambda_{S_i})$ is AF then $C^*(\Lambda)$ is not AF.

・ロト ・得ト ・ヨト ・ヨト

Nilpotency Theorem Proof

Nilpotency Theorem

When $S \subset \{0, \ldots, k-1\}$, we define Λ_S to be the |S|-graph consisting of paths for which $d(\lambda) = d(\lambda)_S$.

Theorem

Let Λ be a row-finite k-graph with no sources. Suppose $E_0 = \{\mu_1, \dots, \mu_m\}$ and $E_1 = \{\lambda_1, \dots, \lambda_m\} \subset v\Lambda$ are properly unbalanced orthogonal sets, and $(\sum_{i=1}^m t_{\mu_i} t_{\lambda_i}^*)^n$ is never 0 for any n. If either of $C^*(\Lambda_{S_i})$ is AF then $C^*(\Lambda)$ is not AF.

Set $V = \sum_{i=1}^{m} t_{\mu_i} t_{\lambda_i}^*$. Note that this is a partial isometry.

・ロト ・同ト ・ヨト ・ヨト

Nilpotency Theorem Proof

Remarks

This partly generalizes the obstruction identified by Evans and Sims.

э

Nilpotency Theorem Proof

Remarks

This partly generalizes the obstruction identified by Evans and Sims.

The case they described corresponds to when V^n is either a unitary or a proper isometry on some hereditary subalgebra.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Nilpotency Theorem Proof

Remarks

This partly generalizes the obstruction identified by Evans and Sims.

The case they described corresponds to when V^n is either a unitary or a proper isometry on some hereditary subalgebra.

But what if $ker(V^n)$ and $cok(V^n)$ grow with each n?

| 4 同 1 4 三 1 4 三 1

Nilpotency Theorem Proof

Remarks

This partly generalizes the obstruction identified by Evans and Sims.

The case they described corresponds to when V^n is either a unitary or a proper isometry on some hereditary subalgebra.

But what if $ker(V^n)$ and $cok(V^n)$ grow with each *n*?

Are $1 - V^*V$ and $1 - VV^*$ M-vN equivalent?

Nilpotency Theorem Proof

Remarks

This partly generalizes the obstruction identified by Evans and Sims.

The case they described corresponds to when V^n is either a unitary or a proper isometry on some hereditary subalgebra.

But what if $ker(V^n)$ and $cok(V^n)$ grow with each *n*?

Are $1 - V^*V$ and $1 - VV^*$ M-vN equivalent?

This must hold in an AF algebra, however it is unclear how to construct such a partial isometry or how to prove it cannot exist.

Image: A image: A

Nilpotency Theorem Proof

Sketching the Proof

Let Γ_k be the k-graph with $\Gamma_k^0 = \{v_n : n \in \mathbb{N}^k\}$ and a unique path of length $n_1 - n_2$ from v_{n_1} to v_{n_2} when $n_1 > n_2$.

- 4 同 6 4 日 6 4 日 6

Nilpotency Theorem Proof

Sketching the Proof

Let Γ_k be the *k*-graph with $\Gamma_k^0 = \{v_n : n \in \mathbb{N}^k\}$ and a unique path of length $n_1 - n_2$ from v_{n_1} to v_{n_2} when $n_1 > n_2$. Consider the *k*-graph formed by $\Lambda_{S_i} \times \Gamma_{k-|S_i|}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Nilpotency Theorem Proof

Sketching the Proof

Let Γ_k be the *k*-graph with $\Gamma_k^0 = \{v_n : n \in \mathbb{N}^k\}$ and a unique path of length $n_1 - n_2$ from v_{n_1} to v_{n_2} when $n_1 > n_2$. Consider the *k*-graph formed by $\Lambda_{S_i} \times \Gamma_{k-|S_i|}$. This has a copy of Λ_S on the graph induced by $\Lambda^0 \times v_n$ for each *n*.

| 4 同 2 4 回 2 4 回 2 4

Nilpotency Theorem Proof

Sketching the Proof

Let Γ_k be the *k*-graph with $\Gamma_k^0 = \{v_n : n \in \mathbb{N}^k\}$ and a unique path of length $n_1 - n_2$ from v_{n_1} to v_{n_2} when $n_1 > n_2$. Consider the *k*-graph formed by $\Lambda_{S_i} \times \Gamma_{k-|S_i|}$. This has a copy of Λ_S on the graph induced by $\Lambda^0 \times v_n$ for each *n*. Modify this to put a copy of Λ at $\Lambda^0 \times v_0$ and call this $\Lambda_{A(S)}$.

Nilpotency Theorem Proof

Sketching the Proof

Let Γ_k be the *k*-graph with $\Gamma_k^0 = \{v_n : n \in \mathbb{N}^k\}$ and a unique path of length $n_1 - n_2$ from v_{n_1} to v_{n_2} when $n_1 > n_2$. Consider the *k*-graph formed by $\Lambda_{S_i} \times \Gamma_{k-|S_i|}$. This has a copy of Λ_S on the graph induced by $\Lambda^0 \times v_n$ for each *n*. Modify this to put a copy of Λ at $\Lambda^0 \times v_0$ and call this $\Lambda_{A(S)}$.

 $H = \{\Lambda^0 \times v_n : n > 0\}$ is a hereditary and saturated set of vertices

(4月) (4日) (4日)

Nilpotency Theorem Proof

Sketching the Proof

Let Γ_k be the *k*-graph with $\Gamma_k^0 = \{v_n : n \in \mathbb{N}^k\}$ and a unique path of length $n_1 - n_2$ from v_{n_1} to v_{n_2} when $n_1 > n_2$.

Consider the *k*-graph formed by $\Lambda_{S_i} \times \Gamma_{k-|S_i|}$. This has a copy of Λ_S on the graph induced by $\Lambda^0 \times v_n$ for each *n*. Modify this to put a copy of Λ at $\Lambda^0 \times v_0$ and call this $\Lambda_{A(S)}$.

 $H = \{\Lambda^0 \times v_n : n > 0\}$ is a hereditary and saturated set of vertices and the ideal it generates is Morita equivalent to $C^*(\Lambda_{S_i})$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Nilpotency Theorem Proof

Sketching the Proof

Let Γ_k be the *k*-graph with $\Gamma_k^0 = \{v_n : n \in \mathbb{N}^k\}$ and a unique path of length $n_1 - n_2$ from v_{n_1} to v_{n_2} when $n_1 > n_2$. Consider the *k*-graph formed by $\Lambda_{S_i} \times \Gamma_{k-|S_i|}$. This has a copy of Λ_S on the graph induced by $\Lambda^0 \times v_n$ for each *n*. Modify this to put a copy of Λ at $\Lambda^0 \times v_0$ and call this $\Lambda_{A(S)}$. $H = \{\Lambda^0 \times v_n : n > 0\}$ is a hereditary and saturated set of vertices and the ideal it generates is Morita equivalent to $C^*(\Lambda_{S_i})$. Finally, we assume that *V* completes to a unitary in $C^*(\Lambda)$ We then construct a proper isometry from *V* in $C^*(\Lambda_{A(S)})$.

・ロト ・同ト ・ヨト ・ヨト

Nilpotency Theorem Proof

Sketching the Proof

Let Γ_k be the k-graph with $\Gamma_k^0 = \{v_n : n \in \mathbb{N}^k\}$ and a unique path of length $n_1 - n_2$ from v_{n_1} to v_{n_2} when $n_1 > n_2$. Consider the k-graph formed by $\Lambda_{S_i} \times \Gamma_{k-|S_i|}$. This has a copy of Λ_{S} on the graph induced by $\Lambda^{0} \times v_{n}$ for each n. Modify this to put a copy of Λ at $\Lambda^0 \times v_0$ and call this $\Lambda_{A(S)}$. $H = \{\Lambda^0 \times v_n : n > 0\}$ is a hereditary and saturated set of vertices and the ideal it generates is Morita equivalent to $C^*(\Lambda_{S_i})$. Finally, we assume that V completes to a unitary in $C^*(\Lambda)$ We then construct a proper isometry from V in $C^*(\Lambda_{A(S)})$. Hence $C^*(\Lambda)$ is the quotient of a non-AF algebra by an AF algebra and is thus not AF.

・ロト ・同ト ・ヨト ・ヨト

An Ideal Interlude Reconciling Our Two Conditions

The Canonical Ideal

Assume Λ is row-finite. Observe that $\mathcal{T}C^*(\Lambda_S)$ is a hereditary subalgebra of $I(\Lambda)$ for any proper subset $S \subset \{0, \ldots, k-1\}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

An Ideal Interlude Reconciling Our Two Conditions

The Canonical Ideal

Assume Λ is row-finite. Observe that $\mathcal{T}C^*(\Lambda_S)$ is a hereditary subalgebra of $I(\Lambda)$ for any proper subset $S \subset \{0, \ldots, k-1\}$. It follows that if $\mathcal{T}C^*(\Lambda_S)$ is not AF then neither is $\mathcal{T}C^*(\Lambda)$.

伺 ト イヨ ト イヨ

An Ideal Interlude Reconciling Our Two Conditions

The Canonical Ideal

Assume Λ is row-finite. Observe that $\mathcal{T}C^*(\Lambda_S)$ is a hereditary subalgebra of $I(\Lambda)$ for any proper subset $S \subset \{0, \ldots, k-1\}$. It follows that if $\mathcal{T}C^*(\Lambda_S)$ is not AF then neither is $\mathcal{T}C^*(\Lambda)$. Since the ideal it also not AF it does not necessarily follow that $C^*(\Lambda)$ is not AF, even if we know that $C^*(\Lambda_S)$ is not AF.

・ 一 ・ ・ ・ ・ ・ ・

An Ideal Interlude Reconciling Our Two Conditions

The Canonical Ideal

Assume Λ is row-finite. Observe that $\mathcal{T}C^*(\Lambda_S)$ is a hereditary subalgebra of $I(\Lambda)$ for any proper subset $S \subset \{0, \ldots, k-1\}$. It follows that if $\mathcal{T}C^*(\Lambda_S)$ is not AF then neither is $\mathcal{T}C^*(\Lambda)$. Since the ideal it also not AF it does not necessarily follow that $C^*(\Lambda)$ is not AF, even if we know that $C^*(\Lambda_S)$ is not AF. This problem does not occur in 2-graphs.

< /₽ > < E > .

An Ideal Interlude Reconciling Our Two Conditions

The Ideal In The 2-Graph Case

Proposition

Let Λ be a row-finite 2-graph. Then $I(\Lambda)$ is AF if and only if $C^*(\Lambda_{\{1\}})$ and $C^*(\Lambda_{\{2\}})$ are both AF.

An Ideal Interlude Reconciling Our Two Conditions

The Ideal In The 2-Graph Case

Proposition

Let Λ be a row-finite 2-graph. Then $I(\Lambda)$ is AF if and only if $C^*(\Lambda_{\{1\}})$ and $C^*(\Lambda_{\{2\}})$ are both AF.

This says that $I(\Lambda)$ is AF whenever Λ has no single colour cycles.

An Ideal Interlude Reconciling Our Two Conditions

The Ideal In The 2-Graph Case

Proposition

Let Λ be a row-finite 2-graph. Then $I(\Lambda)$ is AF if and only if $C^*(\Lambda_{\{1\}})$ and $C^*(\Lambda_{\{2\}})$ are both AF.

This says that $I(\Lambda)$ is AF whenever Λ has no single colour cycles.

Corollary

Let Λ be a row-finite 2-graph. Then $\mathcal{T}C^*(\Lambda)$ is AF if and only if $C^*(\Lambda)$ is AF.

An Ideal Interlude Reconciling Our Two Conditions

2-Graphs

We can strengthen our necessary condition in the case of 2-graphs.

Theorem

Let Λ be a row-finite 2-graph with no sources. Suppose $E_0 = \{\mu_1, \ldots, \mu_m\}$ and $E_1 = \{\lambda_1, \ldots, \lambda_m\} \subset v\Lambda$ are finite properly unbalanced orthogonal sets, and $(\sum_{i=1}^m t_{\mu_i} t_{\lambda_i}^*)^n$ is never 0 for any n. Then $C^*(\Lambda)$ is not AF.

- 4 同 6 4 日 6 4 日 6

An Ideal Interlude Reconciling Our Two Conditions

2-Graphs

We can strengthen our necessary condition in the case of 2-graphs.

Theorem

Let Λ be a row-finite 2-graph with no sources. Suppose $E_0 = \{\mu_1, \ldots, \mu_m\}$ and $E_1 = \{\lambda_1, \ldots, \lambda_m\} \subset v\Lambda$ are finite properly unbalanced orthogonal sets, and $(\sum_{i=1}^m t_{\mu_i} t_{\lambda_i}^*)^n$ is never 0 for any n. Then $C^*(\Lambda)$ is not AF.

Recall our nilpotency-based sufficient condition for finite completions.

An Ideal Interlude Reconciling Our Two Conditions

2-Graphs

We can strengthen our necessary condition in the case of 2-graphs.

Theorem

Let Λ be a row-finite 2-graph with no sources. Suppose $E_0 = \{\mu_1, \ldots, \mu_m\}$ and $E_1 = \{\lambda_1, \ldots, \lambda_m\} \subset v\Lambda$ are finite properly unbalanced orthogonal sets, and $(\sum_{i=1}^m t_{\mu_i} t_{\lambda_i}^*)^n$ is never 0 for any n. Then $C^*(\Lambda)$ is not AF.

Recall our nilpotency-based sufficient condition for finite completions.

Lemma

Let Λ be a row-finite k-graph. When $E_0, E_1 \subset \Lambda$ are finite properly unbalanced orthogonal sets, then $E_0 \cup E_1$ has a finite completion if and only if $(\sum_{\mu \in E_0} t_\mu \sum_{\lambda \in E_1} t_\lambda^*)^n$ is 0 for some n.

An Ideal Interlude Reconciling Our Two Conditions

How To Construct Partial Isometries

Thus, if we can take an arbitrary finite subset E and find a pair E_0 and E_1 of properly unbalanced orthogonal sets which have finite completion if and only if E does, we can test finite completions in terms of nilpotency.

・ 同 ト ・ ヨ ト ・ ヨ ト
An Ideal Interlude Reconciling Our Two Conditions

How To Construct Partial Isometries

Thus, if we can take an arbitrary finite subset E and find a pair E_0 and E_1 of properly unbalanced orthogonal sets which have finite completion if and only if E does, we can test finite completions in terms of nilpotency. If we can also put E_0 and E_1 into bijection then we can characterize the AF property in terms of nilpotency.

(人間) ト く ヨ ト く ヨ ト

An Ideal Interlude Reconciling Our Two Conditions

Reducing Complexity

We can make headway if we insist that when $\mu, \lambda \in v\Lambda w$, it is never the case that $d(\mu) > d(\lambda)$.

- 4 同 6 4 日 6 4 日 6

An Ideal Interlude Reconciling Our Two Conditions

Reducing Complexity

We can make headway if we insist that when $\mu, \lambda \in v\Lambda w$, it is never the case that $d(\mu) > d(\lambda)$. We say that a k-graph with this property is *fair*.

- 4 同 ト 4 ヨ ト 4 ヨ ト

An Ideal Interlude Reconciling Our Two Conditions

Reducing Complexity

We can make headway if we insist that when $\mu, \lambda \in v\Lambda w$, it is never the case that $d(\mu) > d(\lambda)$. We say that a *k*-graph with this property is *fair*. This implies that any pair of paths in $v\Lambda w$ is either an orthogonal set or a pair of single element sets that are properly unbalanced.

| 4 同 1 4 三 1 4 三 1

An Ideal Interlude Reconciling Our Two Conditions

Reducing Complexity

We can make headway if we insist that when $\mu, \lambda \in v\Lambda w$, it is never the case that $d(\mu) > d(\lambda)$. We say that a *k*-graph with this property is *fair*. This implies that any pair of paths in $v\Lambda w$ is either an orthogonal set or a pair of single element sets that are properly unbalanced. Moreover, since there are only two colours, every pair is properly unbalanced with respect to the same partition of $\{0, \ldots, 1\}$.

・ロト ・同ト ・ヨト ・ヨト

An Ideal Interlude Reconciling Our Two Conditions

Reducing Complexity

We can make headway if we insist that when $\mu, \lambda \in v\Lambda w$, it is never the case that $d(\mu) > d(\lambda)$. We say that a k-graph with this property is *fair*. This implies that any pair of paths in $v\Lambda w$ is either an orthogonal set or a pair of single element sets that are properly unbalanced. Moreover, since there are only two colours, every pair is properly unbalanced with respect to the same partition of $\{0, \ldots, 1\}$. There is then a procedure for producing a pair of orthogonal properly unbalanced sets.

- 4 同 6 4 日 6 4 日 6

An Ideal Interlude Reconciling Our Two Conditions

Reducing Complexity

We can make headway if we insist that when $\mu, \lambda \in v\Lambda w$, it is never the case that $d(\mu) > d(\lambda)$. We say that a *k*-graph with this property is *fair*. This implies that any pair of paths in $v\Lambda w$ is either an orthogonal set or a pair of single element sets that are properly unbalanced. Moreover, since there are only two colours, every pair is properly unbalanced with respect to the same partition of $\{0, \ldots, 1\}$. There is then a procedure for producing a pair of orthogonal properly unbalanced sets.

Proposition

Let Λ be a fair row-finite 2-graph. If $(\sum_{\mu \in E_0} t_{\mu} \sum_{\lambda \in E_1} t_{\lambda}^*)^n$ is 0 for some n for every pair $E_0, E_1 \subset \Lambda$ of finite properly unbalanced sets then $C^*(\Lambda)$ is AF.

(日) (同) (三) (三)

An Ideal Interlude Reconciling Our Two Conditions

Bijections?

To create a partial isometry we need to put these in bijection at each vertex in $s(E_0) \cap s(E_1)$.

An Ideal Interlude Reconciling Our Two Conditions

Bijections?

To create a partial isometry we need to put these in bijection at each vertex in $s(E_0) \cap s(E_1)$. There is no reason to expect this is possible.

- 4 同 6 4 日 6 4 日 6

An Ideal Interlude Reconciling Our Two Conditions

Bijections?

To create a partial isometry we need to put these in bijection at each vertex in $s(E_0) \cap s(E_1)$. There is no reason to expect this is possible. We will instead assume the existence of certain paired sets which generate everything.

An Ideal Interlude Reconciling Our Two Conditions

Bijections?

To create a partial isometry we need to put these in bijection at each vertex in $s(E_0) \cap s(E_1)$. There is no reason to expect this is possible. We will instead assume the existence of certain paired sets which generate everything.

A subset E of $v\Lambda$ is *exhaustive* if every sufficiently long path with range v has an element of E as an initial subpath. It is also true that any sufficiently short path is itself a subpath of an element in E.

An Ideal Interlude Reconciling Our Two Conditions

Bijections?

To create a partial isometry we need to put these in bijection at each vertex in $s(E_0) \cap s(E_1)$. There is no reason to expect this is possible. We will instead assume the existence of certain paired sets which generate everything.

A subset E of $v\Lambda$ is *exhaustive* if every sufficiently long path with range v has an element of E as an initial subpath. It is also true that any sufficiently short path is itself a subpath of an element in E.

An Ideal Interlude Reconciling Our Two Conditions

Generating Sets

Definition

We say that two subsets E_0 , E_1 of $v\Lambda$ form a matching tree that is rooted at v when

(日) (同) (三) (三)

э

An Ideal Interlude Reconciling Our Two Conditions

Generating Sets

Definition

We say that two subsets E_0 , E_1 of $v\Lambda$ form a matching tree that is rooted at v when

(1) E_i are orthogonal exhaustive properly unbalanced sets with $d(E_i)_i > d(E_{i-1})_i$;

(日) (同) (三) (三)

э

An Ideal Interlude Reconciling Our Two Conditions

Generating Sets

Definition

We say that two subsets E_0 , E_1 of $v\Lambda$ form a matching tree that is rooted at v when

- (1) E_i are orthogonal exhaustive properly unbalanced sets with $d(E_i)_i > d(E_{i-1})_i$;
- (2) for each vertex w in s(E_i) \ s(E_{1-i}) and every path μ in vE_iw, it is never the case that there exists x ∈ Λ⁰, α ∈ wΛ_{i}x , λ ∈ E_{1-i} and β ∈ vΛ_{1-i}x.

・ロト ・同ト ・ヨト ・ヨト

An Ideal Interlude Reconciling Our Two Conditions

Generating Sets

Definition

We say that two subsets E_0 , E_1 of $v\Lambda$ form a matching tree that is rooted at v when

- (1) E_i are orthogonal exhaustive properly unbalanced sets with $d(E_i)_i > d(E_{i-1})_i$;
- (2) for each vertex w in s(E_i) \ s(E_{1-i}) and every path μ in vE_iw, it is never the case that there exists x ∈ Λ⁰, α ∈ wΛ_{i}x , λ ∈ E_{1-i} and β ∈ vΛ_{{1-i}x.

We say that E_i form a perfect matching tree if

< ロ > < 同 > < 回 > < 回 >

An Ideal Interlude Reconciling Our Two Conditions

Generating Sets

Definition

We say that two subsets E_0 , E_1 of $v\Lambda$ form a matching tree that is rooted at v when

- (1) E_i are orthogonal exhaustive properly unbalanced sets with $d(E_i)_i > d(E_{i-1})_i$;
- (2) for each vertex w in $s(E_i) \setminus s(E_{1-i})$ and every path μ in vE_iw , it is never the case that there exists $x \in \Lambda^0$, $\alpha \in w\Lambda_{\{i\}}^{-1}x$,

 $\lambda \in E_{1-i}$ and $\beta \in v\Lambda_{\{1-i\}}x$.

We say that E_i form a perfect matching tree if

(3) for every $v \in s(E_0) \cap s(E_1)$, $|E_0v| = |E_1v|$.

(日) (同) (三) (三)

An Ideal Interlude Reconciling Our Two Conditions

Well Behaved Sets

Suppose E_0 , E_1 form a perfect matching tree and write $S = s(E_0) \cap s(E_1)$. Choose a bijection $\Phi : E_0 \cap s^{-1}(S) \to E_1 \cap s^{-1}(S)$ which preserves sources.

・ 同 ト ・ ヨ ト ・ ヨ ト

An Ideal Interlude Reconciling Our Two Conditions

Well Behaved Sets

Suppose E_0, E_1 form a perfect matching tree and write $S = s(E_0) \cap s(E_1)$. Choose a bijection $\Phi : E_0 \cap s^{-1}(S) \to E_1 \cap s^{-1}(S)$ which preserves sources. Define

$$V_{\Phi} = \sum_{\lambda \in E_0 \cap s^{-1}(S)} s_{\lambda} s^*_{\Phi(\lambda)}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

An Ideal Interlude Reconciling Our Two Conditions

Well Behaved Sets

Suppose E_0, E_1 form a perfect matching tree and write $S = s(E_0) \cap s(E_1)$. Choose a bijection $\Phi : E_0 \cap s^{-1}(S) \to E_1 \cap s^{-1}(S)$ which preserves sources. Define

$$V_{\Phi} = \sum_{\lambda \in E_0 \cap s^{-1}(S)} s_{\lambda} s^*_{\Phi(\lambda)}.$$

Nilpotency of V_{Φ} is independent of the choice of Φ .

(人間) ト く ヨ ト く ヨ ト

An Ideal Interlude Reconciling Our Two Conditions

Well Behaved Sets

Suppose E_0, E_1 form a perfect matching tree and write $S = s(E_0) \cap s(E_1)$. Choose a bijection $\Phi: E_0 \cap s^{-1}(S) \to E_1 \cap s^{-1}(S)$ which preserves sources. Define

$$V_{\Phi} = \sum_{\lambda \in E_0 \cap s^{-1}(S)} s_{\lambda} s^*_{\Phi(\lambda)}.$$

Nilpotency of V_{Φ} is independent of the choice of Φ . Thus we say a perfect matching tree is nilpotent when V_{Φ} is nilpotent for some Φ .

- 4 同 6 4 日 6 4 日 6

An Ideal Interlude Reconciling Our Two Conditions

Well Behaved Sets

Suppose E_0, E_1 form a perfect matching tree and write $S = s(E_0) \cap s(E_1)$. Choose a bijection $\Phi: E_0 \cap s^{-1}(S) \to E_1 \cap s^{-1}(S)$ which preserves sources. Define

$$V_{\Phi} = \sum_{\lambda \in E_0 \cap s^{-1}(S)} s_{\lambda} s^*_{\Phi(\lambda)}.$$

Nilpotency of V_{Φ} is independent of the choice of Φ . Thus we say a perfect matching tree is nilpotent when V_{Φ} is nilpotent for some Φ . If we assume that Λ contains lots of perfect matching trees then we can characterize when $C^*(\Lambda)$ is AF.

・ロト ・同ト ・ヨト ・ヨト

An Ideal Interlude Reconciling Our Two Conditions

A Characterization

Theorem

Suppose that Λ is a fair row-finite source-free 2-graph

James Lutley Which k-Graphs Have AF C*-algebras?

▲□ ► < □ ► </p>

An Ideal Interlude Reconciling Our Two Conditions

A Characterization

Theorem

Suppose that Λ is a fair row-finite source-free 2-graph such that for every $v \in \Lambda^0$ and every finite $E \subset v\Lambda$,

< □ > < □ >

An Ideal Interlude Reconciling Our Two Conditions

A Characterization

Theorem

Suppose that Λ is a fair row-finite source-free 2-graph such that for every $v \in \Lambda^0$ and every finite $E \subset v\Lambda$, there exists a perfect matching tree E_0, E_1 such that every path in E is a subpath of paths in E_0 and E_1 .

< □ > < □ >

An Ideal Interlude Reconciling Our Two Conditions

A Characterization

Theorem

Suppose that Λ is a fair row-finite source-free 2-graph such that for every $v \in \Lambda^0$ and every finite $E \subset v\Lambda$, there exists a perfect matching tree E_0, E_1 such that every path in E is a subpath of paths in E_0 and E_1 . Then $C^*(\Lambda)$ is AF if and only if every perfect matching tree is nilpotent.

< □ > < □ >

An Ideal Interlude Reconciling Our Two Conditions

Thank you.

James Lutley Which k-Graphs Have AF C*-algebras?

æ