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Define T C ∗(Λ) from its representation on `2(Λ)
tλeµ = eλµ when s(λ) = r(µ), 0 otherwise.

When Λ is well behaved, (row finite, locally convex) an ideal I (Λ)
is generated by

{tv −
∑

λ∈vΛei

tλt
∗
λ : v ∈ Λ0, i ∈ {0, . . . , k − 1}}

where ei is the ith coordinate vector in Nk .
Let q denote the quotient map. We write q(tλ) = sλ. Then
q(T C ∗(Λ)) = C ∗(Λ).
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Ordinary Graphs

What is the situation for 1-graphs?

Theorem

TFAE

1 Λ has no cycles;

2 C ∗(Λ) is AF;

3 T C ∗(Λ) is AF;

4 T C ∗(Λ) is finite.
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Cycles

Λ must not contain cycles.

Theorem (Evans-Sims)

When Λ contains a cycle with an entry, C ∗(Λ) is infinite.

When Λ contains a cycle λ without an entry, ps(λ)C
∗(Λ)ps(λ)

either does not have a trace or has non-trivial K1.

Since the AF property passes to quotients, it is enough to show
that C ∗(Λ) is not AF.
However, we can easily observe that this is also an obstruction in
T C ∗(Λ). If λ is a cycle, t∗λtλ > tλt

∗
λ so T C ∗(Λ) is not finite.
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Working with subsets of Λ

We say a set E ⊂ Λ is self-invariant if whenever µ, λ and λα are in
E , so is µα.

Lemma

Λ has no cycles if and only if every finite set E ⊂ Λ is contained in
a finite self-invariant set.
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Growth Lemma

Recall how multiplication works in T C ∗(Λ). We will refer to an
element tµt

∗
λ as a monomial.

We can regulate the lengths of the
indices in product monomials.

Lemma

Suppose tµ1t
∗
λ1
tµ2t

∗
λ2

= tµ′t
∗
λ′ . Then d(λ′) > d(λ2) if and only if

λ1 is not an initial subpath of µ2. Similarly d(µ′) > d(µ1) if and
only if µ2 is not an initial subpath of λ1

Corollary

Given a finite set of monomials S, a basis vector eα can only be
sent to finitely other basis vectors by elements of S.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

Definitions
Background
Cycles
Finiteness of T C∗(Λ)

Growth Lemma

Recall how multiplication works in T C ∗(Λ). We will refer to an
element tµt

∗
λ as a monomial. We can regulate the lengths of the

indices in product monomials.

Lemma

Suppose tµ1t
∗
λ1
tµ2t

∗
λ2

= tµ′t
∗
λ′ . Then d(λ′) > d(λ2) if and only if

λ1 is not an initial subpath of µ2. Similarly d(µ′) > d(µ1) if and
only if µ2 is not an initial subpath of λ1

Corollary

Given a finite set of monomials S, a basis vector eα can only be
sent to finitely other basis vectors by elements of S.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

Definitions
Background
Cycles
Finiteness of T C∗(Λ)

Growth Lemma

Recall how multiplication works in T C ∗(Λ). We will refer to an
element tµt

∗
λ as a monomial. We can regulate the lengths of the

indices in product monomials.

Lemma

Suppose tµ1t
∗
λ1
tµ2t

∗
λ2

= tµ′t
∗
λ′ .

Then d(λ′) > d(λ2) if and only if
λ1 is not an initial subpath of µ2. Similarly d(µ′) > d(µ1) if and
only if µ2 is not an initial subpath of λ1

Corollary

Given a finite set of monomials S, a basis vector eα can only be
sent to finitely other basis vectors by elements of S.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

Definitions
Background
Cycles
Finiteness of T C∗(Λ)

Growth Lemma

Recall how multiplication works in T C ∗(Λ). We will refer to an
element tµt

∗
λ as a monomial. We can regulate the lengths of the

indices in product monomials.

Lemma

Suppose tµ1t
∗
λ1
tµ2t

∗
λ2

= tµ′t
∗
λ′ . Then d(λ′) > d(λ2) if and only if

λ1 is not an initial subpath of µ2.

Similarly d(µ′) > d(µ1) if and
only if µ2 is not an initial subpath of λ1

Corollary

Given a finite set of monomials S, a basis vector eα can only be
sent to finitely other basis vectors by elements of S.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

Definitions
Background
Cycles
Finiteness of T C∗(Λ)

Growth Lemma

Recall how multiplication works in T C ∗(Λ). We will refer to an
element tµt

∗
λ as a monomial. We can regulate the lengths of the

indices in product monomials.

Lemma

Suppose tµ1t
∗
λ1
tµ2t

∗
λ2

= tµ′t
∗
λ′ . Then d(λ′) > d(λ2) if and only if

λ1 is not an initial subpath of µ2. Similarly d(µ′) > d(µ1) if and
only if µ2 is not an initial subpath of λ1

Corollary

Given a finite set of monomials S, a basis vector eα can only be
sent to finitely other basis vectors by elements of S.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

Definitions
Background
Cycles
Finiteness of T C∗(Λ)

Growth Lemma

Recall how multiplication works in T C ∗(Λ). We will refer to an
element tµt

∗
λ as a monomial. We can regulate the lengths of the

indices in product monomials.

Lemma

Suppose tµ1t
∗
λ1
tµ2t

∗
λ2

= tµ′t
∗
λ′ . Then d(λ′) > d(λ2) if and only if

λ1 is not an initial subpath of µ2. Similarly d(µ′) > d(µ1) if and
only if µ2 is not an initial subpath of λ1

Corollary

Given a finite set of monomials S, a basis vector eα can only be
sent to finitely other basis vectors by elements of S.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

Definitions
Background
Cycles
Finiteness of T C∗(Λ)

Growth Lemma

Recall how multiplication works in T C ∗(Λ). We will refer to an
element tµt

∗
λ as a monomial. We can regulate the lengths of the

indices in product monomials.

Lemma

Suppose tµ1t
∗
λ1
tµ2t

∗
λ2

= tµ′t
∗
λ′ . Then d(λ′) > d(λ2) if and only if

λ1 is not an initial subpath of µ2. Similarly d(µ′) > d(µ1) if and
only if µ2 is not an initial subpath of λ1

Corollary

Given a finite set of monomials S, a basis vector eα can only be
sent to finitely other basis vectors by elements of S.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

Definitions
Background
Cycles
Finiteness of T C∗(Λ)

Finiteness Theorem

Theorem

Suppose Λ is a finitely aligned k-graph. TFAE

1 Λ has no cycles;

2 T C ∗(Λ) is finite;

3 T C ∗(Λ) is quasidiagonal.

It follows that there are many k-graphs for which T C ∗(Λ) is finite
but C ∗(Λ) is not, something which never happens with 1-graphs.
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Finite Dimensional Subalgebras
Local Structure of Λ.

Locating finite dimensional subalgebras

If we know that a finite set of monomials only ever generates a
finite set of monomials, we can immediately conclude that T C ∗(Λ)
is AF.

It would perhaps be surprising if there were an AF k-graph algebra
which failed to satisfy this condition.
In a k-graph, even in the absence of cycles, a finite set of
monomials can generate an infinite dimensional algebra.
Evans and Sims introduced generalized cycles, a certain class of
infinite generating monomials and showed that they are an
obstruction to C ∗(Λ) being AF.
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What do these k-graphs look like?

Theorem

If Λ is finite and has no cycles then T C ∗(Λ) is finite dimensional.

Lemma

Every finite set of monomials in T C ∗(Λ) generates a finite
dimensional subalgebra if and only if every finite set of paths in Λ
is contained in a finite set that is self-invariant and closed under
taking minimal common extensions.

Theorem (Evans-Sims)

C ∗(Λ) is AF if and only if every corner pvC
∗(Λ)pv is AF.

So it is sufficient to check sets of paths in vΛ.
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Local Structure of Λ.

Types of Finite Sets

A set E ⊂ vΛ is orthogonal if no two paths have a common
extension.

This is equivalent to saying that
∑

λ∈E sλs
∗
λ is a

projection.
A set is complete if it is self-invariant and closed under minimal
common extensions.
Observe that orthogonal sets are automatically complete.
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Local Structure of Λ.

Relating Finite Completions to Nilpotency

If S ⊂ {0, . . . , k − 1} , write d(λ)S to denote
(d(λ)0 · χS(0), . . . , d(λ)k−1 · χS(k − 1)).

We will say that a pair of sets E0,E1 ⊂ vΛ are properly unbalanced
if there is a partition S0 t S1 of {0, . . . , k − 1} such that for every
λ0 ∈ E0 and λ1 ∈ E1, d(λi )Si > d(λ1−i )Si for i = 0, 1.

Lemma

Let Λ be a row-finite k-graph. When E0,E1 ⊂ Λ are finite properly
unbalanced orthogonal sets, then E0 ∪ E1 has a finite completion if
and only if (

∑
µ∈E0

tµ
∑

λ∈E1
t∗λ)n is 0 for some n.
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Proof

Nilpotency Theorem

When S ⊂ {0, . . . , k − 1}, we define ΛS to be the |S |-graph
consisting of paths for which d(λ) = d(λ)S .

Theorem

Let Λ be a row-finite k-graph with no sources. Suppose
E0 = {µ1, . . . , µm} and E1 = {λ1, . . . , λm} ⊂ vΛ are properly
unbalanced orthogonal sets, and (

∑m
i=1 tµi t

∗
λi

)n is never 0 for any
n. If either of C ∗(ΛSi ) is AF then C ∗(Λ) is not AF.

Set V =
∑m

i=1 tµi t
∗
λi

. Note that this is a partial isometry.
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Nilpotency Theorem
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Remarks

This partly generalizes the obstruction identified by Evans and
Sims.

The case they described corresponds to when V n is either a unitary
or a proper isometry on some hereditary subalgebra.
But what if ker(V n) and cok(V n) grow with each n?
Are 1− V ∗V and 1− VV ∗ M-vN equivalent?
This must hold in an AF algebra, however it is unclear how to
construct such a partial isometry or how to prove it cannot exist.
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2-Graphs

Nilpotency Theorem
Proof

Sketching the Proof

Let Γk be the k-graph with Γ0
k = {vn : n ∈ Nk} and a unique path

of length n1 − n2 from vn1 to vn2 when n1 > n2.

Consider the k-graph formed by ΛSi × Γk−|Si |. This has a copy of
ΛS on the graph induced by Λ0 × vn for each n. Modify this to put
a copy of Λ at Λ0 × v0 and call this ΛA(S).
H = {Λ0 × vn : n > 0} is a hereditary and saturated set of vertices
and the ideal it generates is Morita equivalent to C ∗(ΛSi ).
Finally, we assume that V completes to a unitary in C ∗(Λ) We
then construct a proper isometry from V in C ∗(ΛA(S)). Hence
C ∗(Λ) is the quotient of a non-AF algebra by an AF algebra and is
thus not AF.
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2-Graphs

An Ideal Interlude
Reconciling Our Two Conditions

The Canonical Ideal

Assume Λ is row-finite. Observe that T C ∗(ΛS) is a hereditary
subalgebra of I (Λ) for any proper subset S ⊂ {0, . . . , k − 1}.

It follows that if T C ∗(ΛS) is not AF then neither is T C ∗(Λ). Since
the ideal it also not AF it does not necessarily follow that C ∗(Λ) is
not AF, even if we know that C ∗(ΛS) is not AF.
This problem does not occur in 2-graphs.
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2-Graphs

An Ideal Interlude
Reconciling Our Two Conditions

The Ideal In The 2-Graph Case

Proposition

Let Λ be a row-finite 2-graph. Then I (Λ) is AF if and only if
C ∗(Λ{1}) and C ∗(Λ{2}) are both AF.

This says that I (Λ) is AF whenever Λ has no single colour cycles.

Corollary

Let Λ be a row-finite 2-graph. Then T C ∗(Λ) is AF if and only if
C ∗(Λ) is AF.
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An Ideal Interlude
Reconciling Our Two Conditions

2-Graphs

We can strengthen our necessary condition in the case of 2-graphs.

Theorem

Let Λ be a row-finite 2-graph with no sources. Suppose
E0 = {µ1, . . . , µm} and E1 = {λ1, . . . , λm} ⊂ vΛ are finite properly
unbalanced orthogonal sets, and (

∑m
i=1 tµi t

∗
λi

)n is never 0 for any
n. Then C ∗(Λ) is not AF.

Recall our nilpotency-based sufficient condition for finite
completions.

Lemma

Let Λ be a row-finite k-graph. When E0,E1 ⊂ Λ are finite properly
unbalanced orthogonal sets, then E0 ∪ E1 has a finite completion if
and only if (

∑
µ∈E0

tµ
∑

λ∈E1
t∗λ)n is 0 for some n.
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How To Construct Partial Isometries

Thus, if we can take an arbitrary finite subset E and find a pair E0

and E1 of properly unbalanced orthogonal sets which have finite
completion if and only if E does, we can test finite completions in
terms of nilpotency.

If we can also put E0 and E1 into bijection
then we can characterize the AF property in terms of nilpotency.
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Reducing Complexity

We can make headway if we insist that when µ, λ ∈ vΛw , it is
never the case that d(µ) > d(λ).

We say that a k-graph with this
property is fair. This implies that any pair of paths in vΛw is
either an orthogonal set or a pair of single element sets that are
properly unbalanced. Moreover, since there are only two colours,
every pair is properly unbalanced with respect to the same
partition of {0, . . . , 1}. There is then a procedure for producing a
pair of orthogonal properly unbalanced sets.

Proposition

Let Λ be a fair row-finite 2-graph. If (
∑

µ∈E0
tµ

∑
λ∈E1

t∗λ)n is 0 for
some n for every pair E0,E1 ⊂ Λ of finite properly unbalanced sets
then C ∗(Λ) is AF.
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never the case that d(µ) > d(λ). We say that a k-graph with this
property is fair. This implies that any pair of paths in vΛw is
either an orthogonal set or a pair of single element sets that are
properly unbalanced. Moreover, since there are only two colours,
every pair is properly unbalanced with respect to the same
partition of {0, . . . , 1}.

There is then a procedure for producing a
pair of orthogonal properly unbalanced sets.
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Bijections?

To create a partial isometry we need to put these in bijection at
each vertex in s(E0) ∩ s(E1).

There is no reason to expect this is
possible. We will instead assume the existence of certain paired
sets which generate everything.
A subset E of vΛ is exhaustive if every sufficiently long path with
range v has an element of E as an initial subpath. It is also true
that any sufficiently short path is itself a subpath of an element in
E .
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Generating Sets

Definition

We say that two subsets E0,E1 of vΛ form a matching tree that is
rooted at v when

(1) Ei are orthogonal exhaustive properly unbalanced sets with
d(Ei )i > d(Ei−1)i ;

(2) for each vertex w in s(Ei ) \ s(E1−i ) and every path µ in vEiw,
it is never the case that there exists x ∈ Λ0, α ∈ wΛ{i}}x ,

λ ∈ E1−i and β ∈ vΛ{1−i}x.

We say that Ei form a perfect matching tree if

(3) for every v ∈ s(E0) ∩ s(E1), |E0v | = |E1v |.
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Well Behaved Sets

Suppose E0,E1 form a perfect matching tree and write
S = s(E0) ∩ s(E1). Choose a bijection
Φ : E0 ∩ s−1(S)→ E1 ∩ s−1(S) which preserves sources.

Define

VΦ =
∑

λ∈E0∩s−1(S)

sλs
∗
Φ(λ).

Nilpotency of VΦ is independent of the choice of Φ. Thus we say a
perfect matching tree is nilpotent when VΦ is nilpotent for some Φ.
If we assume that Λ contains lots of perfect matching trees then
we can characterize when C ∗(Λ) is AF.
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A Characterization

Theorem

Suppose that Λ is a fair row-finite source-free 2-graph

such that for
every v ∈ Λ0 and every finite E ⊂ vΛ, there exists a perfect
matching tree E0,E1 such that every path in E is a subpath of
paths in E0 and E1. Then C ∗(Λ) is AF if and only if every perfect
matching tree is nilpotent.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

An Ideal Interlude
Reconciling Our Two Conditions

A Characterization

Theorem

Suppose that Λ is a fair row-finite source-free 2-graph such that for
every v ∈ Λ0 and every finite E ⊂ vΛ,

there exists a perfect
matching tree E0,E1 such that every path in E is a subpath of
paths in E0 and E1. Then C ∗(Λ) is AF if and only if every perfect
matching tree is nilpotent.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

An Ideal Interlude
Reconciling Our Two Conditions

A Characterization

Theorem

Suppose that Λ is a fair row-finite source-free 2-graph such that for
every v ∈ Λ0 and every finite E ⊂ vΛ, there exists a perfect
matching tree E0,E1 such that every path in E is a subpath of
paths in E0 and E1.

Then C ∗(Λ) is AF if and only if every perfect
matching tree is nilpotent.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

An Ideal Interlude
Reconciling Our Two Conditions

A Characterization

Theorem

Suppose that Λ is a fair row-finite source-free 2-graph such that for
every v ∈ Λ0 and every finite E ⊂ vΛ, there exists a perfect
matching tree E0,E1 such that every path in E is a subpath of
paths in E0 and E1. Then C ∗(Λ) is AF if and only if every perfect
matching tree is nilpotent.

James Lutley Which k-Graphs Have AF C∗-algebras?



Introduction
Sufficient Conditions
Necessary Conditions

2-Graphs

An Ideal Interlude
Reconciling Our Two Conditions

Thank you.
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