The Operator System Generated by Cuntz Isometries

Da Zheng
Based on joint work with Vern Paulsen
University of Houston

May 15, 2015

CLASSIFICATION OF C*-ALGEBRAS, FLOW EQUIVALENCE OF SHIFT SPACES, AND GRAPH AND LEAVITT PATH ALGEBRAS

MAY 11-15, 2015
University of Louisiana at Lafayette

Outline:

In this talk, we consider the operator system $\mathcal{S}_{n}(2 \leq n<\infty)$ generated by the Cuntz isometries S_{1}, \ldots, S_{n}, that is, S_{1}, \ldots, S_{n} are isometries with $\sum_{i=1}^{n} S_{i} S_{i}^{*}=I$.

Outline:

In this talk, we consider the operator system $\mathcal{S}_{n}(2 \leq n<\infty)$ generated by the Cuntz isometries S_{1}, \ldots, S_{n}, that is, S_{1}, \ldots, S_{n} are isometries with $\sum_{i=1}^{n} S_{i} S_{i}^{*}=I$.
We will:
(1) show that \mathcal{S}_{n} has a universal property;
(2) define an operator system $\mathcal{E}_{n} \subseteq M_{n}$ and prove that \mathcal{S}_{n} is complete order isomorphic to a quotient of \mathcal{E}_{n};
(3) study tensor products of \mathcal{S}_{n} and examine various nuclearities of \mathcal{S}_{n} in the operator system category;
(9) discover some properties of \mathcal{S}_{n}^{d};
(3) discuss some open problems.

Some Motivation:

Some Motivation:

(1) The operator system generated \mathfrak{S}_{n} by n universal unitaries can also be used to characterize WEP, Kirchberg's Conjecture, etc. Farenick, Kavruk and Paulsen have shown that

$$
\begin{aligned}
C^{*}\left(F_{2}\right) \otimes_{\min } C^{*}\left(F_{2}\right) & =C^{*}\left(F_{2}\right) \otimes_{\max } C^{*}\left(F_{2}\right) \\
& \Longleftrightarrow \mathfrak{S}_{2} \otimes_{\min } \mathfrak{S}_{2}=\mathfrak{S}_{2} \otimes_{C} \mathfrak{S}_{2} \\
\mathcal{A} \text { has WEP } & \Longleftrightarrow \mathfrak{S}_{2} \otimes_{\min } \mathcal{A}=\mathfrak{S}_{2} \otimes_{\max } \mathcal{A}
\end{aligned}
$$

Some Motivation:

(1) The operator system generated \mathfrak{S}_{n} by n universal unitaries can also be used to characterize WEP, Kirchberg's Conjecture, etc. Farenick, Kavruk and Paulsen have shown that

$$
\begin{aligned}
C^{*}\left(F_{2}\right) \otimes_{\min } C^{*}\left(F_{2}\right) & =C^{*}\left(F_{2}\right) \otimes_{\max } C^{*}\left(F_{2}\right) \\
& \Longleftrightarrow \mathfrak{S}_{2} \otimes_{\min } \mathfrak{S}_{2}=\mathfrak{S}_{2} \otimes_{C} \mathfrak{S}_{2} \\
\mathcal{A} \text { has WEP } & \Longleftrightarrow \mathfrak{S}_{2} \otimes_{\min } \mathcal{A}=\mathfrak{S}_{2} \otimes_{\max } \mathcal{A} .
\end{aligned}
$$

(2) The operator system generated by n universal unitaries is completely order isomorphic to the quotient of an operator subsystem of the matrix algebra. Hence, the WEP can be characterized by a lifting property.

Some Motivation:

(1) The operator system generated \mathfrak{S}_{n} by n universal unitaries can also be used to characterize WEP, Kirchberg's Conjecture, etc. Farenick, Kavruk and Paulsen have shown that

$$
\begin{aligned}
C^{*}\left(F_{2}\right) \otimes_{\min } C^{*}\left(F_{2}\right) & =C^{*}\left(F_{2}\right) \otimes_{\max } C^{*}\left(F_{2}\right) \\
& \Longleftrightarrow \mathfrak{S}_{2} \otimes_{\min } \mathfrak{S}_{2}=\mathfrak{S}_{2} \otimes_{C} \mathfrak{S}_{2} \\
\mathcal{A} \text { has WEP } & \Longleftrightarrow \mathfrak{S}_{2} \otimes_{\min } \mathcal{A}=\mathfrak{S}_{2} \otimes_{\max } \mathcal{A}
\end{aligned}
$$

(2) The operator system generated by n universal unitaries is completely order isomorphic to the quotient of an operator subsystem of the matrix algebra. Hence, the WEP can be characterized by a lifting property.
(3) Also, it is observed that if \mathcal{S}_{n} and \mathcal{T}_{n} are two operator systems generated by n isometries with Cuntz relation, then \mathcal{S}_{n} being completely order isomorphic to \mathcal{T}_{n} implies $C^{*}\left(\mathcal{S}_{n}\right)=C^{*}\left(\mathcal{T}_{n}\right)$.

Quotient of Operator Systems

Definition (Concrete Operator System)

A concrete operator system \mathcal{S} is a unital *-closed subspace of a unital \mathcal{C}^{*}-algebra \mathcal{A}, that is, $\mathcal{S} \subseteq \mathcal{A}$ is a subspace of \mathcal{A} such that $1 \in \mathcal{S}$ and $a \in \mathcal{S} \Rightarrow a^{*} \in \mathcal{S}$.

Quotient of Operator Systems

Definition (Concrete Operator System)

A concrete operator system \mathcal{S} is a unital *-closed subspace of a unital C^{*}-algebra \mathcal{A}, that is, $\mathcal{S} \subseteq \mathcal{A}$ is a subspace of \mathcal{A} such that $1 \in \mathcal{S}$ and $a \in \mathcal{S} \Rightarrow a^{*} \in \mathcal{S}$.

Definition (Abstract Operator System)

An abstract operator system \mathcal{S} is a matrix-ordered $*$-vector space with an Archimedean matrix order unit.

Quotient of Operator Systems

Definition (Concrete Operator System)

A concrete operator system \mathcal{S} is a unital *-closed subspace of a unital C^{*}-algebra \mathcal{A}, that is, $\mathcal{S} \subseteq \mathcal{A}$ is a subspace of \mathcal{A} such that $1 \in \mathcal{S}$ and $a \in \mathcal{S} \Rightarrow a^{*} \in \mathcal{S}$.

Definition (Abstract Operator System)

An abstract operator system \mathcal{S} is a matrix-ordered $*$-vector space with an Archimedean matrix order unit.

We write $M_{n}(\mathcal{S})^{+}, n \in \mathbb{N}$ for the positive cones of \mathcal{S} and $\left(a_{i j}\right) \geq 0$ if $\left(a_{i j}\right) \in M_{n}(\mathcal{S})^{+}$.

Definition (Completely Positive Maps)

Let \mathcal{S} and \mathcal{T} be operator systems. A linear map $\phi: \mathcal{S} \rightarrow \mathcal{T}$ is called completely positive if

$$
\phi^{(n)}\left(\left(a_{i j}\right)\right):=\left(\phi\left(a_{i j}\right)\right) \geq 0, \quad \text { for each }\left(a_{i j}\right) \in M_{n}(\mathcal{S})^{+} \text {and for all } n \in \mathbb{N} .
$$

Definition (Completely Positive Maps)

Let \mathcal{S} and \mathcal{T} be operator systems. A linear map $\phi: \mathcal{S} \rightarrow \mathcal{T}$ is called completely positive if

$$
\phi^{(n)}\left(\left(a_{i j}\right)\right):=\left(\phi\left(a_{i j}\right)\right) \geq 0, \quad \text { for each }\left(a_{i j}\right) \in M_{n}(\mathcal{S})^{+} \text {and for all } n \in \mathbb{N} .
$$

Definition (Complete Order Isomorphism, Complete Order Inclusion))

Let \mathcal{S} and \mathcal{T} be operators systems. A map $\phi: \mathcal{S} \rightarrow \mathcal{T}$ is called a complete order isomorphism if ϕ is a unital linear isomorphism and both ϕ and ϕ^{-1} are completely positive, and we say that \mathcal{S} is completely order isomorphic to \mathcal{T} if such ϕ exists.

Definition (Completely Positive Maps)

Let \mathcal{S} and \mathcal{T} be operator systems. A linear map $\phi: \mathcal{S} \rightarrow \mathcal{T}$ is called completely positive if

$$
\phi^{(n)}\left(\left(a_{i j}\right)\right):=\left(\phi\left(a_{i j}\right)\right) \geq 0, \quad \text { for each }\left(a_{i j}\right) \in M_{n}(\mathcal{S})^{+} \text {and for all } n \in \mathbb{N} .
$$

Definition (Complete Order Isomorphism, Complete Order Inclusion))

Let \mathcal{S} and \mathcal{T} be operators systems. A map $\phi: \mathcal{S} \rightarrow \mathcal{T}$ is called a complete order isomorphism if ϕ is a unital linear isomorphism and both ϕ and ϕ^{-1} are completely positive, and we say that \mathcal{S} is completely order isomorphic to \mathcal{T} if such ϕ exists. A map ϕ is called a complete order inclusion if it is a complete order isomorphism onto its range with $\phi\left(1_{\mathcal{S}}\right)$ being an Archimedean order unit. We shall denote this by $\mathcal{S} \subseteq_{\text {c.o.i }} \mathcal{T}$.

Theorem (Choi, Effros)

Let \mathcal{S} be an abstract operator system, then there exists a Hilbert space \mathcal{H}, a concrete operator system $\mathcal{S}_{1} \subseteq B(\mathcal{H})$, and a unital complete order isomorphism $\varphi: \mathcal{S} \rightarrow \mathcal{S}_{1}$. Conversely, a concrete operator system is also an abstract operator system.

Theorem (Choi, Effros)

Let \mathcal{S} be an abstract operator system, then there exists a Hilbert space \mathcal{H}, a concrete operator system $\mathcal{S}_{1} \subseteq B(\mathcal{H})$, and a unital complete order isomorphism $\varphi: \mathcal{S} \rightarrow \mathcal{S}_{1}$. Conversely, a concrete operator system is also an abstract operator system.

Due to this theorem, we can always identify an abstract operator system with a concrete one.

Definition (Kernel)

Given an operator system \mathcal{S}, we call $J \subseteq \mathcal{S}$ a kernel, if $J=\operatorname{ker} \phi$ for an operator system \mathcal{T} and some (unital) completely positive $\operatorname{map} \phi: \mathcal{S} \rightarrow \mathcal{T}$.

Definition (Kernel)

Given an operator system \mathcal{S}, we call $J \subseteq \mathcal{S}$ a kernel, if $J=\operatorname{ker} \phi$ for an operator system \mathcal{T} and some (unital) completely positive $\operatorname{map} \phi: \mathcal{S} \rightarrow \mathcal{T}$.

Proposition (Kavruk, Paulsen, Todorov, Tomforde)

Let \mathcal{S} be an operator system and $J \subseteq \mathcal{S}$ be kernel, if we define a family of matrix cones on \mathcal{S} / J by setting

$$
\begin{aligned}
C_{n}=\{ & \left(x_{i j}+J\right) \in M_{n}(\mathcal{S} / J): \text { for each } \epsilon>0, \text { there exists }\left(k_{i j}\right) \in M_{n}(J) \\
& \text { such that } \left.\epsilon \otimes I_{n}+\left(x_{i j}+k_{i j}\right) \in M_{n}(\mathcal{S})^{+}\right\} .
\end{aligned}
$$

then $\left(\mathcal{S} / J,\left\{C_{n}\right\}_{n=1}^{\infty}\right)$ is a matrix ordered $*$-vector space with an Archimedean matrix unit $1+J$, and the quotient map $q: \mathcal{S} \rightarrow \mathcal{S} / J$ is completely positive.

Definition (Operator System Quotient)

Let \mathcal{S} be an operator system and $J \subseteq \mathcal{S}$ be kernel. We call the operator system $\left(\mathcal{S} / J,\left\{C_{n}\right\}_{n=1}^{\infty}, 1+J\right)$ the quotient operator system.

Definition (Operator System Quotient)

Let \mathcal{S} be an operator system and $J \subseteq \mathcal{S}$ be kernel. We call the operator system $\left(\mathcal{S} / J,\left\{C_{n}\right\}_{n=1}^{\infty}, 1+J\right)$ the quotient operator system.

Definition (Complete Quotient Map)

Let \mathcal{S}, \mathcal{T} be operator systems and $\phi: \mathcal{S} \rightarrow \mathcal{T}$ be a completely positive map, then ϕ is called a complete quotient map if $\mathcal{S} / \operatorname{Ker} \phi$ is complete order isomorphic to \mathcal{T}.

The Operator System Generated by Cuntz Isometries

Let S_{1}, \ldots, S_{n} be $n(n \geq 2)$ isometries in $B(\mathcal{H})$ with $\sum_{i=1}^{n} S_{i} S_{i}^{*}=I$, where $B(\mathcal{H})$ denotes the space of all bounded linear operators on some Hilbert space \mathcal{H}, I denotes the identity on \mathcal{H} and we set

$$
\mathcal{S}_{n}=\operatorname{span}\left\{I, S_{1}, \ldots, S_{n}, S_{1}^{*}, \ldots, S_{n}^{*}\right\}
$$

so that \mathcal{S}_{n} is the operator system generated by the Cuntz isometries.

The Operator System Generated by Cuntz Isometries

Let S_{1}, \ldots, S_{n} be $n(n \geq 2)$ isometries in $B(\mathcal{H})$ with $\sum_{i=1}^{n} S_{i} S_{i}^{*}=I$, where $B(\mathcal{H})$ denotes the space of all bounded linear operators on some Hilbert space \mathcal{H}, I denotes the identity on \mathcal{H} and we set

$$
\mathcal{S}_{n}=\operatorname{span}\left\{I, S_{1}, \ldots, S_{n}, S_{1}^{*}, \ldots, S_{n}^{*}\right\}
$$

so that \mathcal{S}_{n} is the operator system generated by the Cuntz isometries.
On the other hand, let $\hat{S}_{1}, \cdots, \hat{S}_{n}$ be $n(n \geq 2)$ isometries with $\sum_{i=1}^{n} \hat{S}_{i} \hat{S}_{i}^{*}<I$ and set

$$
\hat{\mathcal{S}}_{n}=\operatorname{span}\left\{I, \hat{S}_{1}, \ldots, \hat{S}_{n}, \hat{S}_{1}^{*}, \ldots, \hat{S}_{n}^{*}\right\}
$$

so that $\hat{\mathcal{S}}_{n}$ is the operator system generated by the Toeplitz-Cuntz isometries.

Proposition
 Let $\hat{S}_{1}, \cdots, \hat{S}_{n}$ be $n(n \geq 2)$ isometries with $\sum_{i=1}^{n} \hat{S}_{i} \hat{S}_{i}^{*}<1$, then they can be dilated to n isometries S_{1}, \cdots, S_{n} with $\sum_{i=1}^{n} S_{i} S_{i}^{*}=1$.

Proposition

Let $\hat{S}_{1}, \cdots, \hat{S}_{n}$ be $n(n \geq 2)$ isometries with $\sum_{i=1}^{n} \hat{S}_{i} \hat{S}_{i}^{*}<1$, then they can be dilated to n isometries S_{1}, \cdots, S_{n} with $\sum_{i=1}^{n} S_{i} S_{i}^{*}=1$.

Proposition

We have that $\mathcal{S}_{n}=\hat{\mathcal{S}}_{n}$ completely order isometrically. Hence, we do not need to distinguish \mathcal{S}_{n} and $\hat{\mathcal{S}}_{n}$.

Definition

An n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}$ is called a row contraction if $\sum_{i=1}^{n} a_{i} a_{i}^{*} \leq 1$, where \mathcal{A} is a unital C^{*}-algebra.

Definition

An n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}$ is called a row contraction if $\sum_{i=1}^{n} a_{i} a_{i}^{*} \leq 1$, where \mathcal{A} is a unital C^{*}-algebra.

Proposition (Bunce)

Let $\left\{A_{i}: i \in \Gamma\right\}$ be a family of bounded operators on a Hilbert space \mathcal{H}. Then the following two conditions are equivalent.
(1) $\sum_{i \in \Gamma} A_{i}^{*} A_{i} \leq 1$.
(2) There exists a Hilbert space \mathcal{K} containing \mathcal{H} and coisometries $\left\{S_{i}: i \in \Gamma\right\}$ acting on \mathcal{K} such that $S_{i} S_{j}^{*}=0$ for $i \neq j$, and $S_{i}(\mathcal{H}) \subseteq \mathcal{H},\left.S_{i}\right|_{\mathcal{H}}=A_{i}$ for each i.

Definition

An n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}$ is called a row contraction if $\sum_{i=1}^{n} a_{i} a_{i}^{*} \leq 1$, where \mathcal{A} is a unital C^{*}-algebra.

Proposition (Bunce)

Let $\left\{A_{i}: i \in \Gamma\right\}$ be a family of bounded operators on a Hilbert space \mathcal{H}. Then the following two conditions are equivalent.
(1) $\sum_{i \in \Gamma} A_{i}^{*} A_{i} \leq 1$.
(2) There exists a Hilbert space \mathcal{K} containing \mathcal{H} and coisometries $\left\{S_{i}: i \in \Gamma\right\}$ acting on \mathcal{K} such that $S_{i} S_{j}^{*}=0$ for $i \neq j$, and $S_{i}(\mathcal{H}) \subseteq \mathcal{H},\left.S_{i}\right|_{\mathcal{H}}=A_{i}$ for each i.

Proposition (Universal Property of \mathcal{S}_{n})

For any row contraction $\left(A_{1}, \cdots, A_{n}\right) \in \mathcal{A}$, there exists a unital completely positive $\operatorname{map} \phi: \mathcal{S}_{n} \rightarrow \mathcal{A}$ such that $\phi\left(S_{i}\right)=A_{i}, 1 \leq i \leq n$.

In order to study \mathcal{S}_{n}, we construct an operator subsystem

 $\mathcal{E}_{n} \subseteq M_{n+1}:=M_{n+1}(\mathbb{C})$ and prove that \mathcal{S}_{n} is complete order isomorphic to a quotient of \mathcal{E}_{n}. This will allow us to study \mathcal{S}_{n} via \mathcal{E}_{n}.In order to study \mathcal{S}_{n}, we construct an operator subsystem $\mathcal{E}_{n} \subseteq M_{n+1}:=M_{n+1}(\mathbb{C})$ and prove that \mathcal{S}_{n} is complete order isomorphic to a quotient of \mathcal{E}_{n}. This will allow us to study \mathcal{S}_{n} via \mathcal{E}_{n}.

Definition

We define $\mathcal{E}_{n} \subseteq M_{n+1}$ as the following,

$$
\mathcal{E}_{n}=\operatorname{span}\left\{E_{00}, E_{0 i}, E_{i 0}, \sum_{i=1}^{n} E_{i i}: 1 \leq i \leq n\right\},
$$

where $E_{i j}$ denotes the elements in the canonical basis of M_{n+1}.

In order to study \mathcal{S}_{n}, we construct an operator subsystem $\mathcal{E}_{n} \subseteq M_{n+1}:=M_{n+1}(\mathbb{C})$ and prove that \mathcal{S}_{n} is complete order isomorphic to a quotient of \mathcal{E}_{n}. This will allow us to study \mathcal{S}_{n} via \mathcal{E}_{n}.

Definition

We define $\mathcal{E}_{n} \subseteq M_{n+1}$ as the following,

$$
\mathcal{E}_{n}=\operatorname{span}\left\{E_{00}, E_{0 i}, E_{i 0}, \sum_{i=1}^{n} E_{i i}: 1 \leq i \leq n\right\},
$$

where $E_{i j}$ denotes the elements in the canonical basis of M_{n+1}.
We have that an element in \mathcal{E}_{n} is of the following form,

$$
\left(\begin{array}{cccc}
a_{00} & a_{01} & \cdots & a_{0, n} \\
a_{10} & b & & \\
\vdots & & \ddots & \\
a_{n 0} & & & b
\end{array}\right)
$$

We define an operator $R: \mathcal{H}^{(n+1)} \rightarrow \mathcal{H}$ by $R:=\left(\frac{\sqrt{2}}{2} I, \frac{\sqrt{2}}{2} S_{1}^{*}, \ldots, \frac{\sqrt{2}}{2} S_{n}^{*}\right)$.

We define an operator $R: \mathcal{H}^{(n+1)} \rightarrow \mathcal{H}$ by $R:=\left(\frac{\sqrt{2}}{2} I, \frac{\sqrt{2}}{2} S_{1}^{*}, \ldots, \frac{\sqrt{2}}{2} S_{n}^{*}\right)$. So we know that

$$
R^{*} R=\left(\begin{array}{cccc}
\frac{1}{2} I & \frac{1}{2} S_{1}^{*} & \cdots & \frac{1}{2} S_{n}^{*} \\
\frac{1}{2} S_{1} & & & \\
\vdots & & \left(\frac{1}{2} S_{i} S_{j}^{*}\right) & \\
\frac{1}{2} S_{n} & & &
\end{array}\right)
$$

is positive in $M_{n+1}(B(\mathcal{H}))$.

We define an operator $R: \mathcal{H}^{(n+1)} \rightarrow \mathcal{H}$ by $R:=\left(\frac{\sqrt{2}}{2} I, \frac{\sqrt{2}}{2} S_{1}^{*}, \ldots, \frac{\sqrt{2}}{2} S_{n}^{*}\right)$. So we know that

$$
R^{*} R=\left(\begin{array}{cccc}
\frac{1}{2} I & \frac{1}{2} S_{1}^{*} & \cdots & \frac{1}{2} S_{n}^{*} \\
\frac{1}{2} S_{1} & & & \\
\vdots & & \left(\frac{1}{2} S_{i} S_{j}^{*}\right) & \\
\frac{1}{2} S_{n} & & &
\end{array}\right)
$$

is positive in $M_{n+1}(B(\mathcal{H}))$.
Then, we define $\psi: M_{n+1} \rightarrow B(\mathcal{H})$ by

$$
\left(\psi\left(E_{i j}\right)\right)_{i, j=0}^{n}=R^{*} R,
$$

and extend it linearly to M_{n+1}.

We define an operator $R: \mathcal{H}^{(n+1)} \rightarrow \mathcal{H}$ by $R:=\left(\frac{\sqrt{2}}{2} I, \frac{\sqrt{2}}{2} S_{1}^{*}, \ldots, \frac{\sqrt{2}}{2} S_{n}^{*}\right)$. So we know that

$$
R^{*} R=\left(\begin{array}{cccc}
\frac{1}{2} I & \frac{1}{2} S_{1}^{*} & \cdots & \frac{1}{2} S_{n}^{*} \\
\frac{1}{2} S_{1} & & & \\
\vdots & & \left(\frac{1}{2} S_{i} S_{j}^{*}\right) & \\
\frac{1}{2} S_{n} & & &
\end{array}\right)
$$

is positive in $M_{n+1}(B(\mathcal{H}))$.
Then, we define $\psi: M_{n+1} \rightarrow B(\mathcal{H})$ by

$$
\left(\psi\left(E_{i j}\right)\right)_{i, j=0}^{n}=R^{*} R
$$

and extend it linearly to M_{n+1}.
Since $\sum_{i=1}^{n} S_{i} S_{i}^{*}=I$, we have that ψ is unital. Also, it is easy to see that $\operatorname{Ker} \psi=\operatorname{span}\left\{E_{00}-\sum_{i=1}^{n} E_{i i}\right\}$. Henceforth, we denote $J:=\operatorname{Ker} \psi$

Theorem (Choi)

Let \mathcal{A} be a C^{*}-algebra, $\phi: M_{n} \rightarrow \mathcal{A}$ be linear, and $\left\{E_{i j}\right\}$ be the standard matrix units for M_{n}, then the following are equivalent:
(1) ϕ is completely positive.
(2) ϕ is n-positive.
(3) $\left(\phi\left(E_{i j}\right)\right)_{i, j=0}^{n}$ is positive in $M_{n}(\mathcal{A})$.

Theorem (Choi)

Let \mathcal{A} be a C^{*}-algebra, $\phi: M_{n} \rightarrow \mathcal{A}$ be linear, and $\left\{E_{i j}\right\}$ be the standard matrix units for M_{n}, then the following are equivalent:
(1) ϕ is completely positive.
(2) ϕ is n-positive.
(3) $\left(\phi\left(E_{i j}\right)\right)_{i, j=0}^{n}$ is positive in $M_{n}(\mathcal{A})$.

Thus, ψ is a unital completely positive map. Let $\phi=\left.\psi\right|_{\mathcal{E}_{n}}: \mathcal{E}_{n} \rightarrow \mathcal{S}_{n}$, then we have that ϕ is also unital completely positive map with $\operatorname{ker} \phi=J$.

Theorem (Choi)

Let \mathcal{A} be a C^{*}-algebra, $\phi: M_{n} \rightarrow \mathcal{A}$ be linear, and $\left\{E_{i j}\right\}$ be the standard matrix units for M_{n}, then the following are equivalent:
(1) ϕ is completely positive.
(2) ϕ is n-positive.
(3) $\left(\phi\left(E_{i j}\right)\right)_{i, j=0}^{n}$ is positive in $M_{n}(\mathcal{A})$.

Thus, ψ is a unital completely positive map. Let $\phi=\left.\psi\right|_{\mathcal{E}_{n}}: \mathcal{E}_{n} \rightarrow \mathcal{S}_{n}$, then we have that ϕ is also unital completely positive map with $\operatorname{ker} \phi=J$. Indeed, we can prove that

Theorem

We have that $\mathcal{E}_{n} / J=\mathcal{S}_{n}$.

By using the following identification

$$
M_{p}(\mathcal{E}) / M_{p}(J)=M_{p}(\mathcal{E} / J)=M_{p} \otimes(\mathcal{E} / J)
$$

We can prove that

Theorem

The matrix of operators $A_{0} \otimes I+\sum_{i=1}^{n} A_{i} \otimes S_{i}+\sum_{i=1}^{n} A_{i}^{*} \otimes S_{i}^{*} \in M_{p}(\mathcal{S})$ is positive if and only if there exists $B \in M_{p}$ such that

$$
\left(\begin{array}{cccc}
A_{0} & 2 A_{1}^{*} & \cdots & 2 A_{n}^{*} \\
2 A_{1} & A_{0} & & \\
\vdots & & \ddots & \\
2 A_{n} & & & A_{0}
\end{array}\right)+\left(\begin{array}{cccc}
B & & & \\
& -B & & \\
& & \ddots & \\
& & & -B
\end{array}\right) \geq 0
$$

Remark

Remark

If U is a universal unitary and V is a universal isometry, we still have that $\operatorname{span}\left\{I, U, U^{*}\right\}$ is completely order isomorphic to $\operatorname{span}\left\{I, V, V^{*}\right\}$.

Remark

If U is a universal unitary and V is a universal isometry, we still have that $\operatorname{span}\left\{I, U, U^{*}\right\}$ is completely order isomorphic to $\operatorname{span}\left\{I, V, V^{*}\right\}$.

Let $\mathcal{S}_{\infty}=\operatorname{span}\left\{I, S_{i}, S_{i}^{*}: 1 \leq i<+\infty\right\}$, where $\left\{S_{i}\right\}$ are the generators of \mathcal{O}_{∞}, then for $n<m \leq \infty, \mathcal{S}_{n} \subseteq_{\text {c.o.i }} \mathcal{S}_{m}$.

Let \mathcal{S} be an operator system and \mathcal{S}^{d} be the space of all bounded linear functionals on it. We define an order structure on \mathcal{S}^{d} by

$$
\left(f_{i j}\right) \in M_{p}\left(\mathcal{S}_{n}^{d}\right)^{+} \Leftrightarrow\left(f_{i j}\right): \mathcal{S}_{n} \rightarrow M_{p} \text { is completely positive . }
$$

Let \mathcal{S} be an operator system and \mathcal{S}^{d} be the space of all bounded linear functionals on it. We define an order structure on \mathcal{S}^{d} by

$$
\left(f_{i j}\right) \in M_{p}\left(\mathcal{S}_{n}^{d}\right)^{+} \Leftrightarrow\left(f_{i j}\right): \mathcal{S}_{n} \rightarrow M_{p} \text { is completely positive . }
$$

It is a well-known result by Choi and Effros that with the order structure defined above, the dual space of a finite dimensional operator system is again an operator system with an Archimedean order unit, and indeed, any strictly positive linear functional is an Archimedean order unit. Hence, \mathcal{S}_{n}^{d} is an operator system with Archimedean order unit δ_{0}.

We choose a basis for \mathcal{S}_{n}^{d} as the following,

$$
\left\{\delta_{0}, \delta_{i}, \delta_{i}^{*}: 1 \leq i \leq n\right\}
$$

where

$$
\begin{array}{r}
\delta_{0}(I):=1, \delta_{0}\left(S_{i}\right):=\delta_{0}\left(S_{i}^{*}\right)=0, \quad \text { for all } i ; \\
\delta_{i}(I)=0, \delta_{i}\left(S_{j}\right)=\delta_{i j}, \delta_{i}\left(S_{k}^{*}\right)=0, \\
\delta_{i}^{*}(I)=0, \delta_{i}^{*}\left(S_{j}^{*}\right)=\delta_{i j}, \delta_{i}\left(S_{k}\right)=0, \\
\text { for all } k ;
\end{array}
$$

where $\delta_{i j}$ is the Kronecker delta notation. So we have that $\mathcal{S}_{n}^{d}=\operatorname{span}\left\{\delta_{0}, \delta_{i}, \delta_{i}^{*}: 1 \leq i \leq n\right\}$.

Proposition

An element $I_{p} \otimes \delta_{0}+\sum_{i=1}^{n} A_{i} \otimes \delta_{i}+\sum_{i=1}^{n} A_{i}^{*} \otimes \delta_{i}^{*} \in M_{p}\left(\mathcal{S}_{n}^{d}\right)$ is positive if and only if $\left(A_{1}, \ldots, A_{n}\right)$ is a row contraction.

Proposition

An element $I_{p} \otimes \delta_{0}+\sum_{i=1}^{n} A_{i} \otimes \delta_{i}+\sum_{i=1}^{n} A_{i}^{*} \otimes \delta_{i}^{*} \in M_{p}\left(\mathcal{S}_{n}^{d}\right)$ is positive if and only if $\left(A_{1}, \ldots, A_{n}\right)$ is a row contraction.

Corollary

A unital linear map $\phi: \mathcal{S}_{n}^{d} \rightarrow \mathcal{A}$ is completely positive if and only if ϕ is self-adjoint and

$$
w\left(S_{1} \otimes \phi\left(\delta_{1}\right)+\cdots+S_{n} \otimes \phi\left(\delta_{n}\right)\right) \leq \frac{1}{2}
$$

where S_{1}, \ldots, S_{n} are Cuntz isometries.

Question

Does \mathcal{S}_{n} inherit the nuclearity of \mathcal{O}_{n} ? Does the tensor properties of \mathcal{S}_{n} implies the nuclearity of \mathcal{O}_{n} ?

Question

Does \mathcal{S}_{n} inherit the nuclearity of \mathcal{O}_{n} ? Does the tensor properties of \mathcal{S}_{n} implies the nuclearity of \mathcal{O}_{n} ?

The following proposition can be proved by using Choi's multiplicative domain techniques.

Proposition

If we have that

$$
\mathcal{S}_{n} \otimes_{\min } \mathcal{A}=\mathcal{S}_{n} \otimes_{\max } \mathcal{A}
$$

for a C^{*}-algebra \mathcal{A}, then without using the nuclearity of \mathcal{O}_{n}, we have that

$$
\mathcal{O}_{n} \otimes_{\min } \mathcal{A}=\mathcal{O}_{n} \otimes_{\max } \mathcal{A}
$$

So if we can show that $\mathcal{S}_{n} \otimes_{\min } \mathcal{A}=\mathcal{S}_{n} \otimes_{\max } \mathcal{A}$, then we will be able to give an alternative proof of the nuclearity of \mathcal{O}_{n}.

So if we can show that $\mathcal{S}_{n} \otimes_{\min } \mathcal{A}=\mathcal{S}_{n} \otimes_{\max } \mathcal{A}$, then we will be able to give an alternative proof of the nuclearity of \mathcal{O}_{n}. Using the nuclearity of \mathcal{O}_{n}, we can show that this even by using the fact that \mathcal{O}_{n} is exact. Without using the nuclearity of \mathcal{O}_{n}, we can show that $\mathcal{S}_{n} \otimes_{\min } B(\mathcal{H})=\mathcal{S}_{n} \otimes_{\max } B(\mathcal{H})($ OSLLP), for any Hilbert space \mathcal{H}. Finally, we turn our attention to \mathcal{S}_{n}^{d} and we can see that \mathcal{S}_{n}^{d} has the LP. In addition, we use the LP of \mathcal{S}_{n}^{d} to prove a lifting result concerning the joint numerical radius.

Definition (The Min Tensor Product)

The minimal operator system structure on $\mathcal{S} \otimes \mathcal{T}$ is defined as

$$
\begin{aligned}
C_{n}^{\min }= & \left\{\left(p_{i j}\right) \in M_{n}(\mathcal{S} \otimes \mathcal{T}):\left((\phi \otimes \psi)\left(p_{i j}\right)\right) \in M_{n k m}^{+},\right. \\
& \text {for all } \left.\phi \in S_{k}(\mathcal{S}), \psi \in S_{m}(\mathcal{T}), \text { for all } k, m \in \mathbb{N}\right\},
\end{aligned}
$$

where $S_{k}(\mathcal{S})$ denotes the set of all completely positive maps from \mathcal{S} to M_{k}. We call the operator system $\left(\mathcal{S} \otimes \mathcal{T},\left(C_{n}^{\text {min }}\right)_{n=1}^{\infty}, 1 \otimes 1\right)$ the minimal tensor product of \mathcal{S} and \mathcal{T} and denote it by $\mathcal{S} \otimes_{\min } \mathcal{T}$.

Definition (The Min Tensor Product)

The minimal operator system structure on $\mathcal{S} \otimes \mathcal{T}$ is defined as

$$
\begin{aligned}
C_{n}^{\min }= & \left\{\left(p_{i j}\right) \in M_{n}(\mathcal{S} \otimes \mathcal{T}):\left((\phi \otimes \psi)\left(p_{i j}\right)\right) \in M_{n k m}^{+},\right. \\
& \text {for all } \left.\phi \in S_{k}(\mathcal{S}), \psi \in S_{m}(\mathcal{T}), \text { for all } k, m \in \mathbb{N}\right\},
\end{aligned}
$$

where $S_{k}(\mathcal{S})$ denotes the set of all completely positive maps from \mathcal{S} to M_{k}. We call the operator system $\left(\mathcal{S} \otimes \mathcal{T},\left(C_{n}^{\text {min }}\right)_{n=1}^{\infty}, 1 \otimes 1\right)$ the minimal tensor product of \mathcal{S} and \mathcal{T} and denote it by $\mathcal{S} \otimes_{\min } \mathcal{T}$.

It can be shown that the min-tensor product is injective ,associative, symmetric and functorial. Moreover, it coincide with the operator system arising from the embedding $\mathcal{S} \otimes \mathcal{T} \subseteq_{\text {c.o.i }} B(\mathcal{H} \otimes \mathcal{K})$.

Definition (The Max Tensor Product)

The maximal operator system structure on $\mathcal{S} \otimes \mathcal{T}$ is defined as the Archimedeanization of the following cones: $D_{n}^{\max }=\left\{a(P \otimes Q) a^{*}: P \in M_{k}(\mathcal{S})^{+}, Q \in M_{m}(\mathcal{T})^{+}, a \in M_{n, k m}, k, m \in \mathbb{N}\right\}$. We denote the Archimedeanization of $D_{n}^{\max }$ as $C_{n}^{\max }$, then the maximal tensor product of \mathcal{S} and \mathcal{T}, denoted by $\mathcal{S} \otimes_{\max } \mathcal{T}$, is the operator system $\left(\mathcal{S} \otimes \mathcal{T},\left(C_{n}^{\max }\right)_{n=1}^{\infty}, 1 \otimes 1\right)$.

Definition (The Max Tensor Product)

The maximal operator system structure on $\mathcal{S} \otimes \mathcal{T}$ is defined as the Archimedeanization of the following cones: $D_{n}^{\max }=\left\{a(P \otimes Q) a^{*}: P \in M_{k}(\mathcal{S})^{+}, Q \in M_{m}(\mathcal{T})^{+}, a \in M_{n, k m}, k, m \in \mathbb{N}\right\}$. We denote the Archimedeanization of $D_{n}^{\max }$ as $C_{n}^{\max }$, then the maximal tensor product of \mathcal{S} and \mathcal{T}, denoted by $\mathcal{S} \otimes_{\max } \mathcal{T}$, is the operator system $\left(\mathcal{S} \otimes \mathcal{T},\left(C_{n}^{\max }\right)_{n=1}^{\infty}, 1 \otimes 1\right)$.

The max-tensor product is symmetric, associative and functorial. We will also see later that it is projective.

Definition (The Commuting Tensor Product)

Let $\{\mathcal{S}, \mathcal{T}\}$ be operator systems. We set

$$
\begin{aligned}
\mathrm{CP}(\mathcal{S}, \mathcal{T})= & \{(\phi, \psi): \phi \text { is } \mathrm{CP} \text { from } \mathcal{S} \text { to } B(\mathcal{H}) \\
& \psi \text { is } \mathrm{CP} \text { from } \mathcal{T} \text { to } B(\mathcal{H}), \text { and } \phi(\mathcal{S}) \text { commutes with } \phi(\mathcal{T})\}
\end{aligned}
$$

Definition (The Commuting Tensor Product)

Let $\{\mathcal{S}, \mathcal{T}\}$ be operator systems. We set
$\mathrm{CP}(\mathcal{S}, \mathcal{T})=\{(\phi, \psi): \phi$ is CP from \mathcal{S} to $B(\mathcal{H})$, ψ is CP from \mathcal{T} to $B(\mathcal{H})$, and $\phi(\mathcal{S})$ commutes with $\phi(\mathcal{T})\}$

We define $\phi \cdots \psi: \mathcal{S} \otimes \mathcal{T} \rightarrow B(\mathcal{H})$ as $\phi \cdot \psi(x \otimes y)=\phi(x) \psi(y)$. The commuting operator system structure on $\mathcal{S} \otimes \mathcal{T}$ is defined as:

$$
C_{n}^{c}=\left\{u \in M_{n}(\mathcal{S} \otimes \mathcal{T}):(\phi \cdot \psi)^{(n)}(u) \geq 0, \text { for all }(\phi, \psi) \in \mathrm{CP}(\mathcal{S}, \mathcal{T})\right.
$$

Definition (The Commuting Tensor Product)

Let $\{\mathcal{S}, \mathcal{T}\}$ be operator systems. We set
$\mathrm{CP}(\mathcal{S}, \mathcal{T})=\{(\phi, \psi): \phi$ is CP from \mathcal{S} to $B(\mathcal{H})$, ψ is CP from \mathcal{T} to $B(\mathcal{H})$, and $\phi(\mathcal{S})$ commutes with $\phi(\mathcal{T})\}$

We define $\phi \cdots \psi: \mathcal{S} \otimes \mathcal{T} \rightarrow B(\mathcal{H})$ as $\phi \cdot \psi(x \otimes y)=\phi(x) \psi(y)$. The commuting operator system structure on $\mathcal{S} \otimes \mathcal{T}$ is defined as:

$$
C_{n}^{c}=\left\{u \in M_{n}(\mathcal{S} \otimes \mathcal{T}):(\phi \cdot \psi)^{(n)}(u) \geq 0, \text { for all }(\phi, \psi) \in \mathrm{CP}(\mathcal{S}, \mathcal{T})\right.
$$

We call the operator system $\left(\mathcal{S} \otimes \mathcal{T},\left(C_{n}^{c}\right)_{n=1}^{\infty}, 1 \otimes 1\right)$ the commuting tensor product of \mathcal{S} and \mathcal{T} and denote it by $\mathcal{S} \otimes_{c} \mathcal{T}$.

Definition (The Commuting Tensor Product)

Let $\{\mathcal{S}, \mathcal{T}\}$ be operator systems. We set

$$
\begin{aligned}
\mathrm{CP}(\mathcal{S}, \mathcal{T})= & \{(\phi, \psi): \phi \text { is } \mathrm{CP} \text { from } \mathcal{S} \text { to } B(\mathcal{H}) \\
& \psi \text { is } \mathrm{CP} \text { from } \mathcal{T} \text { to } B(\mathcal{H}), \text { and } \phi(\mathcal{S}) \text { commutes with } \phi(\mathcal{T})\}
\end{aligned}
$$

We define $\phi \cdots \psi: \mathcal{S} \otimes \mathcal{T} \rightarrow B(\mathcal{H})$ as $\phi \cdot \psi(x \otimes y)=\phi(x) \psi(y)$.
The commuting operator system structure on $\mathcal{S} \otimes \mathcal{T}$ is defined as:

$$
C_{n}^{c}=\left\{u \in M_{n}(\mathcal{S} \otimes \mathcal{T}):(\phi \cdot \psi)^{(n)}(u) \geq 0, \text { for all }(\phi, \psi) \in \mathrm{CP}(\mathcal{S}, \mathcal{T})\right.
$$

We call the operator system $\left(\mathcal{S} \otimes \mathcal{T},\left(C_{n}^{c}\right)_{n=1}^{\infty}, 1 \otimes 1\right)$ the commuting tensor product of \mathcal{S} and \mathcal{T} and denote it by $\mathcal{S} \otimes_{c} \mathcal{T}$.

The commuting-tensor product is symmetric and functorial. Also, if \mathcal{A} is a C^{*}-algebra and \mathcal{S} is an operator system, then we have $\mathcal{S} \otimes_{c} \mathcal{A}=\mathcal{S} \otimes_{\max } \mathcal{A}$.

Definition (The el and er Tensor Product)

We let $\mathcal{S} \otimes_{\mathrm{el}} \mathcal{T}$ (resp. $\mathcal{S} \otimes_{\mathrm{er}} \mathcal{T}$) be the operator system whose operator structure on $\mathcal{S} \otimes \mathcal{T}$ is induced by the inclusion $\mathcal{S} \otimes \mathcal{T} \subseteq \mathcal{I}(\mathcal{S}) \otimes_{\max } \mathcal{T}$ (resp. $\mathcal{S} \otimes_{\max } \mathcal{I}(\mathcal{T})$). Here, $\mathcal{I}(\mathcal{S})$ denotes the injective envelope of \mathcal{S}.

Definition (The el and er Tensor Product)

We let $\mathcal{S} \otimes_{\mathrm{el}} \mathcal{T}$ (resp. $\mathcal{S} \otimes_{\mathrm{er}} \mathcal{T}$) be the operator system whose operator structure on $\mathcal{S} \otimes \mathcal{T}$ is induced by the inclusion $\mathcal{S} \otimes \mathcal{T} \subseteq \mathcal{I}(\mathcal{S}) \otimes_{\max } \mathcal{T}$ (resp. $\mathcal{S} \otimes_{\max } \mathcal{I}(\mathcal{T})$). Here, $\mathcal{I}(\mathcal{S})$ denotes the injective envelope of \mathcal{S}.

We have that el, er-tensor product are both functorial but not symmetric.
(1) We call $\tau_{1} \leq \tau_{2}$ if $M_{n}\left(\mathcal{S} \otimes_{\tau_{2}} \mathcal{T}\right)^{+} \subseteq M_{n}\left(\mathcal{S} \otimes_{\tau_{1}} \mathcal{T}\right)^{+}$for every $n \in \mathbb{N}$.

Definition (The el and er Tensor Product)

We let $\mathcal{S} \otimes_{\mathrm{el}} \mathcal{T}$ (resp. $\mathcal{S} \otimes_{\mathrm{er}} \mathcal{T}$) be the operator system whose operator structure on $\mathcal{S} \otimes \mathcal{T}$ is induced by the inclusion $\mathcal{S} \otimes \mathcal{T} \subseteq \mathcal{I}(\mathcal{S}) \otimes_{\max } \mathcal{T}$ (resp. $\mathcal{S} \otimes_{\max } \mathcal{I}(\mathcal{T})$). Here, $\mathcal{I}(\mathcal{S})$ denotes the injective envelope of \mathcal{S}.

We have that el, er-tensor product are both functorial but not symmetric.
(1) We call $\tau_{1} \leq \tau_{2}$ if $M_{n}\left(\mathcal{S} \otimes_{\tau_{2}} \mathcal{T}\right)^{+} \subseteq M_{n}\left(\mathcal{S} \otimes_{\tau_{1}} \mathcal{T}\right)^{+}$for every $n \in \mathbb{N}$.
(2) Let α and β be two operator system tensor products. An operator system \mathcal{S} is called (α, β)-nuclear if the identity map between $\mathcal{S} \otimes_{\alpha} \mathcal{T}$ and $\mathcal{S} \otimes_{\beta} \mathcal{T}$ is completely order isomorphic for every operator system \mathcal{T}.

The order relations between these tensor products are:

$$
\min \leq \mathrm{el}, \text { er } \leq c \leq \max
$$

Claim

The operator system \mathcal{S}_{n} is not (min, max)-nuclear.

Claim

The operator system \mathcal{S}_{n} is not (min, max)-nuclear.
We consider the operator system \mathfrak{S}_{1} generate by a universal unitary u, i.e. $\mathfrak{S}_{1}=\operatorname{span}\left\{1, u, u^{*}\right\}$. It has been proved that

Example (Farenick, Kavruk, Paulsen, Todorov)

$\mathfrak{S}_{1} \otimes_{\min } \mathfrak{S}_{1} \neq \mathfrak{S}_{1} \otimes_{\max } \mathfrak{S}_{1}$.

Claim

The operator system \mathcal{S}_{n} is not (min, max)-nuclear.
We consider the operator system \mathfrak{S}_{1} generate by a universal unitary u, i.e. $\mathfrak{S}_{1}=\operatorname{span}\left\{1, u, u^{*}\right\}$. It has been proved that

Example (Farenick, Kavruk, Paulsen, Todorov)

$\mathfrak{S}_{1} \otimes_{\min } \mathfrak{S}_{1} \neq \mathfrak{S}_{1} \otimes_{\max } \mathfrak{S}_{1}$.

On the other hand, let \mathcal{S}_{1} be the operator system generated by a universal isometry, i.e. $\mathcal{S}_{1}=\operatorname{span}\left\{I, S_{1}, S_{1}^{*}\right\}$, where S_{1} is an arbitrary isometry with $S_{1} S_{1}^{*}<I$. We have that

$$
\mathfrak{S}_{1}=\mathcal{S}_{1} .
$$

This shows that

$$
\mathfrak{S}_{1} \otimes_{\min } \mathcal{S}_{1} \neq \mathfrak{S}_{1} \otimes_{\max } \mathcal{S}_{1}
$$

This shows that

$$
\mathfrak{S}_{1} \otimes_{\min } \mathcal{S}_{1} \neq \mathfrak{S}_{1} \otimes_{\max } \mathcal{S}_{1} .
$$

However, $\Phi(X)=S_{1}^{*} X S_{1}$ is a completely positive projection from \mathcal{S}_{n} onto \mathcal{S}_{1}. Thus,
$\mathfrak{S}_{1} \otimes_{\min } \mathcal{S}_{1} \subseteq_{\text {c.o.i }} \mathfrak{S}_{1} \otimes_{\min } \mathcal{S}_{n}$
$\mathfrak{S}_{1} \otimes_{\max } \mathcal{S}_{1} \subseteq_{\text {c.o.i }} \mathfrak{S}_{1} \otimes_{\max } \mathcal{S}_{n}$.

This shows that

$$
\mathfrak{S}_{1} \otimes_{\min } \mathcal{S}_{1} \neq \mathfrak{S}_{1} \otimes_{\max } \mathcal{S}_{1}
$$

However, $\Phi(X)=S_{1}^{*} X S_{1}$ is a completely positive projection from \mathcal{S}_{n} onto \mathcal{S}_{1}. Thus,

$$
\begin{array}{r}
\mathfrak{S}_{1} \otimes_{\min } \mathcal{S}_{1} \subseteq_{\text {c.o.i }} \mathfrak{S}_{1} \otimes_{\min } \mathcal{S}_{n} \\
\mathfrak{S}_{1} \otimes_{\max } \mathcal{S}_{1} \subseteq_{\text {c.o.i }} \mathfrak{S}_{1} \otimes_{\max } \mathcal{S}_{n} .
\end{array}
$$

So $\mathfrak{S}_{1} \otimes_{\min } \mathcal{S}_{n} \neq \mathfrak{S}_{1} \otimes_{\max } \mathcal{S}_{n}$.

Theorem (Farenick, Paulsen)

Let \mathcal{S} and \mathcal{T} be finite-dimensional operator systems. Then we have that

$$
\left(\mathcal{S} \otimes_{\min } \mathcal{T}\right)^{d}=\mathcal{S}^{d} \otimes_{\max } \mathcal{T}^{d}
$$

and

$$
\left(\mathcal{S} \otimes_{\max } \mathcal{T}\right)^{d}=\mathcal{S}^{d} \otimes_{\min } \mathcal{T}^{d}
$$

Theorem (Farenick, Paulsen)

Let \mathcal{S} and \mathcal{T} be finite-dimensional operator systems. Then we have that

$$
\left(\mathcal{S} \otimes_{\min } \mathcal{T}\right)^{d}=\mathcal{S}^{d} \otimes_{\max } \mathcal{T}^{d}
$$

and

$$
\left(\mathcal{S} \otimes_{\max } \mathcal{T}\right)^{d}=\mathcal{S}^{d} \otimes_{\min } \mathcal{T}^{d}
$$

Thus, it follows from the last slide that $\mathfrak{S}_{1}^{d} \otimes_{\min } \mathcal{S}_{n}^{d} \neq \mathfrak{S}_{1}^{d} \otimes_{\max } \mathcal{S}_{n}^{d}$

Definition (Left Exact, Right Exact, Exact, 1-exact)

Definition (Left Exact, Right Exact, Exact, 1-exact)

An operator system \mathcal{S} is called left exact if for every unital C^{*}-algebra \mathcal{B} and every ideal $I \subseteq \mathcal{B}$, we have that $I \hat{\otimes}_{\min } \mathcal{S}$ is the kernel of the map $q \otimes \operatorname{id}_{\mathcal{S}}: \mathcal{B} \hat{\otimes}_{\min } \mathcal{S} \rightarrow(\mathcal{B} / I) \hat{\otimes}_{\min } \mathcal{S}$, where $q: \mathcal{B} \rightarrow \mathcal{B} / I$ is the quotient map.

Definition (Left Exact, Right Exact, Exact, 1-exact)

An operator system \mathcal{S} is called left exact if for every unital C^{*}-algebra \mathcal{B} and every ideal $I \subseteq \mathcal{B}$, we have that $I \hat{\otimes}_{\min } \mathcal{S}$ is the kernel of the map $q \otimes \operatorname{id}_{\mathcal{S}}: \mathcal{B} \hat{\otimes}_{\min } \mathcal{S} \rightarrow(\mathcal{B} / I) \hat{\otimes}_{\min } \mathcal{S}$, where $q: \mathcal{B} \rightarrow \mathcal{B} / I$ is the quotient map. We call \mathcal{S} right exact if $q \otimes \mathrm{id}_{\mathcal{S}}$ is surjective for every such pair I, \mathcal{B}.

Definition (Left Exact, Right Exact, Exact, 1-exact)

An operator system \mathcal{S} is called left exact if for every unital C^{*}-algebra \mathcal{B} and every ideal $I \subseteq \mathcal{B}$, we have that $I \hat{\otimes}_{\min } \mathcal{S}$ is the kernel of the map $q \otimes \operatorname{id}_{\mathcal{S}}: \mathcal{B} \hat{\otimes}_{\min } \mathcal{S} \rightarrow(\mathcal{B} / I) \hat{\otimes}_{\min } \mathcal{S}$, where $q: \mathcal{B} \rightarrow \mathcal{B} / I$ is the quotient map. We call \mathcal{S} right exact if $q \otimes \mathrm{id}_{\mathcal{S}}$ is surjective for every such pair I, \mathcal{B}. We call \mathcal{S} exact if it is both left and right exact.

Definition (Left Exact, Right Exact, Exact, 1-exact)

An operator system \mathcal{S} is called left exact if for every unital C^{*}-algebra \mathcal{B} and every ideal $I \subseteq \mathcal{B}$, we have that $I \hat{\otimes}_{\min } \mathcal{S}$ is the kernel of the map $q \otimes \operatorname{id}_{\mathcal{S}}: \mathcal{B} \hat{\otimes}_{\min } \mathcal{S} \rightarrow(\mathcal{B} / I) \hat{\otimes}_{\min } \mathcal{S}$, where $q: \mathcal{B} \rightarrow \mathcal{B} / I$ is the quotient map. We call \mathcal{S} right exact if $q \otimes \mathrm{id}_{\mathcal{S}}$ is surjective for every such pair I, \mathcal{B}. We call \mathcal{S} exact if it is both left and right exact. We call $\mathcal{S} 1$-exact if it is exact and the induced map from the operator system quotient,

$$
\left.\mathcal{B} \hat{\otimes}_{\min } \mathcal{S} /\left(I \hat{\otimes}_{\min } \mathcal{S}\right) \rightarrow(\mathcal{B} / I) \hat{\otimes}_{\min } \mathcal{S}\right)
$$

is a complete order isomorphism.

Theorem (Kavruk, Paulsen, Todorov, Tomforde)
The following properties of an operator system are equivalent:

Theorem (Kavruk, Paulsen, Todorov, Tomforde)
The following properties of an operator system are equivalent:
(1) \mathcal{S} is (min,el)-nuclear;

Theorem (Kavruk, Paulsen, Todorov, Tomforde)

The following properties of an operator system are equivalent:
(1) \mathcal{S} is (min,el)-nuclear;
(2) \mathcal{S} is C^{*}-(min,el)-nuclear;

Theorem (Kavruk, Paulsen, Todorov, Tomforde)

The following properties of an operator system are equivalent:
(1) \mathcal{S} is (min,el)-nuclear;
(2) \mathcal{S} is C^{*}-(min,el)-nuclear;
(3) \mathcal{S} is 1-exact.

Proposition

The operator system \mathcal{S}_{n} is 1-exact.

Proposition

The operator system \mathcal{S}_{n} is 1-exact.

Proof.

For any operator system \mathcal{T}, we have that

$$
\mathcal{S}_{n} \otimes_{\mathrm{el}} \mathcal{T} \subseteq_{\text {c.o.i }} \mathcal{O}_{n} \otimes_{\mathrm{el}} \mathcal{T}
$$

Proposition

The operator system \mathcal{S}_{n} is 1-exact.

Proof.

For any operator system \mathcal{T}, we have that

$$
\mathcal{S}_{n} \otimes_{\mathrm{el}} \mathcal{T} \subseteq_{\text {c.o.i }} \mathcal{O}_{n} \otimes_{\mathrm{el}} \mathcal{T}
$$

On the other hand,

$$
\mathcal{S}_{n} \otimes_{\min } \mathcal{T} \subseteq_{\text {c.o.i }} \mathcal{O}_{n} \otimes_{\min } \mathcal{T}
$$

Definition (Operator System Local Lifting Property (OSLLP))

Definition (Operator System Local Lifting Property (OSLLP))

Let \mathcal{S} be an operator system, \mathcal{A} be a unital C^{*}-algebra, I be an ideal of \mathcal{A}, $q: \mathcal{A} \rightarrow \mathcal{A} /$ I be the quotient map and $\phi: \mathcal{S} \rightarrow \mathcal{A} /$ I be a unital completely positive map.

Definition (Operator System Local Lifting Property (OSLLP))

Let \mathcal{S} be an operator system, \mathcal{A} be a unital C^{*}-algebra, I be an ideal of \mathcal{A}, $q: \mathcal{A} \rightarrow \mathcal{A} /$ I be the quotient map and $\phi: \mathcal{S} \rightarrow \mathcal{A} /$ I be a unital completely positive map. We say ϕ lifts locally, if for every finite dimensional operator system $\mathcal{S}_{0} \subseteq \mathcal{S}$, there exists a completely positive map $\psi: \mathcal{S}_{0} \rightarrow \mathcal{A}$ such that $q \circ \psi=\phi$.

Definition (Operator System Local Lifting Property (OSLLP))

Let \mathcal{S} be an operator system, \mathcal{A} be a unital C^{*}-algebra, I be an ideal of \mathcal{A}, $q: \mathcal{A} \rightarrow \mathcal{A} /$ I be the quotient map and $\phi: \mathcal{S} \rightarrow \mathcal{A} /$ I be a unital completely positive map. We say ϕ lifts locally, if for every finite dimensional operator system $\mathcal{S}_{0} \subseteq \mathcal{S}$, there exists a completely positive map $\psi: \mathcal{S}_{0} \rightarrow \mathcal{A}$ such that $q \circ \psi=\phi$. We say that \mathcal{S} has the operator system locally lifting property if for every C^{*}-algebra \mathcal{A} and every ideal $I \subseteq \mathcal{A}$, every unital completely positive map $\phi: \mathcal{S} \rightarrow \mathcal{A} / I$ lifts locally.

Theorem (Kavruk, Paulsen, Todorov, Tomforde)
Let \mathcal{S} be an operator system, then the following are equivalent:
(1) \mathcal{S} has the OSLLP;

Theorem (Kavruk, Paulsen, Todorov, Tomforde)
Let \mathcal{S} be an operator system, then the following are equivalent:
(1) \mathcal{S} has the OSLLP;
(2) $\mathcal{S} \otimes_{\min } B(\mathcal{H})=\mathcal{S} \otimes_{\max } B(\mathcal{H})$.

Theorem (Kavruk, Paulsen, Todorov, Tomforde)

Let \mathcal{S} be an operator system, then the following are equivalent:
(1) \mathcal{S} has the OSLLP;
(2) $\mathcal{S} \otimes_{\min } B(\mathcal{H})=\mathcal{S} \otimes_{\max } B(\mathcal{H})$.

So we need to show that $\mathcal{S}_{n} \otimes_{\text {min }} B(\mathcal{H})=\mathcal{S}_{n} \otimes_{\max } B(\mathcal{H})$.

We will use the isomorphism:

$$
\mathcal{S}_{n}=\mathcal{E}_{n} / J
$$

We will use the isomorphism:

$$
\mathcal{S}_{n}=\mathcal{E}_{n} / J
$$

Lemma

The operator system \mathcal{E}_{n} is C^{*}-nuclear, i.e. $\mathcal{E}_{n} \otimes_{\min } \mathcal{A}=\mathcal{E}_{n} \otimes_{\max } \mathcal{A}$ for each C^{*}-algebra \mathcal{A}.

We will use the isomorphism:

$$
\mathcal{S}_{n}=\mathcal{E}_{n} / J .
$$

Lemma

The operator system \mathcal{E}_{n} is C^{*}-nuclear, i.e. $\mathcal{E}_{n} \otimes_{\min } \mathcal{A}=\mathcal{E}_{n} \otimes_{\max } \mathcal{A}$ for each C^{*}-algebra \mathcal{A}.

Proposition (Projectivity of the Max-Tensor Product)

Let $\mathcal{S}, \mathcal{T}, \mathcal{R}$ be operator systems and suppose $\psi: \mathcal{S} \rightarrow \mathcal{R}$ is a complete quotient map, then the map $\psi \otimes \mathrm{id}_{\mathcal{T}}: \mathcal{S} \otimes_{\max } \mathcal{T} \rightarrow \mathcal{R} \otimes_{\max } \mathcal{T}$ is also a complete quotient map.

Hence, in order to show that the following diagram commute,

$$
\begin{aligned}
& \mathcal{E}_{n} \otimes_{\min } \mathcal{A} \xrightarrow{\cong} \mathcal{E}_{n} \otimes_{\max } \mathcal{A}, \\
& \downarrow \phi \otimes \mathrm{id}_{\mathcal{A}} \quad{ }^{\text {id }} \phi \otimes \mathrm{id}_{\mathcal{A}} \\
& \mathcal{S}_{n} \otimes_{\text {min }} \mathcal{A} \xrightarrow{\text { id }} \mathcal{S}_{n} \otimes_{\text {max }} \mathcal{A}
\end{aligned}
$$

Hence, in order to show that the following diagram commute,

$$
\begin{aligned}
& \mathcal{E}_{n} \otimes_{\min } \mathcal{A} \xrightarrow{\cong} \mathcal{E}_{n} \otimes_{\max } \mathcal{A}, \\
& \downarrow \phi \otimes \mathrm{id}_{\mathcal{A}} \quad \downarrow^{\phi \otimes \mathrm{id}_{\mathcal{A}}} \\
& \mathcal{S}_{n} \otimes_{\text {min }} \mathcal{A} \xrightarrow{\text { id }} \mathcal{S}_{n} \otimes_{\text {max }} \mathcal{A}
\end{aligned}
$$

we just need to show that $\phi \otimes \mathrm{id}_{\mathcal{A}}: \mathcal{E}_{n} \otimes_{\min } \mathcal{A} \rightarrow \mathcal{S}_{n} \otimes_{\min } \mathcal{A}$ is a complete quotient map.

Proposition

Let $\mathcal{A}=B(\mathcal{K})$ for an arbitrary Hilbert space \mathcal{K}, then the map $\phi \otimes \operatorname{id}_{\mathcal{A}}: \mathcal{E}_{n} \otimes_{\min } \mathcal{A} \rightarrow \mathcal{S}_{n} \otimes_{\min } \mathcal{A}$ is a complete quotient map.

Proposition

Let $\mathcal{A}=B(\mathcal{K})$ for an arbitrary Hilbert space \mathcal{K}, then the map
$\phi \otimes \mathrm{id}_{\mathcal{A}}: \mathcal{E}_{n} \otimes_{\min } \mathcal{A} \rightarrow \mathcal{S}_{n} \otimes_{\min } \mathcal{A}$ is a complete quotient map.
The case when $n=\infty$ can be deduce by the inclusion $\mathcal{S}_{n} \subseteq_{\text {c.o. }} \mathcal{S}_{\infty}$. So it follows that \mathcal{S}_{∞} has OSLLP by the following observation:

Proposition

Let $\mathcal{A}=B(\mathcal{K})$ for an arbitrary Hilbert space \mathcal{K}, then the map $\phi \otimes \mathrm{id}_{\mathcal{A}}: \mathcal{E}_{n} \otimes_{\min } \mathcal{A} \rightarrow \mathcal{S}_{n} \otimes_{\min } \mathcal{A}$ is a complete quotient map.

The case when $n=\infty$ can be deduce by the inclusion $\mathcal{S}_{n} \subseteq_{\text {c.o. }} \mathcal{S}_{\infty}$. So it follows that \mathcal{S}_{∞} has OSLLP by the following observation:

If $A \in\left(\mathcal{S}_{\infty} \otimes_{\min } B(\mathcal{H})\right)^{+}$, then there exists $N \in \mathbb{N}$ such that $A \in\left(\mathcal{S}_{N} \otimes_{\min } B(\mathcal{H})\right)^{+}$.

Proposition

Let $\mathcal{A}=B(\mathcal{K})$ for an arbitrary Hilbert space \mathcal{K}, then the map $\phi \otimes \mathrm{id}_{\mathcal{A}}: \mathcal{E}_{n} \otimes_{\min } \mathcal{A} \rightarrow \mathcal{S}_{n} \otimes_{\min } \mathcal{A}$ is a complete quotient map.

The case when $n=\infty$ can be deduce by the inclusion $\mathcal{S}_{n} \subseteq_{\text {c.o.i }} \mathcal{S}_{\infty}$. So it follows that \mathcal{S}_{∞} has OSLLP by the following observation:

If $A \in\left(\mathcal{S}_{\infty} \otimes_{\min } B(\mathcal{H})\right)^{+}$, then there exists $N \in \mathbb{N}$ such that $A \in\left(\mathcal{S}_{N} \otimes_{\min } B(\mathcal{H})\right)^{+}$.

On the other hand, we have that

$$
\left(\mathcal{S}_{N} \otimes_{\min } B(\mathcal{H})\right)^{+}=\left(\mathcal{S}_{N} \otimes_{\max } B(\mathcal{H})\right)^{+} \subseteq\left(\mathcal{S}_{\infty} \otimes_{\max } \mathcal{A}\right)^{+} .
$$

Definition

For an n-tuple of operators $\left(T_{1}, \ldots, T_{n}\right) \in B(\mathcal{H})$, their joint numerical radius is defined as:

$$
w\left(T_{1}, \ldots, T_{n}\right):=\sup \left|\sum_{\alpha \in F_{n}^{+}} \sum_{j=1}^{n}\left\langle h_{\alpha}, T_{j} h_{g_{j} \alpha}\right\rangle\right|,
$$

where F_{n} is the free group on n generators g_{1}, \ldots, g_{n}, and the supremum is taken over all families of vectors $\left\{h_{\alpha}\right\}_{\alpha \in F_{n}^{+}} \subseteq \mathcal{H}$ with $\sum_{\alpha \in F_{n}^{+}}\left\|h_{\alpha}\right\|^{2}=1$.

We can extend this notion of joint numerical radius for n-tuples in $B(\mathcal{H})$ to the category of C^{*}-algebras.

Definition

Let \mathcal{A} be a C^{*}-algebra. The joint numerical radius of an n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}$ is:

$$
w\left(a_{1}, \ldots, a_{n}\right):=w\left(S_{1} \otimes a_{1}^{*}+\cdots+S_{n} \otimes a_{n}^{*}\right)
$$

where S_{i} 's are Cuntz isometries.

We can extend this notion of joint numerical radius for n-tuples in $B(\mathcal{H})$ to the category of C^{*}-algebras.

Definition

Let \mathcal{A} be a C^{*}-algebra. The joint numerical radius of an n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}$ is:

$$
w\left(a_{1}, \ldots, a_{n}\right):=w\left(S_{1} \otimes a_{1}^{*}+\cdots+S_{n} \otimes a_{n}^{*}\right)
$$

where S_{i} 's are Cuntz isometries.

Theorem

A unital linear map $\phi: \mathcal{S}_{n}^{d} \rightarrow \mathcal{A}$ is completely positive if and only if

$$
w\left(\phi\left(a_{1}\right)^{*}, \ldots, \phi\left(a_{n}\right)^{*}\right) \leq \frac{1}{2}
$$

Theorem (kavruk)
 Let \mathcal{S} be a finite dimensional. Then \mathcal{S} is exact if and only if \mathcal{S}^{d} has the lifting property, and vice versa.

Theorem (kavruk)

Let \mathcal{S} be a finite dimensional. Then \mathcal{S} is exact if and only if \mathcal{S}^{d} has the lifting property, and vice versa.

Theorem

Let \mathcal{A} be a unital C^{*}-algebra and $J \triangleleft \mathcal{A}$ be an ideal. Suppose
$T_{1}+J, \ldots, T_{n}+J \in \mathcal{A} / J$, then there exist $W_{1}, \ldots, W_{n} \in \mathcal{A}$ with $W_{i}+J=T_{i}+J$ for each $1 \leq i \leq n$, such that $w\left(W_{1}, \ldots, W_{n}\right)=w\left(T_{1}+J, \ldots, T_{n}+J\right)$.

Question

The operator space generated by Cuntz isometries is not of much interest (it is just the column Hilbert space). So what about the $*$-operator space,

$$
\operatorname{span}\left\{S_{i}, S_{i}^{*}: 1 \leq i \leq n\right\} ?
$$

Also, what about the operator system:

$$
\operatorname{span}\left\{I, S_{i}, S_{i}^{*}, S_{i} S_{i}^{*}: 1 \leq i \leq n\right\}, \quad \text { etc. }
$$

Consider the Cuntz-Krieger algebra \mathcal{O}_{A}, which is universal the C^{*}-algebra generated by n partial isometries S_{i} satisfying

$$
\sum_{i=1}^{n} S_{i} S_{i}^{*}=\jmath, \quad S_{i}^{*} S_{i}=\sum_{i=1}^{n} A(i, j) S_{j} S_{j}^{*}, \quad A(i, j)=0,1
$$

Consider the Cuntz-Krieger algebra \mathcal{O}_{A}, which is universal the C^{*}-algebra generated by n partial isometries S_{i} satisfying

$$
\sum_{i=1}^{n} S_{i} S_{i}^{*}=I, \quad S_{i}^{*} S_{i}=\sum_{i=1}^{n} A(i, j) S_{j} S_{j}^{*}, \quad A(i, j)=0,1
$$

where $A=(A(i, j))$ is a matrix consisting only 0,1 entries. A.Huef and I.Raebrun proved that for every choice of such matrix A, there always exists a universal C^{*}-algebra \mathcal{O}_{A}.

Consider the Cuntz-Krieger algebra \mathcal{O}_{A}, which is universal the C^{*}-algebra generated by n partial isometries S_{i} satisfying

$$
\sum_{i=1}^{n} S_{i} S_{i}^{*}=I, \quad S_{i}^{*} S_{i}=\sum_{i=1}^{n} A(i, j) S_{j} S_{j}^{*}, \quad A(i, j)=0,1
$$

where $A=(A(i, j))$ is a matrix consisting only 0,1 entries. A.Huef and I.Raebrun proved that for every choice of such matrix A, there always exists a universal C^{*}-algebra \mathcal{O}_{A}.

Question

Can we deal with the operator system \mathcal{S}_{A}^{n} generated by the universal partial isometries from \mathcal{O}_{A} ?

