Boundary Quotients of Semigroup C*-algebras

Charles Starling

uOttawa

May 14, 2015

Charles Starling (uOttawa) Boundary Quotients of Semigroup C*-algebra

- P left cancellative semigroup
- Reduced $C_r^*(P)$ and Li's $C^*(P)$
- Li (2012, 2013) studied $C^*(P)$ when $P \subset G$ (G group).
- What about when P does not embed in a group?
- $P \subset S$, an *inverse semigroup* (always)
- $C^*(P)$ is an inverse semigroup algebra, with natural boundary quotient $\mathcal{Q}(P)$.
- Conditions on P which guarantee Q(P) simple, purely infinite.
- Self-similar groups

- *P* countable semigroup (associative multiplication) Left cancellative: $ps = pq \Rightarrow s = q$
- Principal right ideal: $rP = \{rq \mid q \in P\}$

Elements of rP are right multiples of r

Assume $1 \in P$ (ie, P is a monoid)

Study P by representing on a Hilbert space, similar to groups.

 $\ell^2(P)$ – square-summable complex functions on P.

 δ_x – point mass at $x \in P$. Orthonormal basis of $\ell^2(P)$.

 $v_p: \ell^2(P) o \ell^2(P)$ bounded operator $v_p(\delta_x) = \delta_{px}$ (necessarily isometries)

 $\{v_p\}_{p\in P}$ generate the reduced C*-algebra of P, $C_r^*(P)$

 $v: P
ightarrow C^*_r(P)$ is called the left regular representation

Unlike the group case, considering all representations turns out to be a disaster

Li: we have to care for ideals.

Li's Solution

For $X \subset P$, then $e_X : \ell^2(P) \to \ell^2(P)$ is defined by

$$(e_X\xi)(p) = egin{cases} \xi(p) & ext{if } p \in X \ 0 & ext{otherwise.} \end{cases}$$

Note: $v_1 = e_P$

Note that in $\mathcal{B}(\ell^2(P))$,

$$v_p e_X v_p^* = e_{pX} \qquad v_p^* e_X v_p = e_{p^{-1}X}$$

If $p \in P$ and X is a right ideal, then

$$pX = \{px \mid x \in X\}$$
 $p^{-1}X = \{y \mid py \in X\}$

are right ideals too.

$$pX = \{px \mid x \in X\}$$
 $p^{-1}X = \{y \mid py \in X\}$

 $\mathcal{J}(P)$ – smallest set of right ideals containing P, \emptyset , and closed under intersection and the above operations for all p – constructible ideals.

These are the ideals which are "constructible" inside $C_r^*(P)$.

•
$$e_X e_Y = e_{X \cap Y}$$
• $e_P = 1, e_{\emptyset} = 0$
• $v_p e_X v_p^* = e_{pX}$ and $v_p^* e_X v_p = e_{p^{-1}X}$

$$pX = \{px \mid x \in X\}$$
 $p^{-1}X = \{y \mid py \in X\}$

 $\mathcal{J}(P)$ – smallest set of right ideals containing P, \emptyset , and closed under intersection and the above operations for all p – constructible ideals.

These are the ideals which are "constructible" inside $C_r^*(P)$.

Definition (Li)

 $C^*(P)$ is the universal C*-algebra generated by isometries $\{v_p \mid p \in P\}$ and projections $\{e_X \mid X \in \mathcal{J}(P)\}$ satisfying the above (and $v_pv_q = v_{pq})$.

For $P \subset G$, we need cancellativity (left and right) + *something*

Examples of *something*s which work:

- commutativity (Grothendieck group)
- $rP \cap qP \neq \emptyset$ for all r, q. (Ore condition)

For $P \subset G$, we need cancellativity (left and right) + *something*

Examples of *something*s which work:

- commutativity (Grothendieck group)
- $rP \cap qP \neq \emptyset$ for all r, q. (Ore condition)
- Rees conditions:
 - principal right ideals are comparable or disjoint, and
 - each principal right ideal is contained in only a finite number of other principal right ideals
- others...

X finite set, $X^0 = \{\emptyset\}$, X^n words of length *n* in X.

$$X^* = \bigcup_{n \ge 0} X^n$$

This is the free semigroup on X, under concatenation.

 $X^* \subset \mathbb{F}_X$, the free group.

Not Ore (unless |X| = 1): if $x, y \in X$ and $x \neq y$, we have $xX^* \cap yX^* = \emptyset$

 $C^*(X^*) \cong C^*_r(X^*) \cong \mathcal{T}_{|X|}$

 \mathcal{T}_n Toeplitz algebra – generated by *n* isometries with orthogonal ranges.

Simplification: suppose that for all $r, q \in P$, either $rP \cap qP = \emptyset$ or

 $rP \cap qP = sP$ some $s \in P$

Then $\mathcal{J}(P) = \{ sP \mid s \in P \} \cup \{ \emptyset \}.$

Such semigroups are called Clifford semigroups, or right LCM semigroups.

Finite $F \subset P$ is a foundation set if for all $r \in P$, there is $f \in F$ with $fP \cap rP \neq \emptyset$.

Definition (Brownlowe, Ramagge, Robertson, Whittaker)

The boundary quotient Q(P) is the universal C*-algebra generated by the same elements and relations as in Li's C*(P), and also satisfying

$$\prod_{f \in F} (1 - e_{fP}) = 0 \text{ for all foundation sets } F.$$

What the heck does " $\prod_{f \in F} (1 - e_{fP}) = 0$ for all foundation sets *F*." mean?

What the heck does " $\prod_{f \in F} (1 - e_{fP}) = 0$ for all foundation sets *F*." mean?

D := unital, commutative C*-algebra generated by $\{e_{rP}\}_{r \in P}$

Projections in D have a "greatest lower bound", "least upper bound", and "complement":

$$e \wedge f = ef$$
 $e \vee f = e + f - ef$ $\neg e = 1 - e$

ie, they form a Boolean algebra. Rearranging $\prod_{f \in F} (1 - e_{fP}) = 0$ using de Morgan's laws gives

$$\bigvee_{f\in F} e_{fP} = 1.$$

What the heck does " $\prod_{f \in F} (1 - e_{fP}) = 0$ for all foundation sets F." mean?

D := unital, commutative C*-algebra generated by $\{e_{rP}\}_{r \in P}$

Projections in D have a "greatest lower bound", "least upper bound", and "complement":

$$e \wedge f = ef$$
 $e \vee f = e + f - ef$ $\neg e = 1 - e$

ie, they form a Boolean algebra. Rearranging $\prod_{f \in F} (1 - e_{fP}) = 0$ using de Morgan's laws gives

$$\bigvee_{f\in F} e_{fP} = 1.$$

Free semigroup: $\mathcal{Q}(X^*) \cong \mathcal{O}_{|X|}$.

Even when P does not embed into a group, it embeds into an inverse semigroup.

A semigroup S is called an inverse semigroup if for every element $s \in S$ there is a unique element s^* such that

$$ss^*s = s$$
 and $s^*ss^* = s^*$

Any set of partial isometries in a C*-algebra closed under multiplication and adjoint is an inverse semigroup.

Many C*-algebras of interest are generated by an inverse semigroup of partial isometries.

- $C^*(S)$ universal C*-algebra of S (Toeplitz-type)
- $C^*_{\text{tight}}(S) \text{tight } C^*$ -algebra of S (Cuntz-type)

Many C*-algebras of interest are generated by an inverse semigroup of partial isometries.

- $C^*(S)$ universal C*-algebra of S (Toeplitz-type)
- $C^*_{\text{tight}}(S) \text{tight } C^*$ -algebra of S (Cuntz-type)
- C*-algebras that are $C^*_{\text{tight}}(S)$ for some S:
 - Graph C*-algebras & k-graph C*-algebras [Exel, 2008]

Many C*-algebras of interest are generated by an inverse semigroup of partial isometries.

- $C^*(S)$ universal C*-algebra of S (Toeplitz-type)
- $C^*_{\text{tight}}(S) \text{tight } C^*$ -algebra of S (Cuntz-type)
- C*-algebras that are $C^*_{\text{tight}}(S)$ for some S:
 - Graph C*-algebras & k-graph C*-algebras [Exel, 2008]
 - Tiling C*-algebras [Exel, Gonçalves, S, 2012]

Many C*-algebras of interest are generated by an inverse semigroup of partial isometries.

- $C^*(S)$ universal C*-algebra of S (Toeplitz-type)
- $C^*_{\text{tight}}(S) \text{tight } C^*$ -algebra of S (Cuntz-type)
- C*-algebras that are $C^*_{\text{tight}}(S)$ for some S:
 - Graph C*-algebras & k-graph C*-algebras [Exel, 2008]
 - Itiling C*-algebras [Exel, Gonçalves, S, 2012]
 - Satsura C*-algebras, Nekrashevych C*-algebras [Exel, Pardo, 2014]

Many C*-algebras of interest are generated by an inverse semigroup of partial isometries.

- $C^*(S)$ universal C*-algebra of S (Toeplitz-type)
- $C^*_{\text{tight}}(S) \text{tight } C^*$ -algebra of S (Cuntz-type)
- C*-algebras that are $C^*_{\text{tight}}(S)$ for some S:
 - Graph C*-algebras & k-graph C*-algebras [Exel, 2008]
 - Itiling C*-algebras [Exel, Gonçalves, S, 2012]
 - Satsura C*-algebras, Nekrashevych C*-algebras [Exel, Pardo, 2014]
 - Garlsen-Matsumoto C*-algebras [S, 2015]

Many C*-algebras of interest are generated by an inverse semigroup of partial isometries.

For a given S, we have

- $C^*(S)$ universal C*-algebra of S (Toeplitz-type)
- $C^*_{\text{tight}}(S)$ tight C*-algebra of S (Cuntz-type)

C*-algebras that are $C^*_{\text{tight}}(S)$ for some S:

- Graph C*-algebras & k-graph C*-algebras [Exel, 2008]
- Tiling C*-algebras [Exel, Gonçalves, S, 2012]
- Satsura C*-algebras, Nekrashevych C*-algebras [Exel, Pardo, 2014]
- Garlsen-Matsumoto C*-algebras [S, 2015]
- S Ample groupoid C*-algebras [Exel 2010] (S not countable)

・ 同 ト ・ 三 ト ・ 三 ト

Many C*-algebras of interest are generated by an inverse semigroup of partial isometries.

For a given S, we have

- $C^*(S)$ universal C*-algebra of S (Toeplitz-type)
- $C^*_{\text{tight}}(S) \text{tight } C^*$ -algebra of S (Cuntz-type)

C*-algebras that are $C^*_{\text{tight}}(S)$ for some S:

- Graph C*-algebras & k-graph C*-algebras [Exel, 2008]
- Itiling C*-algebras [Exel, Gonçalves, S, 2012]
- Satsura C*-algebras, Nekrashevych C*-algebras [Exel, Pardo, 2014]
- Garlsen-Matsumoto C*-algebras [S, 2015]
- S Ample groupoid C*-algebras [Exel 2010] (S not countable)

 $C^*(S)$ and $C^*_{tight}(S)$ come from étale groupoids, which can be analyzed

For our right LCM semigroup P,

$$\mathcal{S} := \{v_p v_q^* \mid p, q \in P\} \cup \{0\}$$

is closed under multiplication, and so is an inverse semigroup.

$$(v_p v_q^*)(v_r v_s^*) = \begin{cases} v_{pq'} v_{sr'}^* & \text{if } qP \cap rP = kP \text{ and } qq' = rr' = k\\ 0 & \text{if } qP \cap rP = \emptyset \end{cases}$$

Theorem

We know $\mathcal{Q}(P) \cong C^*_{\mathsf{tight}}(\mathcal{S})$

Most of what we can say about Q(P) stems from knowing that $C^*_{\text{tight}}(S)$ comes from an étale groupoid $\mathcal{G}_{\text{tight}}$, a dynamical object.

One can formulate properties which guarantee that a groupoid algebra is simple, but they are topological and dynamical.

e.g. " \mathcal{G}_{tight} is Hausdorff," " \mathcal{G}_{tight} is minimal," " \mathcal{G}_{tight} is essentially principal".

We translate these statements so that they are (mostly) algebraic properties.

" $\mathcal{G}_{\mathsf{tight}}$ is Hausdorff"

(H) For all p, q ∈ P, either
pb ≠ qb for all b ∈ P, or
There exists a finite F ⊂ P with pf = qf for all f ∈ F and whenever pb = qb there is an f ∈ F such that fP ∩ bP ≠ Ø.

 ${\it P}$ satisfies condition (H) if the counterexamples to right cancellativity have a "finite cover".

P right cancellative \Rightarrow *P* satisfies (H)

" $\mathcal{G}_{\mathsf{tight}}$ is Hausdorff"

```
(H) For all p, q ∈ P, either
pb ≠ qb for all b ∈ P, or
There exists a finite F ⊂ P with pf = qf for all f ∈ F and whenever pb = qb there is an f ∈ F such that fP ∩ bP ≠ Ø.
```

 ${\it P}$ satisfies condition (H) if the counterexamples to right cancellativity have a "finite cover".

```
P right cancellative \Rightarrow P satisfies (H)
```

" \mathcal{G}_{tight} is minimal"

It turns out that it is always minimal.

Properties of $\mathcal{Q}(P)$

" \mathcal{G}_{tight} is essentially principal"

$$P_0 = \{q \in P \mid qP \cap rP
eq 0 ext{ for all } r \in P\}$$

This is the core of P.

If P is Ore, $P_0 = P$

Properties of $\mathcal{Q}(P)$

" \mathcal{G}_{tight} is essentially principal"

$$P_0 = \{q \in P \mid qP \cap rP
eq 0 ext{ for all } r \in P\}$$

This is the core of P.

If P is Ore, $P_0 = P \rightarrow \text{cOre}$

Properties of Q(P)

" \mathcal{G}_{tight} is essentially principal"

$$P_0 = \{q \in P \mid qP \cap rP
eq 0 ext{ for all } r \in P\}$$

This is the core of P.

If P is Ore, $P_0 = P \rightarrow \text{cOre}$

(EP) For all $p, q \in P_0$ and for every $k \in P$ such that

 $qkaP \cap pkaP \neq \emptyset$

for all $a \in P$, there exists a foundation set F such that qkf = pkf for all $f \in F$.

Theorem (S)

Let P be a right LCM semigroup which satisfies (H). Then Q(P) is simple if and only if

P satisfies (EP), and

So we see amenability plays a rôle here.

Theorem (S)

Let P be a right LCM semigroup which satisfies (H). Then Q(P) is simple if and only if

P satisfies (EP), and

So we see amenability plays a rôle here.

Theorem (S)

Let P be a right LCM semigroup which satisfies (H) and such that Q(P) is simple. Then Q(P) is purely infinite if and only if $Q(P) \ncong \mathbb{C}$.

- 4月 ト 4 ヨ ト 4 ヨ ト

3

Example: Self-similar groups

Suppose we have an finite set X and

- **(**) an action $G \times X^* \to X^*$ which preserves lengths, and
- **2** a restriction $G \times X \to G$

$$(g,x)\mapsto g|_x.$$

such that the action on X^* can be defined recursively

$$g(x\alpha) = (gx)(g|_x \alpha)$$

The pair (G, X) is called a self-similar action.

Example: Self-similar groups

Suppose we have an finite set X and

- **(**) an action $G \times X^* \to X^*$ which preserves lengths, and
- **2** a restriction $G \times X \to G$

$$(g,x)\mapsto g|_x.$$

such that the action on X^* can be defined recursively

$$g(x\alpha) = (gx)(g|_x \alpha)$$

The pair (G, X) is called a self-similar action. Restriction extends to words

$$g|_{\alpha_1\alpha_2\cdots\alpha_n} := g|_{\alpha_1} |_{\alpha_2} \cdots |_{\alpha_n}$$
$$g(\alpha\beta) = (g\alpha)(g|_{\alpha}\beta)$$

$$G = \mathbb{Z} = \langle z \rangle$$

 $X = \{0, 1\}$

Then the action of \mathbb{Z} on X^* is determined by

$$z0 = 1 \qquad z|_0 = e$$
$$z1 = 0 \qquad z|_1 = z$$

A word α in X^* corresponds to an integer in binary (written backwards), and z adds 1 to α , ignoring carryover.

$$z(001) = 101$$
 $z|_{001} = e$
 $z^2(011) = 000$ $z^2|_{011} = z$

Given (G, X), the product $X^* \times G$ with the operation

$$(\alpha, g)(\beta, h) = (\alpha(g\beta), g|_{\beta} h)$$

is a left cancellative semigroup – Zappa-Szép product $X^* \bowtie G$

Lawson-Wallis – all semigroups with Rees conditions arise like this, and so they embed in a group \Leftrightarrow cancellative.

Many interesting examples are not cancellative!

A word α is strongly fixed by $g \in G$ if $g\alpha = \alpha$ and $g|_{\alpha} = 1_G$. A strongly fixed word is minimal if no prefix is strongly fixed.

Proposition

 $X^* \bowtie G$ satisfies (H) iff for all $g \neq 1_G$, there are only a finite number of minimal strongly fixed words for g.

 $X^* \bowtie G$ is cancelative iff for all $g \neq 1_G$, g has no strongly fixed words.

A word α is strongly fixed by $g \in G$ if $g\alpha = \alpha$ and $g|_{\alpha} = 1_G$. A strongly fixed word is minimal if no prefix is strongly fixed.

Proposition

 $X^* \bowtie G$ satisfies (H) iff for all $g \neq 1_G$, there are only a finite number of minimal strongly fixed words for g.

 $X^* \bowtie G$ is cancelative iff for all $g \neq 1_G$, g has no strongly fixed words.

The core of $X^* \bowtie G$ is $\{(\emptyset, g) \mid g \in G\} \cong G$.

Proposition

 $X^* \bowtie G$ satisfies (EP) if the action of G on X^* is faithful.

If G is amenable, then the amenability condition is satisfied.

The odometer has no strongly fixed words, so $X^* \bowtie \mathbb{Z}$ is cancelative (and satisfies (H)).

 $X^* \bowtie \mathbb{Z}$ embeds into BS(1,2).

 $\mathcal{Q}(X^* \bowtie \mathbb{Z})$ is simple, purely infinite, and in fact isomorphic to \mathcal{Q}_2 (Brownlowe-Ramagge-Robertson-Whittaker)

If we modify the odometer by adding a strongly fixed letter B:

 $X_B = \{0, 1, B\}$ $zB = B, z|_B = e$

22 / 23

 $X_B^* \bowtie \mathbb{Z}$ satisfies (H), but is not cancelative.

 $\mathcal{Q}(X_B^* \bowtie \mathbb{Z})$ is again simple and purely infinite.

- X. Li, Semigroup C*-algebras and amenability of semigroups, Journal of Functional Analysis 262 (2012) 4302 – 4340.
- X. Li, Nuclearity of semigroup C*-algebras and the connection to amenability, Advances in Mathematics 244 (2013) 626 662.
- C. Starling, Boundary quotients of C*-algebras of right LCM semigroups, to appear in Journal of Functional Analysis (2014) http://arxiv.org/abs/1409.1549
- N. Brownlowe, J. Ramagge, D. Robertson, M. F. Whittaker, Zappa–Szép products of semigroups and their C*-algebras, Journal of Functional Analysis 266 (6) (2014) 3937 – 3967.
- J. Brown, L. O. Clark, C. Farthing, A. Sims, Simplicity of algebras associated to étale groupoids, Semigroup Forum 88 (2) (2014) 433–452.

< /₽ > < E > <