Graded Irreducible Representations of Leavitt Path Algebras

Kulumani M. Rangaswamy (jointly with Roozbeh Hazrat)

University of Colorado, Colorado Springs

May 11, 2015

Kulumani M. Rangaswamy (jointly with RoozGraded Irreducible Representations of Leavitt

- Graded algebraic branching systems and graded Irreducible representations
- Graded Irreducible Representations- induced by Laurent vertices and Line points.

- Graded algebraic branching systems and graded Irreducible representations
- Graded Irreducible Representations- induced by Laurent vertices and Line points.
- Graded Socle of a Leavitt path algebra

- Graded algebraic branching systems and graded Irreducible representations
- Graded Irreducible Representations- induced by Laurent vertices and Line points.
- Graded Socle of a Leavitt path algebra
- Finitely presented graded irreducible representations .

- Graded algebraic branching systems and graded Irreducible representations
- Graded Irreducible Representations- induced by Laurent vertices and Line points.
- Graded Socle of a Leavitt path algebra
- Finitely presented graded irreducible representations.
- When every irreducible representation is graded

- Graded algebraic branching systems and graded Irreducible representations
- Graded Irreducible Representations- induced by Laurent vertices and Line points.
- Graded Socle of a Leavitt path algebra
- Finitely presented graded irreducible representations.
- When every irreducible representation is graded
- Graded Self-injctive Leavitt path algebras

A directed graph $E = (E^0, E^1, r, s)$ consists of a set E^0 of vertices, a set E^1 of edges and maps r, s from E^1 to E^0 . For each $e \in E^1$, say,

• $<_{e^*}$, s(e) = u is called the **source** of e and r(e) = v the **range**

of e and e^* is called the ghost edge with $s(e^*) = v$ and $r(e^*) = u$. A finite path α of length n > 0 is a finite sequence of edges $\mu = e_1 e_2 \cdots e_n$ with $r(e_i) = s(e_{i+1})$ for all $i = 1, \dots, n-1$. In this case $\mu^* = e_n^* \cdots e_2^* e_1^*$. A vertex u is called a **sink** if it emits no edges. If u is not a sink and emits finitely many edges, we say u is a **regular vertex**. If u emits infinitely many edges, we say u is an **infinite emitter**.

Leavitt path algebras

Let $E = (E^0, E^1, r, s)$ be a directed graph and K be any field. The **Leavitt path algebra** $L_K(E)$ of the graph E with coefficients in K is the K-algerbra generated by a set $\{v : v \in E^0\}$ of pairwise orthogonal idempotents together with a set of variables $\{e, e^* : e \in E^1\}$ which satisfy the following conditions:

(1)
$$s(e)e = e = er(e)$$
 for all $e \in E^1$.
(2) $r(e)e^* = e^* = e^*s(e)$ for all $e \in E^1$.
(3) (The "CK-1 relations") For all $e_i, e_j \in E^1, e_i^*e_i = r(e_i)$ and $e_i^*e_j = 0$
if $i \neq j$
(1) (The "CK-2 electric ") For all $e_i, e_j \in E^1$, $e_i^*e_i = r(e_i)$ and $e_i^*e_j = 0$

(4) (The "CK-2 relations") For every regular vertex $v \in E^0$,

$$\sum_{e \in E^1, s(e) = v} ee^* = v$$

Notation: Here after, *E* will denote an arbitrary graph, *L* denotes $L_{K}(E)$ and all the modules we consider are left *L*-modules.

•
$$a \in L \implies a = \sum_{i=1}^{n} k_i \alpha_i \beta_i^*$$
 where $k_i \in K$, α_i and β_i are paths.

•
$$a \in L \implies a = \sum_{i=1}^{n} k_i \alpha_i \beta_i^*$$
 where $k_i \in K$, α_i and β_i are paths.

• *L* is a \mathbb{Z} -graded ring, induced by deg(v) = 0, deg(e) = 1, deg $(e^*) = -1$ for $v \in E^0$, $e \in E^1$ and $L = \bigoplus_{n \in \mathbb{Z}} L_n$ where each $L_n = \{a \in L : a = \sum_{i \neq n} k_i \alpha_i \beta_i^* \text{ with } |\alpha_i| - |\beta_i| = n\}$. The subgroups L_n satisfy $L_m L_n \subseteq L_{m+n}$ for all m, n. Elements of L_n are said to be

homogeneous.

•
$$a \in L \implies a = \sum_{i=1}^{n} k_i \alpha_i \beta_i^*$$
 where $k_i \in K$, α_i and β_i are paths.

• *L* is a \mathbb{Z} -graded ring, induced by deg(v) = 0, deg(e) = 1, deg $(e^*) = -1$ for $v \in E^0$, $e \in E^1$ and $L = \bigoplus_{n \in \mathbb{Z}} L_n$ where each

 $L_n = \{a \in L : a = \sum k_i \alpha_i \beta_i^* \text{ with } |\alpha_i| - |\beta_i| = n\}$. The subgroups L_n satisfy $L_m L_n \subseteq L_{m+n}$ for all m, n. Elements of L_n are said to be **homogeneous**.

• A left ideal A of L is a graded left ideal if $A = \bigoplus_{n \in \mathbb{Z}} (A \cap L_n)$.

•
$$a \in L \implies a = \sum_{i=1}^{n} k_i \alpha_i \beta_i^*$$
 where $k_i \in K$, α_i and β_i are paths.

• *L* is a \mathbb{Z} -graded ring, induced by deg(v) = 0, deg(e) = 1, deg $(e^*) = -1$ for $v \in E^0$, $e \in E^1$ and $L = \bigoplus_{n \in \mathbb{Z}} L_n$ where each

 $L_n = \{a \in L : a = \sum k_i \alpha_i \beta_i^* \text{ with } |\alpha_i| - |\beta_i| = n\}$. The subgroups L_n satisfy $L_m L_n \subseteq L_{m+n}$ for all m, n. Elements of L_n are said to be **homogeneous**.

- A left ideal A of L is a graded left ideal if $A = \bigoplus_{n \in \mathbb{Z}} (A \cap L_n)$.
- A left *L*-module *M* is a **graded** *L*-module if $M = \bigoplus_{n \in \mathbb{Z}} M_n$ where each M_n is an abelian group and for $s, t \in \mathbb{Z}$, $R_s M_t \subseteq M_{s+t}$.

•
$$a \in L \implies a = \sum_{i=1}^{n} k_i \alpha_i \beta_i^*$$
 where $k_i \in K$, α_i and β_i are paths.

• *L* is a \mathbb{Z} -graded ring, induced by deg(v) = 0, deg(e) = 1, deg $(e^*) = -1$ for $v \in E^0$, $e \in E^1$ and $L = \bigoplus_{n \in \mathbb{Z}} L_n$ where each

 $L_n = \{a \in L : a = \sum k_i \alpha_i \beta_i^* \text{ with } |\alpha_i| - |\beta_i| = n\}$. The subgroups L_n satisfy $L_m L_n \subseteq L_{m+n}$ for all m, n. Elements of L_n are said to be **homogeneous**.

- A left ideal A of L is a graded left ideal if $A = \bigoplus_{n \in \mathbb{Z}} (A \cap L_n)$.
- A left *L*-module *M* is a **graded** *L*-**module** if $M = \bigoplus_{n \in \mathbb{Z}} M_n$ where each M_n is an abelian group and for $s, t \in \mathbb{Z}$, $R_s M_t \subseteq M_{s+t}$.
- For a \mathbb{Z} -graded module M we define, for any $k \in \mathbb{Z}$, the k-shifted graded module M(k) as $M(k) = \bigoplus_{n \in \mathbb{Z}} (M(k))_n$, where

$$(M(k))_n = M_{k+n}$$

Graded-Simple modules

• A graded left *L*- module *S* is **graded-simple** if {0} and *S* are the only graded submodules of *S*.

- A graded left *L* module *S* is **graded-simple** if {0} and *S* are the only graded submodules of *S*.
- Graded-Simple \Rightarrow Simple.

- A graded left *L* module *S* is **graded-simple** if {0} and *S* are the only graded submodules of *S*.
- Graded-Simple \Rightarrow Simple.
- Let R = K[x, x⁻¹]. R is a graded-simple R-module, but R is not simple as an R-module

- A graded left *L* module *S* is **graded-simple** if {0} and *S* are the only graded submodules of *S*.
- Graded-Simple \Rightarrow Simple.
- Let R = K[x, x⁻¹]. R is a graded-simple R-module, but R is not simple as an R-module
- Simple ⇒ Graded-Simple

- A graded left *L* module *S* is **graded-simple** if {0} and *S* are the only graded submodules of *S*.
- Graded-Simple \Rightarrow Simple.
- Let R = K[x, x⁻¹]. R is a graded-simple R-module, but R is not simple as an R-module
- Simple ⇒ Graded-Simple
- For any irreducible polynomial $p(x) \in K[x, x^{-1}]$, $K[x, x^{-1}] / < p(x) >$ is simple, but is not graded-simple as a $K[x, x^{-1}]$ -module. $(R / < p(x) > \not\cong K[x, x^{-1}])$.

- A graded left *L* module *S* is **graded-simple** if {0} and *S* are the only graded submodules of *S*.
- Graded-Simple \Rightarrow Simple.
- Let R = K[x, x⁻¹]. R is a graded-simple R-module, but R is not simple as an R-module
- Simple ⇒ Graded-Simple
- For any irreducible polynomial $p(x) \in K[x, x^{-1}]$, $K[x, x^{-1}] / < p(x) >$ is simple, but is not graded-simple as a $K[x, x^{-1}]$ -module. $(R / < p(x) > \not\cong K[x, x^{-1}])$.
- Upto isomorphism, K[x, x⁻¹] has only one graded-simple K[x, x⁻¹]-module, namely itself, but has infinitely many non-graded simple modules.

If v is a vertex then the tree T_E(v) = {u ∈ E⁰ : v ≥ u (that is, there is a path from v to u)}

- If v is a vertex then the tree T_E(v) = {u ∈ E⁰ : v ≥ u (that is, there is a path from v to u)}
- A path $\mu = e_1 \cdots e_n$ is said to have a **bifurcation** at a vertex $s(e_i) = u_i$ if there is an edge $f \neq e_i$ such that $s(f) = u_i$.

- If v is a vertex then the tree T_E(v) = {u ∈ E⁰ : v ≥ u (that is, there is a path from v to u)}
- A path $\mu = e_1 \cdots e_n$ is said to have a **bifurcation** at a vertex $s(e_i) = u_i$ if there is an edge $f \neq e_i$ such that $s(f) = u_i$.
- **Definition**: A vertex v is called a **line point** if no vertex in $T_E(v)$ is either a bifuracating vertex or the base of a cycle. As a graph, $T_E(v)$ looks like \longrightarrow \longrightarrow , a finite or infinite straight line segment.

- If v is a vertex then the tree T_E(v) = {u ∈ E⁰ : v ≥ u (that is, there is a path from v to u)}
- A path $\mu = e_1 \cdots e_n$ is said to have a **bifurcation** at a vertex $s(e_i) = u_i$ if there is an edge $f \neq e_i$ such that $s(f) = u_i$.
- **Definition**: A vertex v is called a **line point** if no vertex in $T_E(v)$ is either a bifuracating vertex or the base of a cycle. As a graph, $T_E(v)$ looks like \longrightarrow \longrightarrow , a finite or infinite straight line segment.
- **Definition**: A vertex v is called a **Laurent vertex** if $T_E(v)$ consists of a single path $\gamma = \mu c$ where μ is a path without bifurcations and c is a cycle without exits.

- If v is a vertex then the tree T_E(v) = {u ∈ E⁰ : v ≥ u (that is, there is a path from v to u)}
- A path $\mu = e_1 \cdots e_n$ is said to have a **bifurcation** at a vertex $s(e_i) = u_i$ if there is an edge $f \neq e_i$ such that $s(f) = u_i$.
- **Definition**: A vertex v is called a **line point** if no vertex in $T_E(v)$ is either a bifuracating vertex or the base of a cycle. As a graph, $T_E(v)$ looks like \longrightarrow \longrightarrow , a finite or infinite straight line segment.
- **Definition**: A vertex v is called a **Laurent vertex** if $T_E(v)$ consists of a single path $\gamma = \mu c$ where μ is a path without bifurcations and c is a cycle without exits.

May 11, 2015

7 / 23

• In this case, as a graph $T_E(v)$ looks something like

Definition: (Daniel Gonçalves and Danilo Royer 2011) Let E be an arbitrary graph. An E-algebraic branching system consists of a set X and a family of its subsets {X_v, X_e : v ∈ E⁰, e ∈ E¹} such that

- Definition: (Daniel Gonçalves and Danilo Royer 2011) Let E be an arbitrary graph. An E-algebraic branching system consists of a set X and a family of its subsets {X_v, X_e : v ∈ E⁰, e ∈ E¹} such that
- (1) $X_v \cap X_w = \emptyset = X_e \cap X_f$ for $v, w \in E^0$ with $v \neq w$ and $e, f \in E^1$ with $e \neq f$;

- Definition: (Daniel Gonçalves and Danilo Royer 2011) Let E be an arbitrary graph. An E-algebraic branching system consists of a set X and a family of its subsets {X_v, X_e : v ∈ E⁰, e ∈ E¹} such that
- (1) $X_v \cap X_w = \emptyset = X_e \cap X_f$ for $v, w \in E^0$ with $v \neq w$ and $e, f \in E^1$ with $e \neq f$;
- (2) $X_e \subseteq X_{s(e)}$ for $e \in X^1$;

- Definition: (Daniel Gonçalves and Danilo Royer 2011) Let E be an arbitrary graph. An E-algebraic branching system consists of a set X and a family of its subsets {X_v, X_e : v ∈ E⁰, e ∈ E¹} such that
- (1) $X_v \cap X_w = \emptyset = X_e \cap X_f$ for $v, w \in E^0$ with $v \neq w$ and $e, f \in E^1$ with $e \neq f$;
- (2) $X_e \subseteq X_{s(e)}$ for $e \in X^1$;
- (3) For all $v \in E_0$, $X_v = \bigcup_{e \in s^{-1}(v)} X_e$; Also $X = \bigcup_{v \in E^0} X_v$.

- Definition: (Daniel Gonçalves and Danilo Royer 2011) Let E be an arbitrary graph. An E-algebraic branching system consists of a set X and a family of its subsets {X_v, X_e : v ∈ E⁰, e ∈ E¹} such that
- (1) $X_v \cap X_w = \emptyset = X_e \cap X_f$ for $v, w \in E^0$ with $v \neq w$ and $e, f \in E^1$ with $e \neq f$;
- (2) $X_e \subseteq X_{s(e)}$ for $e \in X^1$;
- (3) For all $v \in E_0$, $X_v = \bigcup_{e \in s^{-1}(v)} X_e$; Also $X = \bigcup_{v \in E^0} X_v$.
- (4) For each $e \in E^1$, there exists a bijection $\sigma_e : X_{r(e)} \to X_e$.

- Definition: (Daniel Gonçalves and Danilo Royer 2011) Let E be an arbitrary graph. An E-algebraic branching system consists of a set X and a family of its subsets {X_v, X_e : v ∈ E⁰, e ∈ E¹} such that
- (1) $X_v \cap X_w = \emptyset = X_e \cap X_f$ for $v, w \in E^0$ with $v \neq w$ and $e, f \in E^1$ with $e \neq f$;
- (2) $X_e \subseteq X_{s(e)}$ for $e \in X^1$;

• (3) For all
$$v \in E_0$$
, $X_v = \cup_{e \in s^{-1}(v)} X_e$; Also $X = \bigcup_{v \in E^0} X_v$.

- (4) For each $e \in E^1$, there exists a bijection $\sigma_e: X_{r(e)} \to X_e$.
- The E-branching system is called graded if there is a map deg : X → Z such that

- Definition: (Daniel Gonçalves and Danilo Royer 2011) Let E be an arbitrary graph. An E-algebraic branching system consists of a set X and a family of its subsets {X_v, X_e : v ∈ E⁰, e ∈ E¹} such that
- (1) $X_v \cap X_w = \emptyset = X_e \cap X_f$ for $v, w \in E^0$ with $v \neq w$ and $e, f \in E^1$ with $e \neq f$;

• (2)
$$X_e \subseteq X_{s(e)}$$
 for $e \in X^1$;

• (3) For all
$$v \in E_0$$
, $X_v = \cup_{e \in s^{-1}(v)} X_e$; Also $X = \bigcup_{v \in E^0} X_v$.

- (4) For each $e \in E^1$, there exists a bijection $\sigma_e: X_{r(e)} \to X_e$.
- The E-branching system is called graded if there is a map deg : X → Z such that
- (5) $\deg(\sigma_e(x)) = \deg(x) + 1.$

Let X be an algebraic branching system . Let M(X) be the K-vector space having X as a basis. We make M(X) a left L-module as follows: Define, for each vertex v and each edge e in E, linear transformations P_v , S_e and S_{e^*} on M(X) as follows: For all $x \in X$.

(I) $P_v(x) = \begin{cases} x, \text{ if } x \in X_v \\ 0, \text{ otherwise} \end{cases}$ (II) $S_e(x) = \begin{cases} \sigma_e(x), \text{ if } x \in X_{r(e)} \\ 0, \text{ otherwise} \end{cases}$ (III) $S_{e^*}(x) = \begin{cases} \sigma_e^{-1}(x), \text{ if } x \in X_e \\ 0, \text{ otherwise} \end{cases}$ The endomorphisms $\{P_u, S_e, S_{e^*} : u \in E^0, e \in E^1\}$ satisfy the defining relations (1) - (4) of the Leavitt path algebra L. This induces an algebra homomorphism ϕ from L to $End_{\mathcal{K}}(\mathcal{M}(X))$ mapping u to P_{μ} , e to S_{e} and e^* to S_{e^*} . Then M(X) can be made a left module over L via the homomorphism ϕ . We denote this L-module operation on M(X) by \cdot .

If X is a graded branching system, then define, for each $i \in \mathbb{Z}$, the homogeneous component

$$M(X)_i = \{\sum_{x \in X} k_x x \in M(X) : \deg(x) = i\}.$$

It is easy to see that

$$M(X) = \bigoplus_{i \in \mathbb{Z}} M(X)_i$$

and that M(X) is a \mathbb{Z} -graded left *L*-module. Next we illustrate constructions of graded irreducible representations using appropriate graded algebraic branching systems.

Graded simple but not simple

• Let $u \in E^0$ be a Laurent vertex so that $T_E(u)$ consists of a single path $\gamma = \mu c$ where the path γ has no bifurcations and c is a cycle without exits based at a vertex v.

Graded simple but not simple

- Let u ∈ E⁰ be a Laurent vertex so that T_E(u) consists of a single path γ = μc where the path γ has no bifurcations and c is a cycle without exits based at a vertex v.
- Note v is also Laurent vertex and that $Lv \cong_{gr} Lu$ under the map $av \longmapsto av \mu^*$

- Let u ∈ E⁰ be a Laurent vertex so that T_E(u) consists of a single path γ = μc where the path γ has no bifurcations and c is a cycle without exits based at a vertex v.
- Note v is also Laurent vertex and that $Lv \cong_{gr} Lu$ under the map $av \longmapsto av \mu^*$
- Let X = {pq* : p, q paths with r(q*) = v}. We make X a graded branching system as follows:

- Let $u \in E^0$ be a Laurent vertex so that $T_E(u)$ consists of a single path $\gamma = \mu c$ where the path γ has no bifurcations and c is a cycle without exits based at a vertex v.
- Note v is also Laurent vertex and that $Lv \cong_{gr} Lu$ under the map $av \longmapsto av \mu^*$
- Let X = {pq* : p, q paths with r(q*) = v}. We make X a graded branching system as follows:
- $X_w = \{ pq^* \in X : s(p) = w, \text{ where } w \in E^0 \};$

- Let $u \in E^0$ be a Laurent vertex so that $T_E(u)$ consists of a single path $\gamma = \mu c$ where the path γ has no bifurcations and c is a cycle without exits based at a vertex v.
- Note v is also Laurent vertex and that $Lv \cong_{gr} Lu$ under the map $av \longmapsto av \mu^*$
- Let X = {pq* : p, q paths with r(q*) = v}. We make X a graded branching system as follows:
- $X_w = \{pq^* \in X : s(p) = w, \text{ where } w \in E^0\};$
- $X_e = \{pq^* \in X : e \text{ initial edge of } p\}$, where $e \in E^1$;

- Let $u \in E^0$ be a Laurent vertex so that $T_E(u)$ consists of a single path $\gamma = \mu c$ where the path γ has no bifurcations and c is a cycle without exits based at a vertex v.
- Note v is also Laurent vertex and that $Lv \cong_{gr} Lu$ under the map $av \longmapsto av \mu^*$
- Let X = {pq* : p, q paths with r(q*) = v}. We make X a graded branching system as follows:
- $X_w = \{pq^* \in X : s(p) = w, \text{ where } w \in E^0\};$
- $X_e = \{pq^* \in X : e \text{ initial edge of } p\}$, where $e \in E^1$;
- $\sigma_e: X_{r(e)} \rightarrow X_e$ given by $pq^* \longmapsto epq^*$, a bijection;

- Let $u \in E^0$ be a Laurent vertex so that $T_E(u)$ consists of a single path $\gamma = \mu c$ where the path γ has no bifurcations and c is a cycle without exits based at a vertex v.
- Note v is also Laurent vertex and that $Lv \cong_{gr} Lu$ under the map $av \longmapsto av \mu^*$
- Let X = {pq* : p, q paths with r(q*) = v}. We make X a graded branching system as follows:
- $X_w = \{pq^* \in X : s(p) = w, \text{ where } w \in E^0\};$
- $X_e = \{pq^* \in X : e \text{ initial edge of } p\}$, where $e \in E^1$;
- $\sigma_e: X_{r(e)} \to X_e$ given by $pq^* \longmapsto epq^*$, a bijection;
- deg : $X \to \mathbb{Z}$, given by $pq^* \longmapsto |pq^*| = |p| |q|$.

- Let $u \in E^0$ be a Laurent vertex so that $T_E(u)$ consists of a single path $\gamma = \mu c$ where the path γ has no bifurcations and c is a cycle without exits based at a vertex v.
- Note v is also Laurent vertex and that $Lv \cong_{gr} Lu$ under the map $av \longmapsto av \mu^*$
- Let X = {pq* : p, q paths with r(q*) = v}. We make X a graded branching system as follows:
- $X_w = \{ pq^* \in X : s(p) = w, \text{ where } w \in E^0 \};$
- $X_e = \{pq^* \in X : e \text{ initial edge of } p\}$, where $e \in E^1$;
- $\sigma_e: X_{r(e)} \rightarrow X_e$ given by $pq^* \longmapsto epq^*$, a bijection;
- deg : $X \to \mathbb{Z}$, given by $pq^* \longmapsto |pq^*| = |p| |q|$.
- The corresponding L-module $M(X) = \bigoplus_{n \in \mathbb{Z}} (M(X))_n$ is \mathbb{Z} -graded where $(M(X))_n$ has the K-basis $\{pq^* \in X : |p| - |q| = n\}$. Denote it by N_{vc}

• **Theorem:** Let *E* be an arbitrary graph and *v* be a Laurent vertex in *E*. Then we have the following.

- **Theorem:** Let *E* be an arbitrary graph and *v* be a Laurent vertex in *E*. Then we have the following.
- (i) The left *L*-module N_{vc} is a graded-simple *L*-module but is not a simple *L*-module.

- **Theorem:** Let *E* be an arbitrary graph and *v* be a Laurent vertex in *E*. Then we have the following.
- (i) The left *L*-module N_{vc} is a graded-simple *L*-module but is not a simple *L*-module.
- (ii) The annihilator P of N_{vc} is a graded prime ideal of L and is generated by H(v = {u ∈ E⁰ : u ≇ v}), but P is not a primitive ideal

- **Theorem:** Let *E* be an arbitrary graph and *v* be a Laurent vertex in *E*. Then we have the following.
- (i) The left *L*-module *N_{vc}* is a graded-simple *L*-module but is not a simple *L*-module.
- (ii) The annihilator P of N_{vc} is a graded prime ideal of L and is generated by H(v = {u ∈ E⁰ : u ≇ v}), but P is not a primitive ideal
- (iii) Conversely, every graded prime non-primitive ideal *P* is the annihilator of a graded simple *L*-module which is not simple , provided if *E* is row-finite or if *E*⁰ is countable.

- **Theorem:** Let *E* be an arbitrary graph and *v* be a Laurent vertex in *E*. Then we have the following.
- (i) The left *L*-module *N_{vc}* is a graded-simple *L*-module but is not a simple *L*-module.
- (ii) The annihilator P of N_{vc} is a graded prime ideal of L and is generated by H(v = {u ∈ E⁰ : u ≇ v}), but P is not a primitive ideal
- (iii) Conversely, every graded prime non-primitive ideal *P* is the annihilator of a graded simple *L*-module which is not simple , provided if *E* is row-finite or if *E*⁰ is countable.
- **Note**: In contrast, the annihilator of every simple *L*-module is always a primitive ideal of *L*.

Graded-simple which is also simple

• Let *u* be an infinite emitter in *E*. Let *X* be the set of all the finite paths ending at *u*.

- Let *u* be an infinite emitter in *E*. Let *X* be the set of all the finite paths ending at *u*.
- $X_v = \{q \in X : s(q) = v\}$, where $v \in E^0$; $X_e = \{q \in X : e \text{ is the initial edge of } q\}$, where $e \in E^1$;

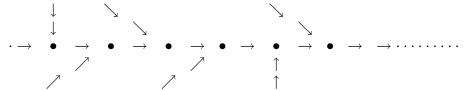
- Let *u* be an infinite emitter in *E*. Let *X* be the set of all the finite paths ending at *u*.
- $X_v = \{q \in X : s(q) = v\}$, where $v \in E^0$; $X_e = \{q \in X : e \text{ is the initial edge of } q\}$, where $e \in E^1$;
- A bijection $\sigma_e: X_{r(e)} \rightarrow X_e$ given by $\sigma_e(q) = eq$;

- Let *u* be an infinite emitter in *E*. Let *X* be the set of all the finite paths ending at *u*.
- $X_v = \{q \in X : s(q) = v\}$, where $v \in E^0$; $X_e = \{q \in X : e \text{ is the initial edge of } q\}$, where $e \in E^1$;
- A bijection $\sigma_e: X_{r(e)} \rightarrow X_e$ given by $\sigma_e(q) = eq$;
- deg : $X \to \mathbb{Z}$ is given by deg(p) = |p|.

- Let *u* be an infinite emitter in *E*. Let *X* be the set of all the finite paths ending at *u*.
- $X_v = \{q \in X : s(q) = v\}$, where $v \in E^0$; $X_e = \{q \in X : e \text{ is the initial edge of } q\}$, where $e \in E^1$;
- A bijection $\sigma_e: X_{r(e)} \rightarrow X_e$ given by $\sigma_e(q) = eq$;
- deg : $X \to \mathbb{Z}$ is given by deg(p) = |p|.
- The left L-module $M(X) = \bigoplus_{i \in \mathbb{Z}} (M(X))_i$ becomes a graded module where $(M(X))_n$ has the K-basis $\{p_i \in X : |p_i| = n\}$

- Let *u* be an infinite emitter in *E*. Let *X* be the set of all the finite paths ending at *u*.
- $X_v = \{q \in X : s(q) = v\}$, where $v \in E^0$; $X_e = \{q \in X : e \text{ is the initial edge of } q\}$, where $e \in E^1$;
- A bijection $\sigma_e: X_{r(e)} \rightarrow X_e$ given by $\sigma_e(q) = eq$;
- deg : $X \to \mathbb{Z}$ is given by deg(p) = |p|.
- The left L-module $M(X) = \bigoplus_{i \in \mathbb{Z}} (M(X))_i$ becomes a graded module where $(M(X))_n$ has the K-basis $\{p_i \in X : |p_i| = n\}$
- This module is a graded-simple module and also a simple module

Let $p = e_1 e_2 \cdots e_n \cdots$ be an infinite path. Following X.W. Chen, define for each $n \ge 1$, $\tau^{>n}(p)$ to be the truncated infinite path $e_{n+1}e_{n+2}\cdots$. Let $[p] = \{$ infinite paths $q : \tau^{>m}(q) = \tau^{>n}(p)$ for some $m, n\}$. We say qis **tail-equivalent** to p.



An infinite path p is said to be **rational** if it is tail equivalent to an finite path of the form $ccc \cdot \cdots$. where c is a closed path. An infinite path which is not rational is called an **Irrational path**.

• Let X = [p], the set of all infinite paths tail equivalent to the infinite path p.

- Let X = [p], the set of all infinite paths tail equivalent to the infinite path p.
- For each $v \in E^0$, let $X_v = \{q \in [p] : s(q) = v\}$

- Let X = [p], the set of all infinite paths tail equivalent to the infinite path p.
- For each $v \in E^0$, let $X_v = \{q \in [p] : s(q) = v\}$
- For each $e \in E^1$, let $X_e = \{q \in [p] : e \text{ is the initial edge of } q\}$.

- Let X = [p], the set of all infinite paths tail equivalent to the infinite path p.
- For each $v \in E^0$, let $X_v = \{q \in [p] : s(q) = v\}$
- For each $e \in E^1$, let $X_e = \{q \in [p] : e \text{ is the initial edge of } q\}$.
- Define $\sigma_e: X_{r(e)} \to X_e$ by $q \longmapsto eq$.

- Let X = [p], the set of all infinite paths tail equivalent to the infinite path p.
- For each $v \in E^0$, let $X_v = \{q \in [p] : s(q) = v\}$
- For each $e \in E^1$, let $X_e = \{q \in [p] : e \text{ is the initial edge of } q\}$.
- Define $\sigma_e: X_{r(e)} \to X_e$ by $q \longmapsto eq$.
- Then X.W. Chen (2012) showed that M(X) becomes a simple left L-module and denoted it by V_[p].

- Let X = [p], the set of all infinite paths tail equivalent to the infinite path p.
- For each $v \in E^0$, let $X_v = \{q \in [p] : s(q) = v\}$
- For each $e \in E^1$, let $X_e = \{q \in [p] : e \text{ is the initial edge of } q\}$.
- Define $\sigma_e: X_{r(e)} \to X_e$ by $q \longmapsto eq$.
- Then X.W. Chen (2012) showed that M(X) becomes a simple left L-module and denoted it by V_[p].
- If p is irrational, we can make V_[p] a graded module by defining for any q ∈ [p], deg(q) = m − n if m > 0 is the smallest integer such that τ^{>m}(q) = τ^{>n}(p) for some n.

- Let X = [p], the set of all infinite paths tail equivalent to the infinite path p.
- For each $v \in E^0$, let $X_v = \{q \in [p] : s(q) = v\}$
- For each $e \in E^1$, let $X_e = \{q \in [p] : e \text{ is the initial edge of } q\}$.
- Define $\sigma_e: X_{r(e)} \to X_e$ by $q \longmapsto eq$.
- Then X.W. Chen (2012) showed that M(X) becomes a simple left L-module and denoted it by V_[p].
- If p is irrational, we can make $V_{[p]}$ a graded module by defining for any $q \in [p]$, $\deg(q) = m - n$ if m > 0 is the smallest integer such that $\tau^{>m}(q) = \tau^{>n}(p)$ for some n.
- But if p is rational, V_[p] is simple but is not graded-simple: (Suppose, on the contrary, V_[p] is graded and p = ccc · · · with c a cycle. First show p is homogeneous. Then note cp = p. This implies deg(p) = |c| + deg(p), a contradiction)

• **Proposition:** Let $v \in E^0$. Then the left ideal Lv is a graded-simple left ideal if and only if v is either a line point or a Laurent vertex.

- **Proposition:** Let $v \in E^0$. Then the left ideal Lv is a graded-simple left ideal if and only if v is either a line point or a Laurent vertex.
- Proposition: A left ideal S of L is a graded-simple left ideal if and only if S ≅_{gr} Lv(n), where v is either a line point or a Laurent vertex and n ∈ Z.

- **Proposition:** Let $v \in E^0$. Then the left ideal Lv is a graded-simple left ideal if and only if v is either a line point or a Laurent vertex.
- Proposition: A left ideal S of L is a graded-simple left ideal if and only if S ≅_{gr} Lv(n), where v is either a line point or a Laurent vertex and n ∈ Z.
- **Definition:** The left (right) **graded-socle** of *L* is the sum of all graded-simple left (right) ideals of *L*. **Notation:** Soc^{gr}(*L*).

- **Proposition:** Let $v \in E^0$. Then the left ideal Lv is a graded-simple left ideal if and only if v is either a line point or a Laurent vertex.
- Proposition: A left ideal S of L is a graded-simple left ideal if and only if S ≅_{gr} Lv(n), where v is either a line point or a Laurent vertex and n ∈ Z.
- **Definition:** The left (right) **graded-socle** of *L* is the sum of all graded-simple left (right) ideals of *L*. **Notation:** *Soc*^{gr}(*L*).

• **Theorem:** $Soc^{gr}(L)$ is the ideal generated by all the Laurent vertices and the line points in E and $Soc^{gr}(L) \cong_{gr} \bigoplus_{i \in I} M_{\Lambda_i}(K)(\bar{\alpha}_i) \oplus \bigoplus_{j \in J} M_{\Lambda_j}(K[x^{t_j}, x^{-t_j}])(\bar{\beta}_i)$ where Λ_i, Λ_j are arbitrary index sets, the t_j are positive integers and $\bar{\alpha}_i, \bar{\beta}_i$ are grade shiftings.

• **Question**: When will every graded irreducible representation of a Leavitt path algebra *L* be finitely presented ?

• **Question**: When will every graded irreducible representation of a Leavitt path algebra *L* be finitely presented ?

May 11, 2015

17 / 23

• For the ungraded case, we have the following:

- **Question**: When will every graded irreducible representation of a Leavitt path algebra *L* be finitely presented ?
- For the ungraded case, we have the following:
- **Theorem**: (P.Ara and K.M. R. (2014)) Let *E* be a finite graph. Then the following properties are equivalent for *L*:

- **Question**: When will every graded irreducible representation of a Leavitt path algebra *L* be finitely presented ?
- For the ungraded case, we have the following:
- **Theorem**: (P.Ara and K.M. R. (2014)) Let *E* be a finite graph. Then the following properties are equivalent for *L*:
- (1) Every simple left L-module is finitely presented;

- **Question**: When will every graded irreducible representation of a Leavitt path algebra *L* be finitely presented ?
- For the ungraded case, we have the following:
- **Theorem**: (P.Ara and K.M. R. (2014)) Let *E* be a finite graph. Then the following properties are equivalent for *L*:
- (1) Every simple left *L*-module is finitely presented;
- (2) Distinct cycles in E are disjoint;

- **Question**: When will every graded irreducible representation of a Leavitt path algebra *L* be finitely presented ?
- For the ungraded case, we have the following:
- **Theorem**: (P.Ara and K.M. R. (2014)) Let *E* be a finite graph. Then the following properties are equivalent for *L*:
- (1) Every simple left L-module is finitely presented;
- (2) Distinct cycles in E are disjoint;
- (3)There is a bijection between the set Prim(L) of all primitive ideals of L and the set of isomorphism classes of simple L-modules;

- **Question**: When will every graded irreducible representation of a Leavitt path algebra *L* be finitely presented ?
- For the ungraded case, we have the following:
- **Theorem**: (P.Ara and K.M. R. (2014)) Let *E* be a finite graph. Then the following properties are equivalent for *L*:
- (1) Every simple left *L*-module is finitely presented;
- (2) Distinct cycles in E are disjoint;
- (3)There is a bijection between the set Prim(L) of all primitive ideals of L and the set of isomorphism classes of simple L-modules;
- (4) The Gelfand-Kirillov dimension of L is finite.

• **Theorem**: (K.M.R. 2015). Let *E* be an arbitrary graph. Then the following are equivalent:

- **Theorem**: (K.M.R. 2015). Let *E* be an arbitrary graph. Then the following are equivalent:
- (1) Every simple left L-module is finitely presented;

- **Theorem**: (K.M.R. 2015). Let *E* be an arbitrary graph. Then the following are equivalent:
- (1) Every simple left *L*-module is finitely presented;
- (2) E is row-finite, and either (a) E is acyclic and E⁰ is the saturated closure of all line points in E or (b) E contains cycles, distinct cycles are disjoint, the cycles in E form an artinian poset under a defined partial order ≥ and every infinite path contains a line point or a Laurent vertex.

- **Theorem**: (K.M.R. 2015). Let *E* be an arbitrary graph. Then the following are equivalent:
- (1) Every simple left *L*-module is finitely presented;
- (2) E is row-finite, and either (a) E is acyclic and E⁰ is the saturated closure of all line points in E or (b) E contains cycles, distinct cycles are disjoint, the cycles in E form an artinian poset under a defined partial order ≥ and every infinite path contains a line point or a Laurent vertex.
- (3) L is the union of a continuous well-ordered ascending chain of graded ideals

$$0 \leq I_1 \leq \cdots \leq I_{\alpha} \leq I_{\alpha+1} \leq \cdots$$
 $(\alpha < \tau)$

where τ is some ordinal, $I_1 = Soc(L)$ and, for each $\alpha \ge 1$, $I_{\alpha+1}/I_{\alpha} \cong M_{\Lambda_{\alpha}}(K[x, x^{-1}])$ where Λ_{α} is an arbitrary index set depending on α .

Finitely presented graded irreducible representations

 Note: Every simple *L*-module fp ⇒ Every graded simple *L*-module fp. Example: Algebraic Toeplitz algebra.

- Note: Every simple *L*-module fp ⇒ Every graded simple *L*-module fp. Example: Algebraic Toeplitz algebra.
- Let *E* be the graph with two vertices *v*, *w* and two edges *e*, *f* such that v = s(e) = r(e) = s(f) and r(f) = w. Now distinct cycles are disjoint, so every simple module over L = L(E) is finitely presented. If $I = \langle w \rangle, L/I \cong_{gr} K[x, x^{-1}]$ is graded simple, but is not finitely presented as $I = Lw \oplus \bigoplus_{i=0}^{\infty} Lf^*(e^*)^i$ is an infinitely generated graded ideal.

- Note: Every simple *L*-module fp ⇒ Every graded simple *L*-module fp. Example: Algebraic Toeplitz algebra.
- Let *E* be the graph with two vertices *v*, *w* and two edges *e*, *f* such that v = s(e) = r(e) = s(f) and r(f) = w. Now distinct cycles are disjoint, so every simple module over L = L(E) is finitely presented. If $I = \langle w \rangle, L/I \cong_{gr} K[x, x^{-1}]$ is graded simple, but is not finitely presented as $I = Lw \oplus \bigoplus_{i=0}^{\infty} Lf^*(e^*)^i$ is an infinitely generated graded ideal.
- On the other hand, as we shall see soon, if every graded-simple is fp , then every simple is also fp.

When every graded irreducible representation is finitely presented

• **Theorem**: Let *E* be an arbitrary graph. Then the following are equivalent:

When every graded irreducible representation is finitely presented

- **Theorem**: Let *E* be an arbitrary graph. Then the following are equivalent:
- (1) Every graded-simple left L-module is finitely presented;

- **Theorem**: Let *E* be an arbitrary graph. Then the following are equivalent:
- (1) Every graded-simple left L-module is finitely presented;
- (2) E is row-finite, to each vertex v there is an integer n ≥ 0 such that every path starting with v and having length ≥ n ends at a line point or a Laurent vertex;

- **Theorem**: Let *E* be an arbitrary graph. Then the following are equivalent:
- (1) Every graded-simple left L-module is finitely presented;
- (2) E is row-finite, to each vertex v there is an integer n ≥ 0 such that every path starting with v and having length ≥ n ends at a line point or a Laurent vertex;
- (3) $L \cong_{gr} \bigoplus_{i \in I} M_{\Lambda_i}(K)(\bar{\alpha}_i) \oplus \bigoplus_{j \in J} M_{\Lambda_j}(K[x^{t_j}, x^{-t_j}])(\bar{\beta}_i)$, where Λ_i , Λ_j are suitable index sets, the t_j are positive integers and $\bar{\alpha}_i, \bar{\beta}_i$ are shiftings.

 (Aranda Pino-Pardo-Siles Molina; Tomforde) Every two-sided ideal of L graded <=> Condition (K) holds in E.

- (Aranda Pino-Pardo-Siles Molina; Tomforde) Every two-sided ideal of L graded <=> Condition (K) holds in E.
- Question: When will every one-sided ideal of L be graded ?

- (Aranda Pino-Pardo-Siles Molina; Tomforde) Every two-sided ideal of L graded <=> Condition (K) holds in E.
- **Question**: When will every one-sided ideal of *L* be graded ?
- Theorem: Let E be an arbitrary graph. Then TFAE:

- (Aranda Pino-Pardo-Siles Molina; Tomforde) Every two-sided ideal of L graded <=> Condition (K) holds in E.
- **Question**: When will every one-sided ideal of *L* be graded ?
- **Theorem:** Let *E* be an arbitrary graph. Then TFAE:
- (1) Every left/right ideal of L is graded;

- (Aranda Pino-Pardo-Siles Molina; Tomforde) Every two-sided ideal of L graded <=> Condition (K) holds in E.
- **Question**: When will every one-sided ideal of *L* be graded ?
- **Theorem:** Let *E* be an arbitrary graph. Then TFAE:
- (1) Every left/right ideal of L is graded;
- (2) Every simple left/right L-module is a graded L-module;

- (Aranda Pino-Pardo-Siles Molina; Tomforde) Every two-sided ideal of L graded <=> Condition (K) holds in E.
- **Question**: When will every one-sided ideal of *L* be graded ?
- **Theorem:** Let *E* be an arbitrary graph. Then TFAE:
- (1) Every left/right ideal of L is graded;
- (2) Every simple left/right L-module is a graded L-module;
- (3) The graph E is an acyclic graph.

- (Aranda Pino-Pardo-Siles Molina; Tomforde) Every two-sided ideal of L graded <=> Condition (K) holds in E.
- Question: When will every one-sided ideal of L be graded ?
- **Theorem:** Let *E* be an arbitrary graph. Then TFAE:
- (1) Every left/right ideal of L is graded;
- (2) Every simple left/right L-module is a graded L-module;
- (3) The graph E is an acyclic graph.
- **Proof**: (2) = > (3). If *E* contains a cycle *c*, then the simple module $V_{[p]}$ corresponding to the infinite rational path $p = ccc \cdots$ is not graded. So *E* contains no cycles. The proof of (3) \implies (1) uses the following

- (Aranda Pino-Pardo-Siles Molina; Tomforde) Every two-sided ideal of L graded <=> Condition (K) holds in E.
- **Question**: When will every one-sided ideal of *L* be graded ?
- **Theorem:** Let *E* be an arbitrary graph. Then TFAE:
- (1) Every left/right ideal of L is graded;
- (2) Every simple left/right *L*-module is a graded *L*-module;
- (3) The graph E is an acyclic graph.
- Proof: (2) = > (3). If E contains a cycle c, then the simple module V_[p] corresponding to the infinite rational path p = ccc · · · is not graded. So E contains no cycles. The proof of (3) ⇒ (1) uses the following
- Theorem: (Abrams- K.M.R. 2010) If E is acyclic, then L is a directed union of graded subalgebras B_λ, each of which is a direct sum of finitely many matrix rings over K of finite order.

• A ring *R* is left **self-injective** if, as a left *R*-module, *R* is an injective module.

- A ring *R* is left **self-injective** if, as a left *R*-module, *R* is an injective module.
- (Known). .Since J(L) = 0, a self-injective Leavitt path algebra L is von Neumann regular.

- A ring *R* is left **self-injective** if, as a left *R*-module, *R* is an injective module.
- (Known). .Since J(L) = 0, a self-injective Leavitt path algebra L is von Neumann regular.
- Hazrat's theorem: *L* is always graded von Neumann regular. Should *L* also be graded self-injective ?

May 11, 2015

22 / 23

- A ring *R* is left **self-injective** if, as a left *R*-module, *R* is an injective module.
- (Known). .Since J(L) = 0, a self-injective Leavitt path algebra L is von Neumann regular.
- Hazrat's theorem: *L* is always graded von Neumann regular. Should *L* also be graded self-injective ?
- Lemma: L graded left self-injective \implies For any $v \in E^0$, Lv cannot have infinitely many independent direct summands.

- A ring *R* is left **self-injective** if, as a left *R*-module, *R* is an injective module.
- (Known). .Since J(L) = 0, a self-injective Leavitt path algebra L is von Neumann regular.
- Hazrat's theorem: *L* is always graded von Neumann regular. Should *L* also be graded self-injective ?
- Lemma: *L* graded left self-injective ⇒ For any *v* ∈ *E*⁰, *Lv* cannot have infinitely many independent direct summands.
- **Theorem**:Let *E* be an arbitrary graph. Then TFAE for *L*:

- A ring *R* is left **self-injective** if, as a left *R*-module, *R* is an injective module.
- (Known). .Since J(L) = 0, a self-injective Leavitt path algebra L is von Neumann regular.
- Hazrat's theorem: *L* is always graded von Neumann regular. Should *L* also be graded self-injective ?
- Lemma: L graded left self-injective \implies For any $v \in E^0$, Lv cannot have infinitely many independent direct summands.
- **Theorem**:Let *E* be an arbitrary graph. Then TFAE for *L*:
- (1) L is graded left/right self-injective;

- A ring *R* is left **self-injective** if, as a left *R*-module, *R* is an injective module.
- (Known). .Since J(L) = 0, a self-injective Leavitt path algebra L is von Neumann regular.
- Hazrat's theorem: *L* is always graded von Neumann regular. Should *L* also be graded self-injective ?
- Lemma: L graded left self-injective ⇒ For any v ∈ E⁰, Lv cannot have infinitely many independent direct summands.
- **Theorem**:Let *E* be an arbitrary graph. Then TFAE for *L*:
- (1) L is graded left/right self-injective;
- (2) The graph *E* is row-finite and every path in *E* eventually ends at a line point or at a Laurent vertex;

- A ring *R* is left **self-injective** if, as a left *R*-module, *R* is an injective module.
- (Known). .Since J(L) = 0, a self-injective Leavitt path algebra L is von Neumann regular.
- Hazrat's theorem: *L* is always graded von Neumann regular. Should *L* also be graded self-injective ?
- Lemma: L graded left self-injective \implies For any $v \in E^0$, Lv cannot have infinitely many independent direct summands.
- **Theorem**:Let *E* be an arbitrary graph. Then TFAE for *L*:
- (1) L is graded left/right self-injective;
- (2) The graph *E* is row-finite and every path in *E* eventually ends at a line point or at a Laurent vertex;
- (3) $L \cong_{gr} \bigoplus_{i \in I} M_{\Lambda_i}(K)(\bar{\alpha}_i) \oplus \bigoplus_{j \in J} M_{\Lambda_j}(K[x^{t_j}, x^{-t_j}])(\bar{\beta}_i)$, where Λ_i , Λ_j are suitable index sets, the t_j are positive integers and $\bar{\alpha}_i, \bar{\beta}_i$ are graded shiftings.

Thank You !

3

・ロト ・回ト ・ヨト