The Operator System Generated by Cuntz Isometries

Da Zheng Based on joint work with Vern Paulsen

University of Houston

May 15, 2015

CLASSIFICATION OF C*-ALGEBRAS, FLOW EQUIVALENCE OF SHIFT SPACES, AND GRAPH AND LEAVITT PATH ALGEBRAS MAY 11-15, 2015 University of Louisiana at Lafayette

Outline:

In this talk, we consider the operator system S_n $(2 \le n < \infty)$ generated by the Cuntz isometries S_1, \ldots, S_n , that is, S_1, \ldots, S_n are isometries with $\sum_{i=1}^n S_i S_i^* = I$.

Outline:

In this talk, we consider the operator system S_n $(2 \le n < \infty)$ generated by the Cuntz isometries S_1, \ldots, S_n , that is, S_1, \ldots, S_n are isometries with $\sum_{i=1}^n S_i S_i^* = I$. We will:

- **1** show that S_n has a universal property;
- ② define an operator system $\mathcal{E}_n \subseteq M_n$ and prove that \mathcal{S}_n is complete order isomorphic to a quotient of \mathcal{E}_n ;
- study tensor products of S_n and examine various nuclearities of S_n in the operator system category;
- discover some properties of \mathcal{S}_n^d ;
- o discuss some open problems.

The operator system generated S_n by n universal unitaries can also be used to characterize WEP, Kirchberg's Conjecture, etc. Farenick, Kavruk and Paulsen have shown that

$$C^{*}(F_{2}) \otimes_{\min} C^{*}(F_{2}) = C^{*}(F_{2}) \otimes_{\max} C^{*}(F_{2})$$
$$\iff \mathfrak{S}_{2} \otimes_{\min} \mathfrak{S}_{2} = \mathfrak{S}_{2} \otimes_{c} \mathfrak{S}_{2}.$$
$$\mathcal{A} \text{ has WEP } \iff \mathfrak{S}_{2} \otimes_{\min} \mathcal{A} = \mathfrak{S}_{2} \otimes_{\max} \mathcal{A}.$$

The operator system generated S_n by n universal unitaries can also be used to characterize WEP, Kirchberg's Conjecture, etc. Farenick, Kavruk and Paulsen have shown that

$$C^{*}(F_{2}) \otimes_{\min} C^{*}(F_{2}) = C^{*}(F_{2}) \otimes_{\max} C^{*}(F_{2})$$
$$\iff \mathfrak{S}_{2} \otimes_{\min} \mathfrak{S}_{2} = \mathfrak{S}_{2} \otimes_{c} \mathfrak{S}_{2}.$$
$$\mathcal{A} \text{ has WEP } \iff \mathfrak{S}_{2} \otimes_{\min} \mathcal{A} = \mathfrak{S}_{2} \otimes_{\max} \mathcal{A}.$$

The operator system generated by *n* universal unitaries is completely order isomorphic to the quotient of an operator subsystem of the matrix algebra. Hence, the WEP can be characterized by a lifting property.

The operator system generated S_n by n universal unitaries can also be used to characterize WEP, Kirchberg's Conjecture, etc. Farenick, Kavruk and Paulsen have shown that

$$C^{*}(F_{2}) \otimes_{\min} C^{*}(F_{2}) = C^{*}(F_{2}) \otimes_{\max} C^{*}(F_{2})$$
$$\iff \mathfrak{S}_{2} \otimes_{\min} \mathfrak{S}_{2} = \mathfrak{S}_{2} \otimes_{c} \mathfrak{S}_{2}.$$
$$\mathcal{A} \text{ has WEP } \iff \mathfrak{S}_{2} \otimes_{\min} \mathcal{A} = \mathfrak{S}_{2} \otimes_{\max} \mathcal{A}.$$

2 The operator system generated by *n* universal unitaries is completely order isomorphic to the quotient of an operator subsystem of the matrix algebra. Hence, the WEP can be characterized by a lifting property.

Also, it is observed that if S_n and T_n are two operator systems generated by n isometries with Cuntz relation, then S_n being completely order isomorphic to T_n implies C^{*}(S_n) = C^{*}(T_n).

Quotient of Operator Systems

Definition (Concrete Operator System)

A concrete operator system S is a unital *-closed subspace of a unital C^* -algebra A, that is, $S \subseteq A$ is a subspace of A such that $1 \in S$ and $a \in S \Rightarrow a^* \in S$.

Quotient of Operator Systems

Definition (Concrete Operator System)

A concrete operator system S is a unital *-closed subspace of a unital C^* -algebra A, that is, $S \subseteq A$ is a subspace of A such that $1 \in S$ and $a \in S \Rightarrow a^* \in S$.

Definition (Abstract Operator System)

An **abstract operator system** S is a matrix-ordered *-vector space with an Archimedean matrix order unit.

Quotient of Operator Systems

Definition (Concrete Operator System)

A concrete operator system S is a unital *-closed subspace of a unital C^* -algebra A, that is, $S \subseteq A$ is a subspace of A such that $1 \in S$ and $a \in S \Rightarrow a^* \in S$.

Definition (Abstract Operator System)

An **abstract operator system** S is a matrix-ordered *-vector space with an Archimedean matrix order unit.

We write $M_n(S)^+$, $n \in \mathbb{N}$ for the positive cones of S and $(a_{ij}) \ge 0$ if $(a_{ij}) \in M_n(S)^+$.

イロト イポト イヨト イヨト 二日

Definition (Completely Positive Maps)

Let S and T be operator systems. A linear map $\phi : S \to T$ is called **completely positive** if

 $\phi^{(n)}((a_{ij})) := (\phi(a_{ij})) \ge 0, \quad \text{ for each } (a_{ij}) \in M_n(\mathcal{S})^+ \text{ and for all } n \in \mathbb{N}.$

Definition (Completely Positive Maps)

Let S and T be operator systems. A linear map $\phi: S \to T$ is called **completely positive** if

 $\phi^{(n)}((a_{ij})) := (\phi(a_{ij})) \geq 0, \quad \text{ for each } (a_{ij}) \in M_n(\mathcal{S})^+ \text{ and for all } n \in \mathbb{N}.$

Definition (Complete Order Isomorphism, Complete Order Inclusion))

Let S and T be operators systems. A map $\phi : S \to T$ is called a **complete order isomorphism** if ϕ is a unital linear isomorphism and both ϕ and ϕ^{-1} are completely positive, and we say that S is completely order isomorphic to T if such ϕ exists.

イロト イポト イヨト イヨト 二日

Definition (Completely Positive Maps)

Let S and T be operator systems. A linear map $\phi: S \to T$ is called **completely positive** if

 $\phi^{(n)}((a_{ij})) := (\phi(a_{ij})) \geq 0, \quad \text{ for each } (a_{ij}) \in M_n(\mathcal{S})^+ \text{ and for all } n \in \mathbb{N}.$

Definition (Complete Order Isomorphism, Complete Order Inclusion))

Let S and T be operators systems. A map $\phi : S \to T$ is called a **complete order isomorphism** if ϕ is a unital linear isomorphism and both ϕ and ϕ^{-1} are completely positive, and we say that S is completely order isomorphic to T if such ϕ exists. A map ϕ is called a **complete order inclusion** if it is a complete order isomorphism onto its range with $\phi(1_S)$ being an Archimedean order unit. We shall denote this by $S \subseteq_{c,o,i} T$.

Theorem (Choi, Effros)

Let S be an abstract operator system, then there exists a Hilbert space \mathcal{H} , a concrete operator system $S_1 \subseteq B(\mathcal{H})$, and a unital complete order isomorphism $\varphi : S \to S_1$. Conversely, a concrete operator system is also an abstract operator system.

Theorem (Choi, Effros)

Let S be an abstract operator system, then there exists a Hilbert space \mathcal{H} , a concrete operator system $S_1 \subseteq B(\mathcal{H})$, and a unital complete order isomorphism $\varphi : S \to S_1$. Conversely, a concrete operator system is also an abstract operator system.

Due to this theorem, we can always identify an abstract operator system with a concrete one.

Definition (Kernel)

Given an operator system S, we call $J \subseteq S$ a *kernel*, if $J = \text{ker } \phi$ for an operator system T and some (unital) completely positive map $\phi : S \to T$.

Definition (Kernel)

Given an operator system S, we call $J \subseteq S$ a *kernel*, if $J = \text{ker } \phi$ for an operator system T and some (unital) completely positive map $\phi : S \to T$.

Proposition (Kavruk, Paulsen, Todorov, Tomforde)

Let S be an operator system and $J \subseteq S$ be kernel, if we define a family of matrix cones on S/J by setting

 $C_n = \{ (x_{ij} + J) \in M_n(S/J) : \text{ for each } \epsilon > 0, \text{ there exists } (k_{ij}) \in M_n(J) \\ \text{ such that } \epsilon \otimes I_n + (x_{ij} + k_{ij}) \in M_n(S)^+ \}.$

then $(S/J, \{C_n\}_{n=1}^{\infty})$ is a matrix ordered *-vector space with an Archimedean matrix unit 1 + J, and the quotient map $q : S \to S/J$ is completely positive.

イロト イポト イヨト イヨト 二日

Definition (Operator System Quotient)

Let S be an operator system and $J \subseteq S$ be kernel. We call the operator system $(S/J, \{C_n\}_{n=1}^{\infty}, 1+J)$ the **quotient operator system**.

Definition (Operator System Quotient)

Let S be an operator system and $J \subseteq S$ be kernel. We call the operator system $(S/J, \{C_n\}_{n=1}^{\infty}, 1+J)$ the **quotient operator system**.

Definition (Complete Quotient Map)

Let S, T be operator systems and $\phi : S \to T$ be a completely positive map, then ϕ is called a **complete quotient map** if $S/\operatorname{Ker} \phi$ is complete order isomorphic to T.

The Operator System Generated by Cuntz Isometries

Let S_1, \ldots, S_n be $n \ (n \ge 2)$ isometries in $B(\mathcal{H})$ with $\sum_{i=1}^n S_i S_i^* = I$, where $B(\mathcal{H})$ denotes the space of all bounded linear operators on some Hilbert space \mathcal{H} , I denotes the identity on \mathcal{H} and we set

$$\mathcal{S}_n = \operatorname{span}\{I, S_1, \dots, S_n, S_1^*, \dots, S_n^*\},$$

so that S_n is the operator system generated by the Cuntz isometries.

The Operator System Generated by Cuntz Isometries

Let S_1, \ldots, S_n be $n \ (n \ge 2)$ isometries in $B(\mathcal{H})$ with $\sum_{i=1}^n S_i S_i^* = I$, where $B(\mathcal{H})$ denotes the space of all bounded linear operators on some Hilbert space \mathcal{H} , I denotes the identity on \mathcal{H} and we set

$$\mathcal{S}_n = \operatorname{span}\{I, S_1, \dots, S_n, S_1^*, \dots, S_n^*\},$$

so that S_n is the operator system generated by the Cuntz isometries. On the other hand, let $\hat{S}_1, \dots, \hat{S}_n$ be $n \ (n \ge 2)$ isometries with $\sum_{i=1}^n \hat{S}_i \hat{S}_i^* < I$ and set

$$\hat{\mathcal{S}}_n = \operatorname{span}\{I, \hat{\mathcal{S}}_1, \dots, \hat{\mathcal{S}}_n, \hat{\mathcal{S}}_1^*, \dots, \hat{\mathcal{S}}_n^*\},\$$

so that \hat{S}_n is the operator system generated by the Toeplitz-Cuntz isometries.

Proposition

Let $\hat{S}_1, \dots, \hat{S}_n$ be $n \ (n \ge 2)$ isometries with $\sum_{i=1}^n \hat{S}_i \hat{S}_i^* < I$, then they can be dilated to n isometries S_1, \dots, S_n with $\sum_{i=1}^n S_i S_i^* = I$.

Proposition

Let $\hat{S}_1, \dots, \hat{S}_n$ be $n \ (n \ge 2)$ isometries with $\sum_{i=1}^n \hat{S}_i \hat{S}_i^* < I$, then they can be dilated to n isometries S_1, \dots, S_n with $\sum_{i=1}^n S_i S_i^* = I$.

Proposition

We have that $S_n = \hat{S}_n$ completely order isometrically.

Hence, we do not need to distinguish S_n and \hat{S}_n .

Definition

An *n*-tuple $(a_1, \ldots, a_n) \in A$ is called a **row contraction** if $\sum_{i=1}^n a_i a_i^* \leq 1$, where A is a unital C^* -algebra.

3

Definition

An *n*-tuple $(a_1, \ldots, a_n) \in \mathcal{A}$ is called a **row contraction** if $\sum_{i=1}^n a_i a_i^* \leq 1$, where \mathcal{A} is a unital C^* -algebra.

Proposition (Bunce)

Let $\{A_i : i \in \Gamma\}$ be a family of bounded operators on a Hilbert space \mathcal{H} . Then the following two conditions are equivalent.

② There exists a Hilbert space \mathcal{K} containing \mathcal{H} and coisometries $\{S_i : i \in \Gamma\}$ acting on \mathcal{K} such that $S_i S_j^* = 0$ for $i \neq j$, and $S_i(\mathcal{H}) \subseteq \mathcal{H}, S_i|_{\mathcal{H}} = A_i$ for each *i*.

・ロト ・同ト ・ヨト ・ヨト

Definition

An *n*-tuple $(a_1, \ldots, a_n) \in A$ is called a **row contraction** if $\sum_{i=1}^n a_i a_i^* \leq 1$, where A is a unital C^* -algebra.

Proposition (Bunce)

Let $\{A_i : i \in \Gamma\}$ be a family of bounded operators on a Hilbert space \mathcal{H} . Then the following two conditions are equivalent.

2 There exists a Hilbert space \mathcal{K} containing \mathcal{H} and coisometries $\{S_i : i \in \Gamma\}$ acting on \mathcal{K} such that $S_i S_j^* = 0$ for $i \neq j$, and $S_i(\mathcal{H}) \subseteq \mathcal{H}, S_i|_{\mathcal{H}} = A_i$ for each i.

Proposition (Universal Property of S_n)

For any row contraction $(A_1, \dots, A_n) \in A$, there exists a unital completely positive map $\phi : S_n \to A$ such that $\phi(S_i) = A_i$, $1 \le i \le n$.

3

< ロ > < 同 > < 回 > < 回 > < □ > <

In order to study S_n , we construct an operator subsystem $\mathcal{E}_n \subseteq M_{n+1} := M_{n+1}(\mathbb{C})$ and prove that S_n is complete order isomorphic to a quotient of \mathcal{E}_n . This will allow us to study S_n via \mathcal{E}_n . In order to study S_n , we construct an operator subsystem $\mathcal{E}_n \subseteq M_{n+1} := M_{n+1}(\mathbb{C})$ and prove that S_n is complete order isomorphic to a quotient of \mathcal{E}_n . This will allow us to study S_n via \mathcal{E}_n .

Definition

We define $\mathcal{E}_n \subseteq M_{n+1}$ as the following,

$$\mathcal{E}_n = \operatorname{span}\{E_{00}, E_{0i}, E_{i0}, \sum_{i=1}^n E_{ii} : 1 \le i \le n\},\$$

where E_{ij} denotes the elements in the canonical basis of M_{n+1} .

In order to study S_n , we construct an operator subsystem $\mathcal{E}_n \subseteq M_{n+1} := M_{n+1}(\mathbb{C})$ and prove that S_n is complete order isomorphic to a quotient of \mathcal{E}_n . This will allow us to study S_n via \mathcal{E}_n .

Definition

We define $\mathcal{E}_n \subseteq M_{n+1}$ as the following,

$$\mathcal{E}_n = \operatorname{span}\{E_{00}, E_{0i}, E_{i0}, \sum_{i=1}^n E_{ii} : 1 \le i \le n\},\$$

where E_{ij} denotes the elements in the canonical basis of M_{n+1} .

We have that an element in \mathcal{E}_n is of the following form,

$$\begin{pmatrix} a_{00} & a_{01} & \cdots & a_{0,n} \\ a_{10} & b & & \\ \vdots & & \ddots & \\ a_{n0} & & b \end{pmatrix}$$

We define an operator
$$R: \mathcal{H}^{(n+1)} \to \mathcal{H}$$
 by $R:=(rac{\sqrt{2}}{2}I, rac{\sqrt{2}}{2}S_1^*, \dots, rac{\sqrt{2}}{2}S_n^*)$.

æ

We define an operator $R: \mathcal{H}^{(n+1)} \to \mathcal{H}$ by $R:=(\frac{\sqrt{2}}{2}I, \frac{\sqrt{2}}{2}S_1^*, \dots, \frac{\sqrt{2}}{2}S_n^*)$. So we know that

$$R^*R = \begin{pmatrix} \frac{1}{2}I & \frac{1}{2}S_1^* & \cdots & \frac{1}{2}S_n^* \\ \frac{1}{2}S_1 & & & \\ \vdots & & (\frac{1}{2}S_iS_j^*) \\ \frac{1}{2}S_n & & & \end{pmatrix}$$

is positive in $M_{n+1}(B(\mathcal{H}))$.

,

We define an operator $R: \mathcal{H}^{(n+1)} \to \mathcal{H}$ by $R:=(\frac{\sqrt{2}}{2}I, \frac{\sqrt{2}}{2}S_1^*, \dots, \frac{\sqrt{2}}{2}S_n^*)$. So we know that

$$R^*R = \begin{pmatrix} \frac{1}{2}I & \frac{1}{2}S_1^* & \cdots & \frac{1}{2}S_n^* \\ \frac{1}{2}S_1 & & & \\ \vdots & & (\frac{1}{2}S_iS_j^*) \\ \frac{1}{2}S_n & & & \end{pmatrix},$$

is positive in $M_{n+1}(B(\mathcal{H}))$.

Then, we define $\psi: M_{n+1} \to B(\mathcal{H})$ by

$$\left(\psi(E_{ij})\right)_{i,j=0}^n=R^*R,$$

and extend it linearly to M_{n+1} .

We define an operator $R : \mathcal{H}^{(n+1)} \to \mathcal{H}$ by $R := (\frac{\sqrt{2}}{2}I, \frac{\sqrt{2}}{2}S_1^*, \dots, \frac{\sqrt{2}}{2}S_n^*)$. So we know that

$$R^*R = \begin{pmatrix} \frac{1}{2}I & \frac{1}{2}S_1^* & \cdots & \frac{1}{2}S_n^* \\ \frac{1}{2}S_1 & & & \\ \vdots & & (\frac{1}{2}S_iS_j^*) \\ \frac{1}{2}S_n & & & \end{pmatrix},$$

is positive in $M_{n+1}(B(\mathcal{H}))$.

Then, we define $\psi: M_{n+1} \rightarrow B(\mathcal{H})$ by

$$\left(\psi(E_{ij})\right)_{i,j=0}^n = R^*R,$$

and extend it linearly to M_{n+1} .

Since $\sum_{i=1}^{n} S_i S_i^* = I$, we have that ψ is unital. Also, it is easy to see that Ker $\psi = \text{span}\{E_{00} - \sum_{i=1}^{n} E_{ii}\}$. Henceforth, we denote $J := \text{Ker } \psi$

Theorem (Choi)

Let \mathcal{A} be a C^* -algebra, $\phi : M_n \to \mathcal{A}$ be linear, and $\{E_{ij}\}$ be the standard matrix units for M_n , then the following are equivalent:

- **1** ϕ is completely positive.
- **2** ϕ is *n*-positive.
- $(\phi(E_{ij}))_{i,j=0}^n$ is positive in $M_n(\mathcal{A})$.

Theorem (Choi)

Let \mathcal{A} be a C^* -algebra, $\phi : M_n \to \mathcal{A}$ be linear, and $\{E_{ij}\}$ be the standard matrix units for M_n , then the following are equivalent:

- **1** ϕ is completely positive.
- **2** ϕ is *n*-positive.
- $(\phi(E_{ij}))_{i,j=0}^n$ is positive in $M_n(\mathcal{A})$.

Thus, ψ is a unital completely positive map. Let $\phi = \psi|_{\mathcal{E}_n} : \mathcal{E}_n \to \mathcal{S}_n$, then we have that ϕ is also unital completely positive map with ker $\phi = J$.

Theorem (Choi)

Let \mathcal{A} be a C^* -algebra, $\phi : M_n \to \mathcal{A}$ be linear, and $\{E_{ij}\}$ be the standard matrix units for M_n , then the following are equivalent:

- **1** ϕ is completely positive.
- **2** ϕ is *n*-positive.
- $(\phi(E_{ij}))_{i,j=0}^n$ is positive in $M_n(\mathcal{A})$.

Thus, ψ is a unital completely positive map. Let $\phi = \psi|_{\mathcal{E}_n} : \mathcal{E}_n \to \mathcal{S}_n$, then we have that ϕ is also unital completely positive map with ker $\phi = J$. Indeed, we can prove that

Theorem

We have that $\mathcal{E}_n/J = \mathcal{S}_n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
By using the following identification

$$M_p(\mathcal{E})/M_p(J) = M_p(\mathcal{E}/J) = M_p \otimes (\mathcal{E}/J).$$

We can prove that

Theorem

The matrix of operators $A_0 \otimes I + \sum_{i=1}^n A_i \otimes S_i + \sum_{i=1}^n A_i^* \otimes S_i^* \in M_p(S)$ is positive if and only if there exists $B \in M_p$ such that

$$\begin{pmatrix} A_0 & 2A_1^* & \cdots & 2A_n^* \\ 2A_1 & A_0 & & \\ \vdots & & \ddots & \\ 2A_n & & & A_0 \end{pmatrix} + \begin{pmatrix} B & & & \\ & -B & & \\ & & \ddots & \\ & & & -B \end{pmatrix} \ge 0$$

Remark

æ

<ロ> <同> <同> < 同> < 同>

Remark

If U is a universal unitary and V is a universal isometry, we still have that span $\{I, U, U^*\}$ is completely order isomorphic to span $\{I, V, V^*\}$.

Remark

If U is a universal unitary and V is a universal isometry, we still have that span $\{I, U, U^*\}$ is completely order isomorphic to span $\{I, V, V^*\}$.

Let $S_{\infty} = \text{span}\{I, S_i, S_i^* : 1 \le i < +\infty\}$, where $\{S_i\}$ are the generators of \mathcal{O}_{∞} , then for $n < m \le \infty$, $S_n \subseteq_{\text{c.o.i}} S_m$.

Let S be an operator system and S^d be the space of all bounded linear functionals on it. We define an order structure on S^d by

 $(f_{ij}) \in M_p(\mathcal{S}_n^d)^+ \Leftrightarrow (f_{ij}) : \mathcal{S}_n \to M_p$ is completely positive .

Let S be an operator system and S^d be the space of all bounded linear functionals on it. We define an order structure on S^d by

 $(f_{ij}) \in M_p(\mathcal{S}_n^d)^+ \Leftrightarrow (f_{ij}) : \mathcal{S}_n \to M_p$ is completely positive .

It is a well-known result by Choi and Effros that with the order structure defined above, the dual space of a finite dimensional operator system is again an operator system with an Archimedean order unit, and indeed, any strictly positive linear functional is an Archimedean order unit. Hence, S_n^d is an operator system with Archimedean order unit δ_0 .

We choose a basis for \mathcal{S}_n^d as the following,

$$\{\delta_0, \delta_i, \delta_i^* : 1 \le i \le n\},\$$

where

$$\begin{split} \delta_0(I) &:= 1, \delta_0(S_i) := \delta_0(S_i^*) = 0, & \text{for all } i; \\ \delta_i(I) &= 0, \delta_i(S_j) = \delta_{ij}, \delta_i(S_k^*) = 0, & \text{for all } k; \\ \delta_i^*(I) &= 0, \delta_i^*(S_j^*) = \delta_{ij}, \delta_i(S_k) = 0, & \text{for all } k, \end{split}$$

where δ_{ij} is the Kronecker delta notation. So we have that $S_n^d = \operatorname{span}\{\delta_0, \delta_i, \delta_i^* : 1 \le i \le n\}$.

Proposition

An element $I_p \otimes \delta_0 + \sum_{i=1}^n A_i \otimes \delta_i + \sum_{i=1}^n A_i^* \otimes \delta_i^* \in M_p(\mathcal{S}_n^d)$ is positive if and only if (A_1, \ldots, A_n) is a row contraction.

3

Proposition

An element $I_p \otimes \delta_0 + \sum_{i=1}^n A_i \otimes \delta_i + \sum_{i=1}^n A_i^* \otimes \delta_i^* \in M_p(\mathcal{S}_n^d)$ is positive if and only if (A_1, \ldots, A_n) is a row contraction.

Corollary

A unital linear map $\phi : S_n^d \to A$ is completely positive if and only if ϕ is self-adjoint and

$$w(S_1 \otimes \phi(\delta_1) + \cdots + S_n \otimes \phi(\delta_n)) \leq \frac{1}{2},$$

where S_1, \ldots, S_n are Cuntz isometries.

Question

Does S_n inherit the nuclearity of \mathcal{O}_n ? Does the tensor properties of S_n implies the nuclearity of \mathcal{O}_n ?

Question

Does S_n inherit the nuclearity of \mathcal{O}_n ? Does the tensor properties of S_n implies the nuclearity of \mathcal{O}_n ?

The following proposition can be proved by using Choi's multiplicative domain techniques.

Proposition

If we have that

$$\mathcal{S}_n \otimes_{\min} \mathcal{A} = \mathcal{S}_n \otimes_{\max} \mathcal{A},$$

for a C^{*}-algebra A, then without using the nuclearity of \mathcal{O}_n , we have that

$$\mathcal{O}_n \otimes_{\min} \mathcal{A} = \mathcal{O}_n \otimes_{\max} \mathcal{A}.$$

 $\alpha_n = motivation$

So if we can show that $S_n \otimes_{\min} A = S_n \otimes_{\max} A$, then we will be able to give an alternative proof of the nuclearity of \mathcal{O}_n .

So if we can show that $S_n \otimes_{\min} \mathcal{A} = S_n \otimes_{\max} \mathcal{A}$, then we will be able to give an alternative proof of the nuclearity of \mathcal{O}_n . Using the nuclearity of \mathcal{O}_n , we can show that this even by using the fact that \mathcal{O}_n is exact. Without using the nuclearity of \mathcal{O}_n , we can show that $S_n \otimes_{\min} B(\mathcal{H}) = S_n \otimes_{\max} B(\mathcal{H})$ (OSLLP), for any Hilbert space \mathcal{H} . Finally, we turn our attention to S_n^d and we can see that S_n^d has the LP. In addition, we use the LP of S_n^d to prove a lifting result concerning the joint numerical radius.

Definition (The Min Tensor Product)

The minimal operator system structure on $\mathcal{S}\otimes\mathcal{T}$ is defined as

$$C_n^{\min} = \{ (p_{ij}) \in M_n(S \otimes \mathcal{T}) : \left((\phi \otimes \psi)(p_{ij}) \right) \in M_{nkm}^+,$$

for all $\phi \in S_k(S), \psi \in S_m(\mathcal{T}), \text{ for all } k, m \in \mathbb{N} \},$

where $S_k(\mathcal{S})$ denotes the set of all completely positive maps from \mathcal{S} to M_k . We call the operator system $(\mathcal{S} \otimes \mathcal{T}, (C_n^{\min})_{n=1}^{\infty}, 1 \otimes 1)$ the **minimal tensor product** of \mathcal{S} and \mathcal{T} and denote it by $\mathcal{S} \otimes_{\min} \mathcal{T}$.

Definition (The Min Tensor Product)

The minimal operator system structure on $\mathcal{S}\otimes\mathcal{T}$ is defined as

$$C_n^{\min} = \{ (p_{ij}) \in M_n(S \otimes \mathcal{T}) : \left((\phi \otimes \psi)(p_{ij}) \right) \in M_{nkm}^+,$$

for all $\phi \in S_k(S), \psi \in S_m(\mathcal{T}), \text{ for all } k, m \in \mathbb{N} \},$

where $S_k(S)$ denotes the set of all completely positive maps from S to M_k . We call the operator system $(S \otimes \mathcal{T}, (C_n^{\min})_{n=1}^{\infty}, 1 \otimes 1)$ the **minimal tensor product** of S and \mathcal{T} and denote it by $S \otimes_{\min} \mathcal{T}$.

It can be shown that the min-tensor product is injective ,associative, symmetric and functorial. Moreover, it coincide with the operator system arising from the embedding $S \otimes T \subseteq_{c.o.i} B(H \otimes K)$.

Definition (The Max Tensor Product)

The maximal operator system structure on $S \otimes T$ is defined as the Archimedeanization of the following cones:

 $D_n^{\max} = \{a(P \otimes Q)a^* : P \in M_k(\mathcal{S})^+, Q \in M_m(\mathcal{T})^+, a \in M_{n,km}, k, m \in \mathbb{N}\}.$

We denote the Archimedeanization of D_n^{\max} as C_n^{\max} , then the **maximal tensor product** of S and T, denoted by $S \otimes_{\max} T$, is the operator system $(S \otimes T, (C_n^{\max})_{n=1}^{\infty}, 1 \otimes 1).$

Definition (The Max Tensor Product)

The maximal operator system structure on $S \otimes T$ is defined as the Archimedeanization of the following cones:

 $D_n^{\max} = \{a(P \otimes Q)a^* : P \in M_k(\mathcal{S})^+, Q \in M_m(\mathcal{T})^+, a \in M_{n,km}, k, m \in \mathbb{N}\}.$

We denote the Archimedeanization of D_n^{\max} as C_n^{\max} , then the **maximal tensor product** of S and T, denoted by $S \otimes_{\max} T$, is the operator system $(S \otimes T, (C_n^{\max})_{n=1}^{\infty}, 1 \otimes 1).$

The max-tensor product is symmetric, associative and functorial. We will also see later that it is projective.

Let $\{\mathcal{S}, \mathcal{T}\}$ be operator systems. We set

 $CP(\mathcal{S}, \mathcal{T}) = \{(\phi, \psi) : \phi \text{ is CP from } \mathcal{S} \text{ to } B(\mathcal{H}), \\ \psi \text{ is CP from } \mathcal{T} \text{ to } B(\mathcal{H}), \text{ and } \phi(\mathcal{S}) \text{ commutes with } \phi(\mathcal{T})\}$

Let $\{\mathcal{S}, \mathcal{T}\}$ be operator systems. We set

 $CP(\mathcal{S}, \mathcal{T}) = \{(\phi, \psi) : \phi \text{ is CP from } \mathcal{S} \text{ to } B(\mathcal{H}), \\ \psi \text{ is CP from } \mathcal{T} \text{ to } B(\mathcal{H}), \text{ and } \phi(\mathcal{S}) \text{ commutes with } \phi(\mathcal{T})\}$

We define $\phi \cdots \psi : S \otimes T \to B(H)$ as $\phi \cdot \psi(x \otimes y) = \phi(x)\psi(y)$. The **commuting operator system structure** on $S \otimes T$ is defined as:

$$C_n^c = \{ u \in M_n(\mathcal{S} \otimes \mathcal{T}) : (\phi \cdot \psi)^{(n)}(u) \ge 0, \text{ for all } (\phi, \psi) \in \mathsf{CP}(\mathcal{S}, \mathcal{T}).$$

Let $\{\mathcal{S}, \mathcal{T}\}$ be operator systems. We set

 $CP(\mathcal{S}, \mathcal{T}) = \{(\phi, \psi) : \phi \text{ is } CP \text{ from } \mathcal{S} \text{ to } B(\mathcal{H}), \\ \psi \text{ is } CP \text{ from } \mathcal{T} \text{ to } B(\mathcal{H}), \text{ and } \phi(\mathcal{S}) \text{ commutes with } \phi(\mathcal{T})\}$

We define $\phi \cdots \psi : S \otimes T \to B(H)$ as $\phi \cdot \psi(x \otimes y) = \phi(x)\psi(y)$. The **commuting operator system structure** on $S \otimes T$ is defined as:

 $C_n^c = \{ u \in M_n(\mathcal{S} \otimes \mathcal{T}) : (\phi \cdot \psi)^{(n)}(u) \ge 0, \text{ for all } (\phi, \psi) \in \mathsf{CP}(\mathcal{S}, \mathcal{T}).$

We call the operator system $(S \otimes T, (C_n^c)_{n=1}^{\infty}, 1 \otimes 1)$ the **commuting tensor product** of S and T and denote it by $S \otimes_c T$.

Let $\{\mathcal{S}, \mathcal{T}\}$ be operator systems. We set

 $CP(\mathcal{S}, \mathcal{T}) = \{(\phi, \psi) : \phi \text{ is CP from } \mathcal{S} \text{ to } B(\mathcal{H}), \\ \psi \text{ is CP from } \mathcal{T} \text{ to } B(\mathcal{H}), \text{ and } \phi(\mathcal{S}) \text{ commutes with } \phi(\mathcal{T})\}$

We define $\phi \cdots \psi : S \otimes T \to B(H)$ as $\phi \cdot \psi(x \otimes y) = \phi(x)\psi(y)$. The **commuting operator system structure** on $S \otimes T$ is defined as:

 $C_n^c = \{ u \in M_n(\mathcal{S} \otimes \mathcal{T}) : (\phi \cdot \psi)^{(n)}(u) \ge 0, \text{ for all } (\phi, \psi) \in \mathsf{CP}(\mathcal{S}, \mathcal{T}).$

We call the operator system $(S \otimes T, (C_n^c)_{n=1}^{\infty}, 1 \otimes 1)$ the **commuting tensor product** of S and T and denote it by $S \otimes_c T$.

The commuting-tensor product is symmetric and functorial. Also, if \mathcal{A} is a \mathcal{C}^* -algebra and \mathcal{S} is an operator system, then we have $\mathcal{S} \otimes_c \mathcal{A} = \mathcal{S} \otimes_{max} \mathcal{A}$.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Definition (The el and er Tensor Product)

We let $S \otimes_{el} \mathcal{T}$ (resp. $S \otimes_{er} \mathcal{T}$) be the operator system whose operator structure on $S \otimes \mathcal{T}$ is induced by the inclusion $S \otimes \mathcal{T} \subseteq \mathcal{I}(S) \otimes_{max} \mathcal{T}$ (resp. $S \otimes_{max} \mathcal{I}(\mathcal{T})$). Here, $\mathcal{I}(S)$ denotes the injective envelope of S.

Definition (The el and er Tensor Product)

We let $S \otimes_{el} \mathcal{T}$ (resp. $S \otimes_{er} \mathcal{T}$) be the operator system whose operator structure on $S \otimes \mathcal{T}$ is induced by the inclusion $S \otimes \mathcal{T} \subseteq \mathcal{I}(S) \otimes_{max} \mathcal{T}$ (resp. $S \otimes_{max} \mathcal{I}(\mathcal{T})$). Here, $\mathcal{I}(S)$ denotes the injective envelope of S.

We have that el, er-tensor product are both functorial but not symmetric.

• We call $\tau_1 \leq \tau_2$ if $M_n(S \otimes_{\tau_2} T)^+ \subseteq M_n(S \otimes_{\tau_1} T)^+$ for every $n \in \mathbb{N}$.

Definition (The el and er Tensor Product)

We let $S \otimes_{el} \mathcal{T}$ (resp. $S \otimes_{er} \mathcal{T}$) be the operator system whose operator structure on $S \otimes \mathcal{T}$ is induced by the inclusion $S \otimes \mathcal{T} \subseteq \mathcal{I}(S) \otimes_{max} \mathcal{T}$ (resp. $S \otimes_{max} \mathcal{I}(\mathcal{T})$). Here, $\mathcal{I}(S)$ denotes the injective envelope of S.

We have that el, er-tensor product are both functorial but not symmetric.

- We call $\tau_1 \leq \tau_2$ if $M_n(S \otimes_{\tau_2} \mathcal{T})^+ \subseteq M_n(S \otimes_{\tau_1} \mathcal{T})^+$ for every $n \in \mathbb{N}$.
- 2 Let α and β be two operator system tensor products. An operator system S is called (α, β)-nuclear if the identity map between S ⊗_α T and S ⊗_β T is completely order isomorphic for every operator system T.

The order relations between these tensor products are:

 $\min \leq el, er \leq c \leq \max$.

The operator system S_n is not (min, max)-nuclear.

-

- 4 市

э

Claim

The operator system S_n is not (min, max)-nuclear.

We consider the operator system \mathfrak{S}_1 generate by a universal unitary u, i.e. $\mathfrak{S}_1 = \operatorname{span}\{1, u, u^*\}$. It has been proved that

Example (Farenick, Kavruk, Paulsen, Todorov)

 $\mathfrak{S}_1 \otimes_{\mathsf{min}} \mathfrak{S}_1 \neq \mathfrak{S}_1 \otimes_{\mathsf{max}} \mathfrak{S}_1.$

Claim

The operator system S_n is not (min, max)-nuclear.

We consider the operator system \mathfrak{S}_1 generate by a universal unitary u, i.e. $\mathfrak{S}_1 = \operatorname{span}\{1, u, u^*\}$. It has been proved that

Example (Farenick, Kavruk, Paulsen, Todorov)

$$\mathfrak{S}_1 \otimes_{\mathsf{min}} \mathfrak{S}_1 \neq \mathfrak{S}_1 \otimes_{\mathsf{max}} \mathfrak{S}_1.$$

On the other hand, let S_1 be the operator system generated by a universal isometry, i.e. $S_1 = \text{span}\{I, S_1, S_1^*\}$, where S_1 is an arbitrary isometry with $S_1S_1^* < I$. We have that

$$\mathfrak{S}_1 = \mathcal{S}_1.$$

This shows that

$$\mathfrak{S}_1 \otimes_{\mathsf{min}} \mathcal{S}_1 \neq \mathfrak{S}_1 \otimes_{\mathsf{max}} \mathcal{S}_1.$$

æ

-∢≣⇒

(日)

This shows that

$$\mathfrak{S}_1 \otimes_{\min} \mathcal{S}_1 \neq \mathfrak{S}_1 \otimes_{\max} \mathcal{S}_1.$$

However, $\Phi(X) = S_1^* X S_1$ is a completely positive projection from S_n onto S_1 . Thus,

$$\begin{split} \mathfrak{S}_1 \otimes_{\min} \mathcal{S}_1 &\subseteq_{\mathsf{c.o.i}} \mathfrak{S}_1 \otimes_{\min} \mathcal{S}_n \\ \mathfrak{S}_1 \otimes_{\max} \mathcal{S}_1 &\subseteq_{\mathsf{c.o.i}} \mathfrak{S}_1 \otimes_{\max} \mathcal{S}_n. \end{split}$$

 This shows that

$$\mathfrak{S}_1 \otimes_{\min} \mathcal{S}_1 \neq \mathfrak{S}_1 \otimes_{\max} \mathcal{S}_1.$$

However, $\Phi(X) = S_1^* X S_1$ is a completely positive projection from S_n onto S_1 . Thus,

$$\begin{split} \mathfrak{S}_1 \otimes_{\min} \mathcal{S}_1 &\subseteq_{\mathsf{c.o.i}} \mathfrak{S}_1 \otimes_{\min} \mathcal{S}_n \\ \mathfrak{S}_1 \otimes_{\max} \mathcal{S}_1 &\subseteq_{\mathsf{c.o.i}} \mathfrak{S}_1 \otimes_{\max} \mathcal{S}_n. \end{split}$$

So $\mathfrak{S}_1 \otimes_{\min} \mathcal{S}_n \neq \mathfrak{S}_1 \otimes_{\max} \mathcal{S}_n$.

Theorem (Farenick, Paulsen)

Let S and T be finite-dimensional operator systems. Then we have that

$$(\mathcal{S} \otimes_{\min} \mathcal{T})^d = \mathcal{S}^d \otimes_{\max} \mathcal{T}^d,$$

and

$$(\mathcal{S} \otimes_{\max} \mathcal{T})^d = \mathcal{S}^d \otimes_{\min} \mathcal{T}^d.$$

э

Theorem (Farenick, Paulsen)

Let S and T be finite-dimensional operator systems. Then we have that

$$(\mathcal{S} \otimes_{\min} \mathcal{T})^d = \mathcal{S}^d \otimes_{\max} \mathcal{T}^d,$$

and

$$(\mathcal{S} \otimes_{\max} \mathcal{T})^d = \mathcal{S}^d \otimes_{\min} \mathcal{T}^d.$$

Thus, it follows from the last slide that $\mathfrak{S}_1^d \otimes_{\min} \mathcal{S}_n^d \neq \mathfrak{S}_1^d \otimes_{\max} \mathcal{S}_n^d$

э

An operator system S is called *left exact* if for every unital C^* -algebra \mathcal{B} and every ideal $I \subseteq \mathcal{B}$, we have that $I \hat{\otimes}_{\min} S$ is the kernel of the map $q \otimes \operatorname{id}_S : \mathcal{B} \hat{\otimes}_{\min} S \to (\mathcal{B}/I) \hat{\otimes}_{\min} S$, where $q : \mathcal{B} \to \mathcal{B}/I$ is the quotient map.

An operator system S is called *left exact* if for every unital C^* -algebra \mathcal{B} and every ideal $I \subseteq \mathcal{B}$, we have that $I \otimes_{\min} S$ is the kernel of the map $q \otimes \operatorname{id}_S : \mathcal{B} \otimes_{\min} S \to (\mathcal{B}/I) \otimes_{\min} S$, where $q : \mathcal{B} \to \mathcal{B}/I$ is the quotient map. We call S right exact if $q \otimes \operatorname{id}_S$ is surjective for every such pair I, \mathcal{B} .

An operator system S is called *left exact* if for every unital C^* -algebra \mathcal{B} and every ideal $I \subseteq \mathcal{B}$, we have that $I \otimes_{\min} S$ is the kernel of the map $q \otimes \operatorname{id}_S : \mathcal{B} \otimes_{\min} S \to (\mathcal{B}/I) \otimes_{\min} S$, where $q : \mathcal{B} \to \mathcal{B}/I$ is the quotient map. We call S right exact if $q \otimes \operatorname{id}_S$ is surjective for every such pair I, \mathcal{B} . We call S exact if it is both left and right exact.
Definition (Left Exact, Right Exact, Exact, 1-exact)

An operator system S is called *left exact* if for every unital C^* -algebra \mathcal{B} and every ideal $I \subseteq \mathcal{B}$, we have that $I \otimes_{\min} S$ is the kernel of the map $q \otimes \operatorname{id}_S : \mathcal{B} \otimes_{\min} S \to (\mathcal{B}/I) \otimes_{\min} S$, where $q : \mathcal{B} \to \mathcal{B}/I$ is the quotient map. We call S right exact if $q \otimes \operatorname{id}_S$ is surjective for every such pair I, \mathcal{B} . We call S exact if it is both left and right exact. We call S 1-exact if it is exact and the induced map from the operator system quotient,

$$\mathcal{B}\hat{\otimes}_{\min}\mathcal{S}/(I\hat{\otimes}_{\min}\mathcal{S}) \to (\mathcal{B}/I)\hat{\otimes}_{\min}\mathcal{S}),$$

is a complete order isomorphism.

The following properties of an operator system are equivalent:

The following properties of an operator system are equivalent:

● S is (min,el)-nuclear;

The following properties of an operator system are equivalent:

- S is (min,el)-nuclear;
- **2** S is C^* -(min,el)-nuclear;

The following properties of an operator system are equivalent:

- S is (min,el)-nuclear;
- ❷ S is C^{*}-(min,el)-nuclear;
- S is 1-exact.

The operator system S_n is 1-exact.

-

-

< 1 →

The operator system S_n is 1-exact.

Proof.

For any operator system \mathcal{T} , we have that

 $\mathcal{S}_n \otimes_{\mathsf{el}} \mathcal{T} \subseteq_{\mathsf{c.o.i}} \mathcal{O}_n \otimes_{\mathsf{el}} \mathcal{T}$

The operator system S_n is 1-exact.

Proof.

For any operator system \mathcal{T} , we have that

$$\mathcal{S}_n \otimes_{\mathsf{el}} \mathcal{T} \subseteq_{\mathsf{c.o.i}} \mathcal{O}_n \otimes_{\mathsf{el}} \mathcal{T}$$

On the other hand,

$$\mathcal{S}_n \otimes_{\min} \mathcal{T} \subseteq_{c.o.i} \mathcal{O}_n \otimes_{\min} \mathcal{T}.$$

=

Let S be an operator system, A be a unital C^* -algebra, I be an ideal of A, $q: A \to A/I$ be the quotient map and $\phi: S \to A/I$ be a unital completely positive map.

Let S be an operator system, A be a unital C^* -algebra, I be an ideal of A, $q: A \to A/I$ be the quotient map and $\phi: S \to A/I$ be a unital completely positive map. We say ϕ **lifts locally**, if for every finite dimensional operator system $S_0 \subseteq S$, there exists a completely positive map $\psi: S_0 \to A$ such that $q \circ \psi = \phi$.

Let S be an operator system, A be a unital C^* -algebra, I be an ideal of A, $q: A \to A/I$ be the quotient map and $\phi: S \to A/I$ be a unital completely positive map. We say ϕ **lifts locally**, if for every finite dimensional operator system $S_0 \subseteq S$, there exists a completely positive map $\psi: S_0 \to A$ such that $q \circ \psi = \phi$. We say that S has the **operator system locally lifting property** if for every C^* -algebra A and every ideal $I \subseteq A$, every unital completely positive map $\phi: S \to A/I$ lifts locally.

Let S be an operator system, then the following are equivalent: S has the OSLLP;

Let S be an operator system, then the following are equivalent:

- S has the OSLLP:

- ∢ ≣ ▶

Let S be an operator system, then the following are equivalent:

- S has the OSLLP;

So we need to show that $S_n \otimes_{\min} B(\mathcal{H}) = S_n \otimes_{\max} B(\mathcal{H})$.

We will use the isomorphism:

$$S_n = \mathcal{E}_n/J.$$

-∢ ≣ →

< □ > < 同 > < 回 >

We will use the isomorphism:

$$\mathcal{S}_n = \mathcal{E}_n/J.$$

Lemma

The operator system \mathcal{E}_n is C^* -nuclear, i.e. $\mathcal{E}_n \otimes_{\min} \mathcal{A} = \mathcal{E}_n \otimes_{\max} \mathcal{A}$ for each C^* -algebra \mathcal{A} .

We will use the isomorphism:

$$\mathcal{S}_n = \mathcal{E}_n/J.$$

Lemma

The operator system \mathcal{E}_n is C^* -nuclear, i.e. $\mathcal{E}_n \otimes_{\min} \mathcal{A} = \mathcal{E}_n \otimes_{\max} \mathcal{A}$ for each C^* -algebra \mathcal{A} .

Proposition (Projectivity of the Max-Tensor Product)

Let S, T, \mathcal{R} be operator systems and suppose $\psi : S \to \mathcal{R}$ is a complete quotient map, then the map $\psi \otimes id_T : S \otimes_{max} T \to \mathcal{R} \otimes_{max} T$ is also a complete quotient map.

Hence, in order to show that the following diagram commute,

$$\begin{array}{c} \mathcal{E}_n \otimes_{\min} \mathcal{A} \xrightarrow{\cong} \mathcal{E}_n \otimes_{\max} \mathcal{A} \\ & \downarrow^{\phi \otimes \mathrm{id}_{\mathcal{A}}} \\ \mathcal{S}_n \otimes_{\min} \mathcal{A} \xrightarrow{\mathrm{id}} \mathcal{S}_n \otimes_{\max} \mathcal{A} \end{array}$$

-

3

< □ > < 同 >

Hence, in order to show that the following diagram commute,

$$\begin{array}{ccc} \mathcal{E}_n \otimes_{\min} \mathcal{A} & \xrightarrow{\cong} \mathcal{E}_n \otimes_{\max} \mathcal{A} & , \\ & & & & & \downarrow \phi \otimes_{id_{\mathcal{A}}} \\ \mathcal{S}_n \otimes_{\min} \mathcal{A} & \xrightarrow{id} \mathcal{S}_n \otimes_{\max} \mathcal{A} \end{array}$$

we just need to show that $\phi \otimes id_{\mathcal{A}} : \mathcal{E}_n \otimes_{\min} \mathcal{A} \to \mathcal{S}_n \otimes_{\min} \mathcal{A}$ is a complete quotient map.

Let $\mathcal{A} = \mathcal{B}(\mathcal{K})$ for an arbitrary Hilbert space \mathcal{K} , then the map $\phi \otimes \operatorname{id}_{\mathcal{A}} : \mathcal{E}_n \otimes_{\min} \mathcal{A} \to \mathcal{S}_n \otimes_{\min} \mathcal{A}$ is a complete quotient map.

- 4 🗇 ▶

Let $\mathcal{A} = \mathcal{B}(\mathcal{K})$ for an arbitrary Hilbert space \mathcal{K} , then the map $\phi \otimes \operatorname{id}_{\mathcal{A}} : \mathcal{E}_n \otimes_{\min} \mathcal{A} \to \mathcal{S}_n \otimes_{\min} \mathcal{A}$ is a complete quotient map.

The case when $n = \infty$ can be deduce by the inclusion $S_n \subseteq_{c.o.i} S_{\infty}$. So it follows that S_{∞} has OSLLP by the following observation:

Let $\mathcal{A} = \mathcal{B}(\mathcal{K})$ for an arbitrary Hilbert space \mathcal{K} , then the map $\phi \otimes \operatorname{id}_{\mathcal{A}} : \mathcal{E}_n \otimes_{\min} \mathcal{A} \to \mathcal{S}_n \otimes_{\min} \mathcal{A}$ is a complete quotient map.

The case when $n = \infty$ can be deduce by the inclusion $S_n \subseteq_{c.o.i} S_{\infty}$. So it follows that S_{∞} has OSLLP by the following observation:

If $A \in (\mathcal{S}_{\infty} \otimes_{\min} B(\mathcal{H}))^+$, then there exists $N \in \mathbb{N}$ such that $A \in (\mathcal{S}_N \otimes_{\min} B(\mathcal{H}))^+$.

Let $\mathcal{A} = \mathcal{B}(\mathcal{K})$ for an arbitrary Hilbert space \mathcal{K} , then the map $\phi \otimes \operatorname{id}_{\mathcal{A}} : \mathcal{E}_n \otimes_{\min} \mathcal{A} \to \mathcal{S}_n \otimes_{\min} \mathcal{A}$ is a complete quotient map.

The case when $n = \infty$ can be deduce by the inclusion $S_n \subseteq_{c.o.i} S_{\infty}$. So it follows that S_{∞} has OSLLP by the following observation:

If $A \in (\mathcal{S}_{\infty} \otimes_{\min} B(\mathcal{H}))^+$, then there exists $N \in \mathbb{N}$ such that $A \in (\mathcal{S}_N \otimes_{\min} B(\mathcal{H}))^+$.

On the other hand, we have that

$$(\mathcal{S}_N \otimes_{\mathsf{min}} B(\mathcal{H}))^+ = (\mathcal{S}_N \otimes_{\mathsf{max}} B(\mathcal{H}))^+ \subseteq (\mathcal{S}_\infty \otimes_{\mathsf{max}} \mathcal{A})^+.$$

Definition

For an *n*-tuple of operators $(T_1, \ldots, T_n) \in B(\mathcal{H})$, their **joint numerical** radius is defined as:

$$w(T_1,\ldots,T_n) := \sup \left| \sum_{\alpha \in F_n^+} \sum_{j=1}^n \langle h_\alpha, T_j h_{g_j \alpha} \rangle \right|,$$

where F_n is the free group on *n* generators g_1, \ldots, g_n , and the supremum is taken over all families of vectors $\{h_\alpha\}_{\alpha \in F_n^+} \subseteq \mathcal{H}$ with $\sum_{\alpha \in F_n^+} ||h_\alpha||^2 = 1$.

We can extend this notion of joint numerical radius for *n*-tuples in $B(\mathcal{H})$ to the category of C^* -algebras.

Definition

Let \mathcal{A} be a C^* -algebra. The *joint numerical radius* of an *n*-tuple $(a_1, \ldots, a_n) \in \mathcal{A}$ is:

$$w(a_1,\ldots,a_n) := w(S_1 \otimes a_1^* + \cdots + S_n \otimes a_n^*),$$

where S_i 's are Cuntz isometries.

We can extend this notion of joint numerical radius for *n*-tuples in $B(\mathcal{H})$ to the category of C^* -algebras.

Definition

Let \mathcal{A} be a C^* -algebra. The *joint numerical radius* of an *n*-tuple $(a_1, \ldots, a_n) \in \mathcal{A}$ is:

$$w(a_1,\ldots,a_n) := w(S_1 \otimes a_1^* + \cdots + S_n \otimes a_n^*),$$

where S_i 's are Cuntz isometries.

Theorem

A unital linear map $\phi : S_n^d \to \mathcal{A}$ is completely positive if and only if

$$w(\phi(a_1)^*,\ldots,\phi(a_n)^*)\leq \frac{1}{2}.$$

Theorem (kavruk)

Let S be a finite dimensional. Then S is exact if and only if S^d has the lifting property, and vice versa.

Theorem (kavruk)

Let S be a finite dimensional. Then S is exact if and only if S^d has the lifting property, and vice versa.

Theorem

Let \mathcal{A} be a unital C^* -algebra and $J \triangleleft \mathcal{A}$ be an ideal. Suppose $T_1 + J, \ldots, T_n + J \in \mathcal{A}/J$, then there exist $W_1, \ldots, W_n \in \mathcal{A}$ with $W_i + J = T_i + J$ for each $1 \leq i \leq n$, such that $w(W_1, \ldots, W_n) = w(T_1 + J, \ldots, T_n + J)$.

イロト イポト イヨト イヨト 二日

Question

The operator space generated by Cuntz isometries is not of much interest (it is just the column Hilbert space). So what about the *-operator space,

 $span{S_i, S_i^* : 1 \le i \le n}?$

Also, what about the operator system:

 $span\{I, S_i, S_i^*, S_i S_i^* : 1 \le i \le n\}, \text{ etc.}$

Consider the Cuntz-Krieger algebra \mathcal{O}_A , which is universal the C*-algebra generated by *n* partial isometries S_i satisfying

$$\sum_{i=1}^{n} S_i S_i^* = I, \quad S_i^* S_i = \sum_{i=1}^{n} A(i,j) S_j S_j^*, \quad A(i,j) = 0, 1.$$

Consider the Cuntz-Krieger algebra \mathcal{O}_A , which is universal the C*-algebra generated by *n* partial isometries S_i satisfying

$$\sum_{i=1}^{n} S_{i}S_{i}^{*} = I, \quad S_{i}^{*}S_{i} = \sum_{i=1}^{n} A(i,j)S_{j}S_{j}^{*}, \quad A(i,j) = 0, 1.$$

where A = (A(i,j)) is a matrix consisting only 0, 1 entries. A.Huef and I.Raebrun proved that for every choice of such matrix A, there always exists a universal C^* -algebra \mathcal{O}_A .

Consider the Cuntz-Krieger algebra \mathcal{O}_A , which is universal the C*-algebra generated by *n* partial isometries S_i satisfying

$$\sum_{i=1}^{n} S_{i}S_{i}^{*} = I, \quad S_{i}^{*}S_{i} = \sum_{i=1}^{n} A(i,j)S_{j}S_{j}^{*}, \quad A(i,j) = 0, 1.$$

where A = (A(i,j)) is a matrix consisting only 0, 1 entries. A.Huef and I.Raebrun proved that for every choice of such matrix A, there always exists a universal C^* -algebra \mathcal{O}_A .

Question

Can we deal with the operator system S_A^n generated by the universal partial isometries from \mathcal{O}_A ?