# Towards a K-theoretic characterization of graded isomorphisms between Leavitt path algebras.

Enrique Pardo

Universidad de Cádiz

Classification of C\*-algebras, flow equivalence of shift spaces, and graph and Leavitt path algebras University of Louisiana at Lafayette, May 11-15, 2015



Joint work with Pere Ara (Departament de Matemàtiques, Universitat Autònoma de Barcelona, Spain),

P. ARA, E. PARDO, Towards a K-theoretic characterization of graded isomorphisms between Leavitt path algebras, *J. K-Theory* **14** (2014), 203–245.

# Main goal: Classify Leavitt path algebras up to isomorphism/Morita equivalence.

**Key role:** K-theoretic invariants & classification techniques of (essential) subshifts of finite type.

**Fact:**  $\mathbb{Z}$ -graded structure of Leavitt path algebras should play a role in this work

**Main goal:** Classify Leavitt path algebras up to isomorphism/Morita equivalence.

**Key role:** K-theoretic invariants & classification techniques of (essential) subshifts of finite type.

**Fact:**  $\mathbb{Z}$ -graded structure of Leavitt path algebras should play a role in this work

**Main goal:** Classify Leavitt path algebras up to isomorphism/Morita equivalence.

**Key role:** K-theoretic invariants & classification techniques of (essential) subshifts of finite type.

**Fact:**  $\mathbb{Z}$ -graded structure of Leavitt path algebras should play a role in this work

#### **Objective:**

Use K-theoretic invariants to classify Leavitt path algebras up to **graded** isomorphism/Morita equivalence.

Hazrat's Conjecture

#### **Objective:**

Use K-theoretic invariants to classify Leavitt path algebras up to **graded** isomorphism/Morita equivalence.

**Hazrat's Conjecture** 

#### Outline

- Preliminares
  - Some definitions on graphs
  - K-Theory for Leavitt path algebras
  - Fractional skew monoid rings
- Forms of Hazrat's Invariant
  - Graded modules &  $K_0^{gr}$
  - Shift equivalence
  - Strong shift equivalence
- 3 The main result

#### Outline

- Preliminares
  - Some definitions on graphs
  - K-Theory for Leavitt path algebras
  - Fractional skew monoid rings
- Forms of Hazrat's Invariant
  - Graded modules &  $K_0^{gr}$
  - Shift equivalence
  - Strong shift equivalence
- 3 The main result

```
Graph: E=(E^0,E^1,r,s), with E^0 vertices, E^1 edges, r,s:E^1\to E^0 maps.
```

Sink:  $v \in E^0$  with  $s^{-1}(v) = \emptyset$ .

Source:  $v \in E^0$  with  $r^{-1}(v) = \emptyset$ .

Essential graph: E has neither sources no sinks.

Adjacency matrix:

 $E^0 imes E^0$  matrix with  $(A_E)_{v,w}=|s^{-1}(v)\cap r^{-1}(w)$ 

Graph:  $E=(E^0,E^1,r,s)$ , with  $E^0$  vertices,  $E^1$  edges,  $r,s:E^1\to E^0$  maps.

Sink:  $v \in E^0$  with  $s^{-1}(v) = \emptyset$ .

Source:  $v \in E^0$  with  $r^{-1}(v) = \emptyset$ .

Essential graph: E has neither sources no sinks.

Adjacency matrix:

 $E^0 imes E^0$  matrix with  $(A_E)_{v,w}=|s^{-1}(v)\cap r^{-1}(w)|$  .

Graph:  $E = (E^0, E^1, r, s)$ , with  $E^0$  vertices,  $E^1$  edges,

 $r,s:E^1 o E^0$  maps.

Sink:  $v \in E^0$  with  $s^{-1}(v) = \emptyset$ .

Source:  $v \in E^0$  with  $r^{-1}(v) = \emptyset$ .

Essential graph: E has neither sources no sinks.

Adjacency matrix:

 $E^0 imes E^0$  matrix with  $(A_E)_{v,w} = |s^{-1}(v) \cap r^{-1}(w)|$  .

Graph:  $E = (E^0, E^1, r, s)$ , with  $E^0$  vertices,  $E^1$  edges,

 $r,s:E^1 o E^0$  maps.

Sink:  $v \in E^0$  with  $s^{-1}(v) = \emptyset$ .

Source:  $v \in E^0$  with  $r^{-1}(v) = \emptyset$ .

Essential graph: E has neither sources no sinks.

Adjacency matrix:

$$E^0 imes E^0$$
 matrix with  $(A_E)_{v,w} = |s^{-1}(v) \cap r^{-1}(w)|$ 

Graph:  $E = (E^0, E^1, r, s)$ , with  $E^0$  vertices,  $E^1$  edges,

 $r,s:E^1 o E^0$  maps.

Sink:  $v \in E^0$  with  $s^{-1}(v) = \emptyset$ .

Source:  $v \in E^0$  with  $r^{-1}(v) = \emptyset$ .

Essential graph: E has neither sources no sinks.

Adjacency matrix:

 $E^0 \times E^0$  matrix with  $(A_E)_{v,w} = |s^{-1}(v) \cap r^{-1}(w)|$ .

### Definition (Leavitt path algebra)

For a finite graph E and a field K,  $L_K(E)$  is the universal algebra with:

Generators:  $\{v \in E^0\}$  and  $\{e, e^* \mid e \in E^1\}$ , Relations:

- ①  $vv' = \delta_{v,v'}v$  for all  $v, v' \in E^0$ .
- s(e)e = er(e) = e for all  $e \in E^1$ .
- $e^*e' = \delta_{e,e'}r(e)$  for all  $e, e' \in E^1$ .
- $v = \sum_{\{e \in E^1 \mid s(e) = v\}} ee^*$  for every  $v \in E^0$  that it is not a sink.

### Definition (Leavitt path algebra)

For a finite graph E and a field K,  $L_K(E)$  is the universal algebra with:

Generators:  $\{v \in E^0\}$  and  $\{e, e^* \mid e \in E^1\}$ ,

#### Relations:

- ①  $vv' = \delta_{v,v'}v$  for all  $v, v' \in E^0$ .
- ② s(e)e = er(e) = e for all  $e \in E^1$ .
- ③  $e^*e' = \delta_{e,e'}r(e)$  for all  $e, e' \in E^1$ .
- $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$  for every  $v \in E^0$  that it is not a sink.

## Definition (Leavitt path algebra)

For a finite graph E and a field K,  $L_K(E)$  is the universal algebra with:

Generators:  $\{v \in E^0\}$  and  $\{e, e^* \mid e \in E^1\}$ , Relations:

- $vv' = \delta_{v,v'}v \text{ for all } v, v' \in E^0.$
- s(e)e = er(e) = e for all  $e \in E^1$ .
- **3**  $e^*e' = \delta_{e,e'}r(e)$  for all  $e, e' \in E^1$ .
- $\bullet$   $v = \sum_{\{e \in E^1 \mid s(e) = v\}} ee^*$  for every  $v \in E^0$  that it is not a sink.

#### A ring, $\Gamma$ group.

#### Definition ( $\Gamma$ -graded ring)

$$A$$
 is  $\Gamma$ -graded if  $A = \bigoplus_{g \in \Gamma} A_g$  with:

- lacksquare  $A_g$  abelian group for all  $g \in \Gamma$ .
- ②  $A_1$  subring, and  $A_g$  is  $A_1$ -bimodule for all  $g \in \Gamma$ .

If  $A_g \cdot A_h = A_{gh}$  for all  $g, h \in \Gamma$ , we say that A is strongly  $\Gamma$ -graded.

A ring,  $\Gamma$  group.

#### Definition ( $\Gamma$ -graded ring)

$$A$$
 is  $\Gamma$ -graded if  $A=\bigoplus_{g\in \Gamma}A_g$  with:

- **1**  $A_g$  abelian group for all  $g \in \Gamma$ .
- ②  $A_1$  subring, and  $A_g$  is  $A_1$ -bimodule for all  $g \in \Gamma$ .

If  $A_g \cdot A_h = A_{gh}$  for all  $g, h \in \Gamma$ , we say that A is strongly  $\Gamma$ -graded.

# Canonical $\mathbb{Z}$ -grading on $L_K(E) = \bigoplus_{n \in \mathbb{Z}} L_K(E)_n$ :

The **degree**  $n \in \mathbb{Z}$  component

$$L_K(E)_n = \operatorname{span}\{\alpha\beta^* \mid \operatorname{length}(\alpha) - \operatorname{length}(\beta) = n\}$$

Canonical 
$$\mathbb{Z}$$
-grading on  $L_K(E) = \bigoplus_{n \in \mathbb{Z}} L_K(E)_n$ :

The **degree**  $n \in \mathbb{Z}$  component

$$L_K(E)_n = \operatorname{span}\{\alpha\beta^* \mid \operatorname{length}(\alpha) - \operatorname{length}(\beta) = n\}.$$

 $K_0(A)$ := universal enveloping group of the abelian monoid of isomorphism classes in Proj-A.

E finite essential graph,  $A=A_E^t$ :

$$K_0(L_K(E)) \cong \operatorname{coker}(A - I) : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}$$

 $K_0(A)$ := universal enveloping group of the abelian monoid of isomorphism classes in Proj-A.

E finite essential graph,  $A = A_E^t$ :

$$K_0(L_K(E)) \cong \operatorname{coker}(A - I) : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}$$

 $K_0(A)$ := universal enveloping group of the abelian monoid of isomorphism classes in Proj-A.

E finite essential graph,  $A=A_E^t$ :

$$K_0(L_K(E)) \cong \operatorname{coker}(A - I) : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}$$

 $K_0(A)$ := universal enveloping group of the abelian monoid of isomorphism classes in Proj-A.

E finite essential graph,  $A = A_E^t$ :

$$K_0(L_K(E)) \cong \operatorname{coker}(A - I) : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}.$$

$$L(E)_0 \cong \underline{\lim}(L(E)_{0,n}, \phi_{n,n+1}).$$

$$K_0(L(E)_{0,n})\cong \mathbb{Z}^{E^0}$$
 and  $K_0(\phi_{n,n+1})\cong A_E^t$ , whence

$$K_0(L(E)_0) \cong \varinjlim (\mathbb{Z}^{E^0}, A_E^t).$$

$$L(E)_0 \cong \varinjlim (L(E)_{0,n}, \phi_{n,n+1}).$$

$$K_0(L(E)_{0,n}) \cong \mathbb{Z}^{E^0}$$
 and  $K_0(\phi_{n,n+1}) \cong A_E^t$ , whence

$$K_0(L(E)_0) \cong \underline{\lim}(\mathbb{Z}^{E^0}, A_E^t)$$

$$L(E)_0 \cong \underline{\lim}(L(E)_{0,n}, \phi_{n,n+1}).$$

$$K_0(L(E)_{0,n}) \cong \mathbb{Z}^{E^0}$$
 and  $K_0(\phi_{n,n+1}) \cong A_E^t$ , whence

$$K_0(L(E)_0) \cong \underline{\varinjlim}(\mathbb{Z}^{E^0}, A_E^t).$$

$$L(E)_0 \cong \underline{\lim}(L(E)_{0,n}, \phi_{n,n+1}).$$

$$K_0(L(E)_{0,n}) \cong \mathbb{Z}^{E^0}$$
 and  $K_0(\phi_{n,n+1}) \cong A_E^t$ , whence

$$K_0(L(E)_0) \cong \varinjlim (\mathbb{Z}^{E^0}, A_E^t).$$

A unital ring,  $p^2=p\in A$  idempotent,  $\alpha:A\to pAp$  isomorphism.

#### Definition (Fractional skew monoid ring)

 $R := A[t_+, t_-; \alpha]$  for generators  $t_+, t_-$  satisfying:

- ①  $t_-t_+=1$  and  $t_+t_-=p$ ;
- $t_+a = \alpha(a)t_+$  for all  $a \in A$ ;
- $at_- = t_- \alpha(a)$  for all  $a \in A$ .

This is the algebraic analog of Paschke's  $A \rtimes_{\alpha} \mathbb{N}$ .

A unital ring,  $p^2=p\in A$  idempotent,  $\alpha:A\to pAp$  isomorphism.

#### Definition (Fractional skew monoid ring)

 $R := A[t_+, t_-; \alpha]$  for generators  $t_+, t_-$  satisfying:

- $\bullet$   $t_-t_+=1$  and  $t_+t_-=p$ ;
- $t_+a = \alpha(a)t_+$  for all  $a \in A$ ;
- $at_- = t_- \alpha(a)$  for all  $a \in A$ .

This is the algebraic analog of Paschke's  $A \rtimes_{\alpha} \mathbb{N}$ .

A unital ring,  $p^2=p\in A$  idempotent,  $\alpha:A\to pAp$  isomorphism.

#### Definition (Fractional skew monoid ring)

 $R := A[t_+, t_-; \alpha]$  for generators  $t_+, t_-$  satisfying:

- $\bullet$   $t_-t_+=1$  and  $t_+t_-=p$ ;
- 2  $t_+a = \alpha(a)t_+$  for all  $a \in A$ ;
- $at_- = t_- \alpha(a)$  for all  $a \in A$ .

This is the algebraic analog of Paschke's  $A \rtimes_{\alpha} \mathbb{N}$ .

#### R is a $\mathbb{Z}$ -graded ring:

$$R=\bigoplus_{i\in\mathbb{Z}}R_i$$
, with  $R_i=At^i_+$  for  $i>0$  and  $R_i=t^{-i}_-A$  for  $i<0$ , while  $A_0=A$ .

[Ara-Brustenga]: E finite graph with no sources, then  $L(E) = L(E)_0[t_+, t_-; \alpha]$  for suitable  $t_+, t_- \in L(E)$ ,  $\alpha$  defined by  $\alpha(a) = t_+ a t_-$  for all  $a \in L(E)_0$ .

#### R is a $\mathbb{Z}$ -graded ring:

$$R=\bigoplus_{i\in\mathbb{Z}}R_i$$
, with  $R_i=At_+^i$  for  $i>0$  and  $R_i=t_-^{-i}A$  for  $i<0$ , while  $A_0=A$ .

[Ara-Brustenga]: E finite graph with no sources, then  $L(E)=L(E)_0[t_+,t_-;\alpha]$  for suitable  $t_+,t_-\in L(E)$ ,  $\alpha$  defined by  $\alpha(a)=t_+at_-$  for all  $a\in L(E)_0$ .

E finite essential graph,  $L(E)=L(E)_0[t_+,t_-,\alpha],\ g$  locally inner automorphism of  $L(E)_0.$ 

#### Definition

$$L^{g}(E) := L(E)_{0}[s_{+}, s_{-}, g \circ \alpha].$$

 $L^g(E)$  is a graded algebra with the same graded K-theory as L(E).

E finite essential graph,  $L(E)=L(E)_0[t_+,t_-,\alpha],\ g$  locally inner automorphism of  $L(E)_0.$ 

#### Definition

$$L^{g}(E) := L(E)_{0}[s_{+}, s_{-}, g \circ \alpha].$$

 $L^g(E)$  is a graded algebra with the same graded K-theory as L(E).

E finite essential graph,  $L(E)=L(E)_0[t_+,t_-,\alpha],\ g$  locally inner automorphism of  $L(E)_0.$ 

#### Definition

$$L^{g}(E) := L(E)_{0}[s_{+}, s_{-}, g \circ \alpha].$$

 $L^g(E)$  is a graded algebra with the same graded K-theory as L(E).

# Outline

- Preliminares
  - Some definitions on graphs
  - K-Theory for Leavitt path algebras
  - Fractional skew monoid rings
- Forms of Hazrat's Invariant
  - Graded modules &  $K_0^{gr}$
  - Shift equivalence
  - Strong shift equivalence
- 3 The main result

# A be $\Gamma$ -graded ring, Gr-Proj-A.

 $K_0^{gr}(A) :=$  universal enveloping group of the abelian monoid of isomorphism classes in Gr-Proj-A.

For  $g \in \Gamma$ ,  $\mathcal{T}_g : \operatorname{Gr-}A \to \operatorname{Gr-}A$  (  $\mathcal{T}_g(M) := M(g)$ ) induces ar action  $\mathcal{T}$  of  $\Gamma$  on  $\operatorname{Gr-}A$ .

This action restricts to Gr-Proj-A. Thus,  $K_0^{gr}(A)$  is  $\mathbb{Z}[\Gamma]$ -module by  $(\mathcal{T}_g)_*[P] := [\mathcal{T}_g(P)].$ 

A be Γ-graded ring, Gr-Proj-A.

 $K_0^{gr}(A) := \text{universal enveloping group of the abelian monoid of isomorphism classes in Gr-Proj-}A.$ 

For  $g \in \Gamma$ ,  $\mathcal{T}_g : \operatorname{Gr-}A \to \operatorname{Gr-}A$  (  $\mathcal{T}_g(M) := M(g)$ ) induces ar action  $\mathcal{T}$  of  $\Gamma$  on  $\operatorname{Gr-}A$ .

This action restricts to Gr-Proj-A. Thus,  $K_0^{gr}(A)$  is  $\mathbb{Z}[\Gamma]$ -module by  $(\mathcal{T}_g)_*[P] := [\mathcal{T}_g(P)].$ 

A be Γ-graded ring, Gr-Proj-A.

 $K_0^{gr}(A):=$  universal enveloping group of the abelian monoid of isomorphism classes in Gr-Proj-A.

For  $g\in\Gamma$ ,  $\mathcal{T}_g:\operatorname{Gr-}A\to\operatorname{Gr-}A$  (  $\mathcal{T}_g(M):=M(g)$ ) induces an action  $\mathcal{T}$  of  $\Gamma$  on  $\operatorname{Gr-}A$ .

This action restricts to Gr-Proj-A. Thus,  $K_0^{gr}(A)$  is  $\mathbb{Z}[\Gamma]$ -module by  $(\mathcal{T}_g)_*[P] := [\mathcal{T}_g(P)]$ .

A be  $\Gamma$ -graded ring, Gr-Proj-A.

 $K_0^{gr}(A) := \text{universal enveloping group of the abelian monoid of isomorphism classes in Gr-Proj-}A.$ 

For  $g\in\Gamma$ ,  $\mathcal{T}_g:\operatorname{Gr-}A\to\operatorname{Gr-}A$  (  $\mathcal{T}_g(M):=M(g)$ ) induces an action  $\mathcal{T}$  of  $\Gamma$  on  $\operatorname{Gr-}A$ .

This action restricts to Gr-Proj-A. Thus,  $K_0^{gr}(A)$  is  $\mathbb{Z}[\Gamma]$ -module by  $(\mathcal{T}_g)_*[P]:=[\mathcal{T}_g(P)].$ 

<u>LPAs</u>:  $L_K(E)$  is  $\mathbb{Z}$ -graded.  $K_0^{gr}(L_K(E))$  is  $\mathbb{Z}[x,x^{-1}]$ -module, where  $x \cdot$  is  $\mathcal{T} := \mathcal{T}_1$ .

#### Hazrat's Conjecture

If E, F finite graphs, TFAE:

- $(K_0^{gr}(L(E)), [1_{L(E)}]) \cong_{\mathbb{Z}[x, x^{-1}]} (K_0^{gr}(L(F)), [1_{L(F)}]).$

#### Theorem (Hazrat)

The Conjecture holds for finite polycephaly graphs.

<u>LPAs</u>:  $L_K(E)$  is  $\mathbb{Z}$ -graded.  $K_0^{gr}(L_K(E))$  is  $\mathbb{Z}[x,x^{-1}]$ -module, where  $x \cdot$  is  $\mathcal{T} := \mathcal{T}_1$ .

#### Hazrat's Conjecture

If E, F finite graphs, TFAE:

- $(K_0^{gr}(L(E)), [1_{L(E)}]) \cong_{\mathbb{Z}[x, x^{-1}]} (K_0^{gr}(L(F)), [1_{L(F)}]).$

#### Theorem (Hazrat)

The Conjecture holds for finite polycephaly graphs.

<u>LPAs</u>:  $L_K(E)$  is  $\mathbb{Z}$ -graded.  $K_0^{gr}(L_K(E))$  is  $\mathbb{Z}[x,x^{-1}]$ -module, where  $x \cdot$  is  $\mathcal{T} := \mathcal{T}_1$ .

#### Hazrat's Conjecture

If E, F finite graphs, TFAE:

- $(K_0^{gr}(L(E)), [1_{L(E)}]) \cong_{\mathbb{Z}[x, x^{-1}]} (K_0^{gr}(L(F)), [1_{L(F)}]).$

#### Theorem (Hazrat)

The Conjecture holds for finite polycephaly graphs.

# [Dade]: If A strongly $\Gamma$ -graded, then $\mathcal{T}$ induces an action of $\Gamma$ on mod- $A_0$ .

These actions commute with the natural equivalence  $(-)_0$ : Gr- $A o \text{mod-} A_0$   $(M \mapsto M_0)$ .

 $K_0(A_0)$  is also a  $\mathbb{Z}[\Gamma]$ -module, and  $K_0^{gr}(A)\cong K_0(A_0)$  as  $\mathbb{Z}[\Gamma]$ -modules.

[Dade]: If A strongly  $\Gamma$ -graded, then  $\mathcal T$  induces an action of  $\Gamma$  on mod- $A_0$ .

These actions commute with the natural equivalence  $(-)_0: \operatorname{Gr-}A \to \operatorname{mod-}A_0 \ (M \mapsto M_0).$ 

 $K_0(A_0)$  is also a  $\mathbb{Z}[\Gamma]$ -module, and  $K_0^{gr}(A)\cong K_0(A_0)$  as  $\mathbb{Z}[\Gamma]$ -modules.

[Dade]: If A strongly  $\Gamma$ -graded, then  $\mathcal T$  induces an action of  $\Gamma$  on mod- $A_0$ .

These actions commute with the natural equivalence  $(-)_0: \operatorname{Gr-}A \to \operatorname{mod-}A_0 \ (M \mapsto M_0).$ 

 $K_0(A_0)$  is also a  $\mathbb{Z}[\Gamma]$ -module, and  $K_0^{gr}(A)\cong K_0(A_0)$  as  $\mathbb{Z}[\Gamma]$ -modules.

[Dade]: If A strongly  $\Gamma$ -graded, then  $\mathcal T$  induces an action of  $\Gamma$  on mod- $A_0$ .

These actions commute with the natural equivalence  $(-)_0: \operatorname{Gr-}A \to \operatorname{mod-}A_0 \ (M \mapsto M_0).$ 

 $K_0(A_0)$  is also a  $\mathbb{Z}[\Gamma]$ -module, and  $K_0^{gr}(A)\cong K_0(A_0)$  as  $\mathbb{Z}[\Gamma]$ -modules.

### E finite essential graph, then:

- $L(E) = L(E)_0[t_+, t_-; \alpha].$

#### Lemma (Ara-P.)

If E is a finite essential graph, then the maps  $\alpha_*$  and  $\mathcal{T}_*$  are mutually inverse isomorphisms.

## *E* finite essential graph, then:

- $L(E) = L(E)_0[t_+, t_-; \alpha].$

#### Lemma (Ara-P.)

If E is a finite essential graph, then the maps  $\alpha_*$  and  $\mathcal{T}_*$  are mutually inverse isomorphisms.

## Proposition (Ara-P.)

Let E, F be finite essential graphs, and  $\alpha, \beta$  the respective corner isomorphisms. TFAE:

- There exists an isomorphism  $\Psi: (K_0(L(E)_0), K_0^+(L(E)_0)) \to (K_0(L(F)_0), K_0^+(L(F)_0))$  such that  $\Psi \circ (\mathcal{T}_E)_* = (\mathcal{T}_F)_* \circ \Psi$
- ② There exists an isomorphism  $\Phi: (K_0(L(E)_0), K_0^+(L(E)_0)) \to (K_0(L(F)_0), K_0^+(L(F)_0))$  such that  $\Phi \circ \alpha_* = \beta_* \circ \Phi$

Moreover, the result holds also in the order-unit preserving category.

#### **Notation**

We will denote the condition (1) in Proposition as

$$K_0(L(E)_0) \cong_{\mathbb{Z}[x,x^{-1}]} K_0(L(F)_0).$$

and condition (2) in Proposition as

$$(K_0(L(E)_0), \alpha_*) \cong (K_0(L(F)_0), \beta_*).$$

# Shift equivalence (with lag $\ell \geq 1$ )

 $A \sim_{SE} B$ : there exist matrices R, S such that AR = RB, SA = BS,  $A^{\ell} = RS$  and  $B^{\ell} = SR$ .

**Invariant associated to** A: the dimension triple  $(\Delta_A, \Delta_A^+, \delta_A)$ .

# Shift equivalence (with lag $\ell \geq 1$ )

 $A \sim_{SE} B$ : there exist matrices R, S such that AR = RB, SA = BS,  $A^{\ell} = RS$  and  $B^{\ell} = SR$ .

**Invariant associated to** A: the dimension triple  $(\Delta_A, \Delta_A^+, \delta_A)$ .

$$\Delta_A \cong \varinjlim(\mathbb{Z}^n, A), \Delta_A^+ \cong \varinjlim((\mathbb{Z}^n)^+, A).$$
 The diagram

$$\mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{n} \longrightarrow \Delta_{A}$$

$$\downarrow^{\delta_{A}}$$

$$\mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{n} \longrightarrow \Delta_{A}$$

induces an ordered group isomorphism  $\delta_A:\Delta_A\to\Delta_A$  by multiplication by A on the direct limit.

$$\Delta_A\cong \varinjlim(\mathbb{Z}^n,A), \Delta_A^+\cong \varinjlim((\mathbb{Z}^n)^+,A).$$
 The diagram

induces an ordered group isomorphism  $\delta_A:\Delta_A\to\Delta_A$  by multiplication by A on the direct limit.

## Theorem (Krieger)

 $A \sim_{SE} B$  iff there exists an ordered-group isomorphism  $f: \Delta_A \to \Delta_B$  such that  $\delta_B \circ f = f \circ \delta_A$ .

#### Lemma (Ara-P.)

E be a finite essential graph,  $A:=A_E^t$ ,  $\delta_A$  and  $\alpha_*$  be the automorphism of  $K_0(L(E)_0)$  defined above. Then,  $\alpha_*$  is the inverse of  $\delta_A$ .

## Theorem (Krieger)

 $A \sim_{SE} B$  iff there exists an ordered-group isomorphism  $f: \Delta_A \to \Delta_B$  such that  $\delta_B \circ f = f \circ \delta_A$ .

## Lemma (Ara-P.)

E be a finite essential graph,  $A:=A_E^t$ ,  $\delta_A$  and  $\alpha_*$  be the automorphism of  $K_0(L(E)_0)$  defined above. Then,  $\alpha_*$  is the inverse of  $\delta_A$ .

# Theorem (Ara-P.)

E,F finite essential graphs,  $\alpha,\beta$  the respective corner isomorphisms. Set  $A:=A_E^t$  and  $B:=A_F^t$ ,  $\delta_A$ ,  $\delta_B$  the automorphisms of  $K_0(L(E)_0)$  and  $K_0(L(F)_0)$  defined above. TFAE:

- $(K_0(L(E)_0), \alpha_*) \cong (K_0(L(F)_0), \beta_*).$
- $(K_0(L(E)_0), \delta_A) \cong (K_0(L(F)_0), \delta_B).$
- **5** There is an ordered  $K_0^{gr}(L(E)) \cong_{\mathbb{Z}[x,x^{-1}]} K_0^{gr}(L(F))$ .

Moreover, the equivalences also hold in the order-unit preserving category.

## Given A, B matrices

## Definition (Elementary strong shift equivalence)

There exist matrices R, S such that A = RS and B = SR. We denote that as  $(S, R) : A \approx B$ 

### Definition (Strong shift equivalence of lag *l*)

$$A \approx_{l} B \ \textit{if} \ (S_{1}, R_{1}) \colon A = A_{0} \approx A_{1}, (S_{2}, R_{2}) \colon A_{1} \approx A_{2}, \ldots, (S_{l}, R_{l}) \colon A_{l-1} \approx A_{l} = B. \ \textit{If} \ S := S_{l} \cdots S_{1}, \ R := R_{1} \cdots R_{l}, \ \textit{we denote it by} \ (S, R) \colon A \approx_{l} B.$$

## Given A, B matrices

# Definition (Elementary strong shift equivalence)

There exist matrices R, S such that A = RS and B = SR. We denote that as  $(S, R) : A \approx B$ 

## Definition (Strong shift equivalence of lag l)

$$A \approx_{l} B \ \textit{if} \ (S_{1}, R_{1}) \colon A = A_{0} \approx A_{1}, (S_{2}, R_{2}) \colon A_{1} \approx A_{2}, \ldots, (S_{l}, R_{l}) \colon A_{l-1} \approx A_{l} = B. \ \textit{If} \ S := S_{l} \cdots S_{1}, \ R := R_{1} \cdots R_{l}, \ \textit{we denote it by} \ (S, R) \colon A \approx_{l} B.$$

## Given A, B matrices

# Definition (Elementary strong shift equivalence)

There exist matrices R, S such that A = RS and B = SR. We denote that as  $(S, R) : A \approx B$ 

# Definition (Strong shift equivalence of lag *l*)

$$\begin{array}{l} A\approx_l B \text{ if } (S_1,R_1)\colon A=A_0\approx A_1, (S_2,R_2)\colon A_1\approx\\ A_2,\ldots,(S_l,R_l)\colon A_{l-1}\approx A_l=B. \text{ If } S:=S_l\cdots S_1,\, R:=R_1\cdots R_l,\\ \text{we denote it by } (S,R)\colon A\approx_l B. \end{array}$$

[Williams] E,F essential graphs.  $A_E \approx_n A_F$  iff there exist graphs  $E=D_0,D_1,\ldots,D_n,F=D_{n+1}$  such that either  $D_i \to D_{i+1}$  or  $D_{i+1} \to D_i$  is obtained via out/in-split/amalgamation graph moves.

[Bates-Pask] Out/in-split/amalgamation graph moves induce graded isomorphism/Morita equivalence on LPAs.

[Williams] E,F essential graphs.  $A_E \approx_n A_F$  iff there exist graphs  $E=D_0,D_1,\ldots,D_n,F=D_{n+1}$  such that either  $D_i \to D_{i+1}$  or  $D_{i+1} \to D_i$  is obtained via out/in-split/amalgamation graph moves.

[Bates-Pask] Out/in-split/amalgamation graph moves induce graded isomorphism/Morita equivalence on LPAs.

# $A \approx_l B \Rightarrow A \sim_{SE} B$ of lag l (The converse does not hold [Kim-Roush]).

 $(S,R):Approx_l B\Rightarrow$  there exists an isomorphism  $\Phi:(\Delta_A,\Delta_A^+,\delta_A)\to(\Delta_B,\Delta_B^+,\delta_B)$  such that

$$\Phi(\iota_{n,\infty}(x)) = \iota_{m+n,\infty}(Sx)$$

for  $x \in \mathbb{Z}^N$   $(m \in \mathbb{Z}^+$  fixed).

 $\Phi$  induces an isomorphism  $\Phi: K_0^{gr}(L(E)) \to K_0^{gr}(L(F))$  determined by ((S,R),m).

 $A \approx_l B \Rightarrow A \sim_{SE} B$  of lag l (The converse does not hold [Kim-Roush]).

$$(S,R):Approx_l B\Rightarrow$$
 there exists an isomorphism  $\Phi:(\Delta_A,\Delta_A^+,\delta_A)\to(\Delta_B,\Delta_B^+,\delta_B)$  such that

$$\Phi(\iota_{n,\infty}(x)) = \iota_{m+n,\infty}(Sx)$$

for 
$$x \in \mathbb{Z}^N$$
 ( $m \in \mathbb{Z}^+$  fixed).

 $\Phi$  induces an isomorphism  $\Phi: K_0^{gr}(L(E)) \to K_0^{gr}(L(F))$ , determined by ((S,R),m).

 $A \approx_l B \Rightarrow A \sim_{SE} B$  of lag l (The converse does not hold [Kim-Roush]).

 $(S,R):Approx_l B\Rightarrow$  there exists an isomorphism  $\Phi:(\Delta_A,\Delta_A^+,\delta_A)\to(\Delta_B,\Delta_B^+,\delta_B)$  such that

$$\Phi(\iota_{n,\infty}(x)) = \iota_{m+n,\infty}(Sx)$$

for  $x \in \mathbb{Z}^N$  ( $m \in \mathbb{Z}^+$  fixed).

 $\Phi$  induces an isomorphism  $\Phi: K_0^{gr}(L(E)) \to K_0^{gr}(L(F)),$  determined by ((S,R),m).

# Theorem (Ara-P.)

E and F finite essential graphs,  $A := A_E^t$ ,  $B := A_F^t$ . Then:

- If  $(S,R): A \approx B$  and  $m \in \mathbb{Z}^+$ , then there exists graded Morita equivalence  $\Psi \colon \mathrm{Gr}\text{-}L(E) \longrightarrow \mathrm{Gr}\text{-}L(F)$  such that  $K_0^{gr}(\Psi)$  is induced by ((S,R),m).
- ② If  $\Psi(L(E)_{L(E)}) \cong L(F)_{L(F)}$ , then there exists  $\phi: L(E) \cong_{gr} L(F)$  such that  $K_0^{gr}(\phi) = K_0^{gr}(\Psi)$ .

### Outline

- Preliminares
  - Some definitions on graphs
  - K-Theory for Leavitt path algebras
  - Fractional skew monoid rings
- Forms of Hazrat's Invariant
  - Graded modules &  $K_0^{gr}$
  - Shift equivalence
  - Strong shift equivalence
- 3 The main result

### The equivalence between

(1) 
$$K_0^{gr}(L(E)) \cong_{\mathbb{Z}[x,x^{-1}]} K_0^{gr}(L(F))$$

and

(2) 
$$(K_0(L(E)_0), \alpha_*) \cong (K_0(L(F)_0), \beta_*)$$

suggest a strategy to prove Hazrat's Conjecture for finite essential graphs.

Suppose that the commutative diagram of groups in (2)

#### The equivalence between

(1) 
$$K_0^{gr}(L(E)) \cong_{\mathbb{Z}[x,x^{-1}]} K_0^{gr}(L(F))$$

and

(2) 
$$(K_0(L(E)_0), \alpha_*) \cong (K_0(L(F)_0), \beta_*)$$

suggest a strategy to prove Hazrat's Conjecture for finite essential graphs.

Suppose that the commutative diagram of groups in (2)

$$K_0(L(E)_0) \xrightarrow{\alpha_*} K_0(L(E)_0)$$

$$\downarrow^{\Phi} \qquad \qquad \downarrow^{\Phi}$$

$$K_0(L(F)_0) \xrightarrow{\beta_*} K_0(L(F)_0)$$

with  $\Phi$  isomorphism, lifts to a commutative diagram of algebras



with  $\varphi$  isomorphism of algebras such that  $\varphi \alpha = \beta \varphi$ .

We have 
$$L(E)=L(E)_0[t_+,t_-;\alpha]$$
 and  $L(F)=L(F)_0[s_+,s_-;\beta]$ .

We can define map

$$\widehat{\varphi}:L(E)_0[t_+,t_-;\alpha]\to L(F)_0[s_+,s_-;\beta]$$
 by  $\widehat{\varphi}_{|L(E)_0}=\varphi,\,\widehat{\varphi}(t_+)=s_+,\,\widehat{\varphi}(t_-)=s_-.$ 

 $\widehat{arphi}$  is a graded isomorphism.

We have 
$$L(E) = L(E)_0[t_+, t_-; \alpha]$$
 and  $L(F) = L(F)_0[s_+, s_-; \beta]$ .

#### We can define map

$$\widehat{\varphi}:L(E)_0[t_+,t_-;\alpha]\to L(F)_0[s_+,s_-;\beta]$$
 by  $\widehat{\varphi}_{|L(E)_0}=\varphi,\,\widehat{\varphi}(t_+)=s_+,\,\widehat{\varphi}(t_-)=s_-.$ 

 $\widehat{arphi}$  is a graded isomorphism.

We have 
$$L(E) = L(E)_0[t_+, t_-; \alpha]$$
 and  $L(F) = L(F)_0[s_+, s_-; \beta]$ .

We can define map

$$\widehat{\varphi}:L(E)_0[t_+,t_-;\alpha]\to L(F)_0[s_+,s_-;\beta]$$
 by  $\widehat{\varphi}_{|L(E)_0}=\varphi$ ,  $\widehat{\varphi}(t_+)=s_+$ ,  $\widehat{\varphi}(t_-)=s_-$ .

 $\widehat{\varphi}$  is a graded isomorphism.

To do this we have, for a suitable  $m \geq 1$ , the following commutative diagram (tagged  $(\dagger)$ )



## We lift, in an inductive way, diagram $(\dagger)$ to a commutative diagram of algebras

$$L(E)_{0,0} \xrightarrow{j_{0,l}^{E}} L(E)_{0,l} \xrightarrow{\beta_{l,l+1}^{E}} L(E)_{0,l+1} \xrightarrow{\lambda_{l+1}^{E}} L(E)_{0}$$

$$L(E)_{0,0} \xrightarrow{j_{0,l}^{E}} L(E)_{0,l} \xrightarrow{\lambda_{l+1}^{E}} L(E)_{0} \xrightarrow{\lambda_{l+1}^{E}} L(E$$

#### Thus, we have well-defined algebra isomorphisms

$$\varphi_0, \varphi_1 \colon L(E)_0 \to L(F)_0,$$

with inverses

$$\psi_0, \psi_1 \colon L(F)_0 \to L(E)_0$$

respectively.

Notice that  $\beta \cdot \varphi_0 = \varphi_1 \cdot \alpha$ .

#### Lemma

Let  $g=\psi_0 arphi_1 \in \operatorname{Aut}(L(E)_0)$  . Then g is a locally inner automorphism of  $L(E)_0$  .

So, using g we can define  $L^g(E)$ , and hence prove the main result.

Notice that  $\beta \cdot \varphi_0 = \varphi_1 \cdot \alpha$ .

#### Lemma

Let  $g = \psi_0 \varphi_1 \in \operatorname{Aut}(L(E)_0)$ . Then g is a locally inner automorphism of  $L(E)_0$ .

So, using g we can define  $L^g(E)$ , and hence prove the main result.

Notice that  $\beta \cdot \varphi_0 = \varphi_1 \cdot \alpha$ .

#### Lemma

Let  $g = \psi_0 \varphi_1 \in \operatorname{Aut}(L(E)_0)$ . Then g is a locally inner automorphism of  $L(E)_0$ .

So, using g we can define  $L^g(E)$ , and hence prove the main result.

#### Theorem

E, F are finite essential graphs. TFAE:

- $(K_0(L(E)_0), [1_{L(E)_0}]) \cong_{\mathbb{Z}[x, x^{-1}]} (K_0(L(F)_0), [1_{L(F)_0}]).$
- ② There exists a locally inner automorphism g of  $L(E)_0$  such that  $L^g(E) \cong_{gr} L(F)$ .

#### Proof.

 $(2)\Rightarrow (1).$  If  $L^g(E)\cong_{gr}L(F)$ , there is an order-unit preserving isomorphism  $K_0^{gr}(L^g(E))\cong_{\mathbb{Z}[x,x^{-1}]}K_0^{gr}(L(F)).$  So the result follows from main Theorem in previous section and the fact that  $K_0^{gr}(L^g(E))=K_0^{gr}(L(E)).$ 

#### Proof.

 $(2)\Rightarrow (1).$  If  $L^g(E)\cong_{gr}L(F)$ , there is an order-unit preserving isomorphism  $K_0^{gr}(L^g(E))\cong_{\mathbb{Z}[x,x^{-1}]}K_0^{gr}(L(F)).$  So the result follows from main Theorem in previous section and the fact that  $K_0^{gr}(L^g(E))=K_0^{gr}(L(E)).$ 

 $(1)\Rightarrow (2)$  Set  $g=\psi_0\varphi_1$ . By Lemma, g is a locally inner automorphism of  $L(E)_0$ . Put  $\alpha'=g\alpha$ .

Observe that  $\beta \cdot \varphi_0 = \varphi_0 \cdot \alpha'$ . Indeed, we have

$$\varphi_0 \cdot \alpha' = \varphi_0 \cdot \varphi_0^{-1} \cdot \varphi_1 \cdot \alpha = \varphi_1 \cdot \alpha = \beta \cdot \varphi_0$$

 $(1)\Rightarrow (2)$  Set  $g=\psi_0\varphi_1$ . By Lemma, g is a locally inner automorphism of  $L(E)_0$ . Put  $\alpha'=g\alpha$ .

Observe that  $\beta \cdot \varphi_0 = \varphi_0 \cdot \alpha'$ . Indeed, we have

$$\varphi_0 \cdot \alpha' = \varphi_0 \cdot \varphi_0^{-1} \cdot \varphi_1 \cdot \alpha = \varphi_1 \cdot \alpha = \beta \cdot \varphi_0.$$

#### Since

$$s_+\varphi_0(a)s_-=\beta(\varphi_0(a))=\varphi_0(\alpha'(a))$$

 $\forall a \in L(E)_0$ , the universal property of  $L(E)_0[t_+,t_-;\alpha']$  gives a unique algebra homomorphism

$$\varphi: L(E)_0[t_+, t_-; \alpha'] \to L(F)_0[s_+, s_-; \beta]$$

such that 
$$\varphi|_{L(E)_0}=\varphi_0$$
,  $\varphi(t_+)=s_+$  and  $\varphi(t_-)=s_-$ .

Clearly  $\varphi$  is a graded isomorphism, so we are done.



#### Since

$$s_+\varphi_0(a)s_-=\beta(\varphi_0(a))=\varphi_0(\alpha'(a))$$

 $\forall a \in L(E)_0$ , the universal property of  $L(E)_0[t_+,t_-;\alpha']$  gives a unique algebra homomorphism

$$\varphi: L(E)_0[t_+, t_-; \alpha'] \to L(F)_0[s_+, s_-; \beta]$$

such that 
$$\varphi|_{L(E)_0}=\varphi_0$$
,  $\varphi(t_+)=s_+$  and  $\varphi(t_-)=s_-$ .

Clearly  $\varphi$  is a graded isomorphism, so we are done.

#### Remark

- ① If g inner automorphism of  $L(E)_0$ ,  $L(E) \cong_{gr} L^g(E)$ .
- ② There are locally inner automorphisms g of  $L(E)_0$  such that  $L(E) \ncong_{gr} L^g(E)$ , and indeed such that  $L^g(E) \ncong L(F)$  for any finite graph F.

#### Remark

- If g inner automorphism of  $L(E)_0$ ,  $L(E) \cong_{qr} L^g(E)$ .
- ② There are locally inner automorphisms g of  $L(E)_0$  such that  $L(E) \ncong_{gr} L^g(E)$ , and indeed such that  $L^g(E) \ncong L(F)$  for any finite graph F.

#### Note added in proof (April 2015):

[Ara-P.] By using a different method to lift diagrams, we are able to prove that

$$((S,R),m):A\approx_1 B$$

induces a graded Morita equivalence from L(E) onto L(F). Moreover, if S[1]=[1], then  $L(E)\cong_{gr} L(F)$ .

# Towards a K-theoretic characterization of graded isomorphisms between Leavitt path algebras.

Enrique Pardo

Universidad de Cádiz

Classification of C\*-algebras, flow equivalence of shift spaces, and graph and Leavitt path algebras University of Louisiana at Lafayette, May 11-15, 2015



### COFEE?