
The faithful subalgebra

Sarah Reznikoff

joint work with
Jonathan H. Brown, Gabriel Nagy, Aidan Sims, and Dana Williams

funded in part by NSF DMS-1201564

Classification of C∗-Algebras, etc.
University of Louisiana at Lafayette

May 11–15, 2015



Let G be a graph, k -graph, or groupoid, and C∗(G ) the
universal C*-algebra defined from it.

Question: Under what circumstances is a ∗-homomorphism
φ : C∗(G )→ B(H) injective?

Classical theorems addressing this question assume either
(a) the existence of intertwining “gauge actions" on the

algebras (Gauge Invariant Uniqueness Theorem 1), or
(b) an aperiodicity condition on the graph itself (Cuntz-Krieger

Uniqueness Theorem 2),
and conclude that φ is injective iff it is nondegenerate, i.e.,
injective on the “diagonal subalgebra” D.

1an-Huef, ‘97
2Fowler-Kumjian-Pask-Raeburn, ‘97
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Theorem (Brown-Nagy-R-Sims-Williams)

There is a canonical subalgebra M ⊂ C∗(G ) such that a
∗-homomorphism φ : C∗(G )→ B(H) is injective iff φ|M is
injective.

[NR1] Nagy and Reznikoff, Abelian core of graph algebras,
J. Lond. Math. Soc. (2) 85 (2012), no. 3, 889–908.
[NR2] Nagy and Reznikoff, Pseudo-diagonals and uniqueness
theorems, Proc. AMS (2013).
[BNR] Brown, Nagy, Reznikoff A generalized Cuntz-Krieger
uniqueness theorem for higher-rank graphs, JFA (2013).
[BNRSW] Brown, Nagy, Reznikoff, Sims, and Williams, Cartan
subalgebras in C∗-algebras of Hausdorff étale groupoids
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Drinen (1999): Every AF algebra is Morita equivalent to a
graph algebra.

Spielberg k -graphs can be used to construct any UCT
Kirchberg algebra.

Hong-Szymański (2004): the ideal structure of the algebra can
be completely described from the graph.

Generalizations: Exel crossed product algebras, Leavitt path
algebras (Abrams, Ruiz, Tomforde), topological graph algebras
(Katsura), Ruelle algebras (Putnam, Spielberg), Exel-Laca
algebras, ultragraphs (Tomforde), Steinberg algebras (Brown,
Clark, Farthing, Sims, etal.) Cuntz-Pimsner algebras,
higher-rank Cuntz-Krieger algebras (Robertson-Steger), etc.
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Let k ∈ N+. We regard Nk as a category with a single object, 0,
and with composition of morphisms given by addition.

A k -graph is a countable category Λ along with a “degree”
functor d : Λ→ Nk satisfying the unique factorization property:

For all λ ∈ Λ, and m, n ∈ Nk , if d(λ) = m + n then there are
unique µ ∈ d−1(m) and ν ∈ d−1(n) such that λ = µν.

I Denote the range and source maps r , s : Λ→ Λ.
I Refer to objects as vertices and morphisms as paths.
I Denote Λn = d−1({n}) = {morphisms of degree n}.
I We assume: for all v ∈ Λ0, n ∈ Nk ,

0 < |r−1({v}) ∩ Λn| <∞.

Example The set of finite paths in a directed graph, with
d(α) = the length of α, forms a 1-graph.
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Example: Standard rectangles in Nk

Let Ωk := {(l ,n) ∈ Nk × Nk | l ≤ n} with d(l ,n) = n − l ,
s(m, l) = l = r(l ,n), and (m, l)(l ,n) = (m,n).

0

m

n
l

n

m
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A Cuntz-Krieger Λ-family in a C*-algebra A is a set
{Tλ, λ ∈ Λ} of partial isometries in A satisfying

(i) {Tv | v ∈ Λ0}) is a family of mutually orthogonal projections,
(ii) Tλµ = TλTµ for all λ, µ ∈ Λ s.t. s(λ) = r(µ),
(iii) T ∗λTλ = Ts(λ) for all λ ∈ Λ, and

(iv) for all v ∈ Λ0 and n ∈ Nk , Tv =
∑
λ∈Λn

r(λ)=v

TλT ∗λ .

C∗(Λ) will denote the C*-algebra generated by a universal
Cuntz-Krieger Λ-family, (Sλ, λ ∈ Λ).

Prop: C∗(Λ) = span{SαS∗β |α, β ∈ Λ, s(α) = s(β)}

The diagonal D := span{SαS∗α |α ∈ Λ}.
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Classic uniqueness theorems

Assume nondegeneracy.

Coburn’s Theorem (‘67) e
f

C∗(Te,Tf ) ∼= T , the Toeplitz algebra.

Cuntz (‘77)
C∗(Tei |1 ≤ i ≤ n) ∼= On, the Cuntz algebra.

n loops

Cuntz-Krieger (‘80)
When the adjacency matrix A of G satisfies a “fullness”
condition (I), C∗(Te |e ∈ G) ∼= OA, the Cuntz-Krieger algebra.
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condition (I), C∗(Te |e ∈ G) ∼= OA, the Cuntz-Krieger algebra.
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Is non-degeneracy enough?

No! Consider the cycle of length three, E .
The map φ : C∗(E)→ M3(C) given by

Svi 7→ εi,i Sei,j 7→ εj,i .

is a non-injective ∗-homomorphism. v1

v2 E

v3

e3,1

e2,3

e1,2

Cuntz-Krieger Uniqueness Theorem:
When φ is nondegenerate and the graph satisfies

(L) every cycle has an entry

then φ is injective.

Theorem Szymański (2001), Nagy-R (2010): Condition (L) can
be replaced with a condition on the spectrum of φ(Sλ) for
cycles λ without entry.
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Aperiodicity – defined via the infinite path space Λ∞

An infinite path in a k -graph Λ is a degree-preserving covariant
functor x : Ωk → Λ.

k = 1 picture e1 e2
x(1,3) = e1e2
d(e1e2) = 2

k = 2 picture

r(α)

s(α) x((1,2), (3,3)) = α

d(α) = (2,1)
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An infinite path x in a k -graph is eventually periodic if there are
α 6= β in Λ and y ∈ Λ∞ such that x = αy = βy ; otherwise x is
aperiodic.

x ∈ Λ∞

α

β

y

y
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Λ is aperiodic if every vertex is the range vertex of an aperiodic
infinite path.

• In a directed graph, cycles without entry reveal failure of
aperiodicity.

v
α

λ

Clearly the only infinite path with range v ,
αλλλ · · · , is eventually periodic.

• Uniqueness theorems of Raeburn-Sims-Yeend and
Kumjian-Pask assume aperiodicity of the k -graph.

Theorem Nagy-R (2010), Nagy-Brown-R (2013)
A ∗-homomorphism φ : C∗(Λ)→ A is injective iff it is injective
on the subalgebra M := C∗(SαS∗β | ∀γ ∈ Λ∞ αγ = βγ}.
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Properties of the subalgebra

(Renault, ‘80) A masa C*-subalgebra B ⊆ A is Cartan if
(i) ∃ a faithful conditional expectation A → B,
(ii) The normalizer of B in A generates A, and
(iii) B contains an approximate unit of A.

Extension properties for pure states on masa B ⊂ A:

(UEP) Every pure state extends uniquely to A.

A Cartan subalgebra with the UEP is a Kumjian C∗-diagonal.

(AEP) Densely many pure states extend uniquely.

Thm (Nagy-R, 2011) When G is a directed graph, M ⊆ C∗(G)
is Cartan and satisfies AEP; i.e, it is a pseudo-diagonal.
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A groupoid is a small category in which every element has an
inverse. A topological groupoid is one in which multiplication
and inversion are continuous. It is étale if the range and source
are local homeomorphisms.

• C∗(G) is defined to be a completion of Cc(G).
• Iso(G) := {g ∈ G | r(g) = s(g)}, the isotropy subgroupoid of G.

Theorem (Brown-Nagy-R-Sims-Williams, 2014)
Let G be a locally compact, amenable, Hausdorff, étale
groupoid. If φ : C∗(G)→ A is a C∗-homomorphism, then the
following are equivalent.

(i) φ is injective.
(ii) φ is injective on C∗((Iso(G))◦).
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To a k -graph Λ, we associate the groupoid

GΛ = {(αy ,d , βy) | y ∈ Λ∞, α, β ∈ Λ, d = dΛ(β)− dΛ(α)}

with
s(x ,d , y) = y = r(y ,d ′, z) (x ,d , y)−1 = (y ,−d , x)

(x ,d , y)(y ,d ′,w) = (x ,d + d ′,w)

• The cylinder sets Z (α, β) = {(αy ,d , βy)} form a basis for an
étale topology.

• Iso(GΛ) = {(αy ,d , βy) ∈ GΛ |αy = βy}
• Recall: C∗(GΛ) is a completion of Cc(GΛ).

• The map SαS∗β 7→ χZ (α,β) implements an isomorphism
C∗(Λ) ∼= C∗(GΛ) that restricts to an iso M ∼= C∗(Iso(GΛ)◦).
.
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C∗(Λ) ∼= C∗(GΛ) that restricts to an iso M ∼= C∗(Iso(GΛ)◦).
.
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Thm (BNRSW, 2015) Let G be a Hausdorff, étale groupoid.
(a) If (Iso(G))◦ is closed, then the restriction map f 7→ f |Iso(G)◦

extends to a faithful conditional expectation
E : C∗(G)→M = C∗((Iso(G))◦).

(b) If (Iso(G))◦ is not closed, then there is no conditional
expectation onto the subalgebra.

(c) If (Iso(G))◦ is closed and abelian, then M is a masa.

Thm (BNRSW, 2015; Yang, 2014) Let Λ be a k -graph.
(a) M is always a masa in C∗(Λ).
(b) There are examples of 2-graph C∗-algebras with (Iso(G))◦

not closed, and hence M not Cartan.
Thm (NRBSW, 2014) All Cartan subalgebras satisfy the AEP.
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Abstract Uniqueness Theorem (Brown-Nagy-R)

Let A be a C*-algebra and M ⊂ A a C∗-subalgebra. Suppose
there is a set S of pure states on M satisfying

(i) each ψ ∈ S extends uniquely to a state ψ̃ on A, and
(ii) the direct sum ⊕ψ∈Sπψ̃ of the GNS representations

associated to the extensions to A of elements in S is
faithful on A.

Then a ∗-homomorphism Φ : A→ B is injective iff Φ|M is
injective.
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Thank you!
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