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SYLLABUS

Psychology 513 - Quantitative Models in Psychology
Instructor: Bob McFatter
Office: Girard Hall 222A; 482-6589
Internet page: www.ucs.louisiana.edu/~rmm2440/
E-mail: mcfatter@louisiana.edu

Texts: Kutner, M.H., Nachtsheim, C.J. & Neter, J. (2004). Applied linear regression models, fourth 
edition. New York: McGraw-Hill/Irwin   OR  Kutner, M.H., Neter, J., Nachtsheim, C.J. & Li, W. 
(2004). Applied linear statistical models, 5th international edition. New York: McGraw-
Hill/Irwin.
JMP Statistical Discovery Software, by SAS Institute. 
(available through UL site license at http://helpdesk.louisiana.edu)

Course Description

This course is designed to serve two main purposes. One objective is to provide an introduction to 
multiple correlation/regression and general linear models as basic analytical tools in psychological 
research. The other main objective is to familiarize students with a statistical package (JMP) available 
here and widely used throughout the country. Students should gain the practical skills necessary to enter, 
analyze, and interpret results for a variety of data sets using this package.

The first part of the course includes an introduction to the JMP statistical package mentioned above. 
Students use JMP to do familiar descriptive statistics, data screening, histograms, scatterplots, t-tests, etc.

A review of bivariate correlation and regression comes next if the backgrounds of the students require 
it. Topics covered include the relationship between correlation and regression, relevance of assumptions, 
effects of outliers, hypothesis testing, effects of measurement error and restricted variability, matrix 
formulation of regression analysis, the relation between dummy variable regression and t-test, and the 
interpretation of computer output including residual plots.

The remainder of the course is devoted to multiple regression and closely related topics. Consideration 
is given to the meaning and interpretation of regression weights, part and partial correlations, enhancer 
and suppressor effects, stepwise regression, multicollinearity problems, polynomial, interactive and 
nonlinear regression, logistic regression, analysis of covariance, and the relationship between regression 
and analysis of variance. Two exams, a midterm and a final, are given along with numerous homework 
assignments involving use of the computer to illustrate the theoretical aspects of the course. 

Emergency Evacuation Procedures: A map of this floor is posted near the elevator marking the 
evacuation route and the Designated Rescue Areas. These are areas where emergency service 
personnel will go first to look for individuals who need assistance in exiting the building. Students 
who may need assistance should identify themselves to the teaching faculty. 
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READING ASSIGNMENTS

Sections to be covered in Kutner, M.H., Nachtsheim, C.J. & Neter, J. (2004). Applied linear regression 
models, fourth edition.

Appendix A - Basic Results
A.1, A.3-A.7

Chapter 1 - Linear Regression with One Independent Variable
All sections

Chapter 2 - Inferences in Regression Analysis
All sections

Chapter 3 - Diagnostics and Remedial Measures
3.1-3.4, 3.8

Chapter 4 - Effect of Measurement Errors
4.5

Chapter 5 - Matrix Approach to Regression Analysis
All sections

Chapter 6 - Multiple Regression - I
6.1-6.6, 6.9

Chapter 7 - Multiple Regression - II
All sections

Chapter 8 - Regression Models for Quantitative and Qualitative Predictors
All sections

Chapter 9 - Building the Regression Model I: Model Selection and Validation
9.4-9.5

Chapter 14 - Logistic Regression, Poisson Regression, and Generalized Linear Models
14.1-14.4
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513 NOTES OUTLINE

A concise and useful review of basic statistical ideas is given in Kutner et al.’s Appendix A, sections 
A.1, A.3-A.7.

The model underlying general linear model (of which regression analysis and ANOVA are special 
cases) follows the general form: Data = Fit + Residual.  One way this idea can be applied to the linear 
regression case is to describe each individual's score in the data set as being composed of 2 pieces: the 

predicted Y from some model, Y , and a residual or error component, e.

Y Y e  [1]

It follows that e Y Y   and reflects how far away the actual Y score is from the predicted Y score. The 
idea here is to hypothesize a model of the data and find estimates of the parameters of the model that make 
it fit the data as well as possible (i.e., minimize in some way the size of the residuals). The most common 
method is to find estimates of the parameters that make the sum of the squared residuals in the sample as 
small as possible. This is called ‘least squares’ estimation.

The model we focus on first is the linear regression model. The simplest case of linear regression 
analysis is the bivariate case: one predictor variable, X, and one criterion variable, Y. This involves fitting 
the sample data with a straight line of the form

Y b b X 0 1 [2]

where b0 is the Y-intercept, and b1 is the slope in the sample (these values being estimates of the 
population parameters 0 and 1).

The least squares estimators, b0 and b1, can be shown to be as follows:
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              and [3]

b M b MY X0 1  [4]

Here r is the correlation between X and Y,  sY and sX are the standard deviations of Y and X, respectively, 
and MY and MX are the means of Y and X, respectively.

Example. Consider the following small data set.
X Y
6 1
6 2
3 3
3 4
2 5

The raw calculations may be done with X Y XY X    20 15 49 942, , ,  and

MX = 4 and MY = 3, leading to  . .Y X 61428571 0 7857143
One way to do the JMP analysis using the Fit Y By X platform is as follows:
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Predicted Ys and residuals are obtained by plugging 
values of X into the regression equation. In JMP they 
may be obtained by clicking the red triangle by 
Linear Fit and selecting Save Predicteds or Save 
Residuals. For values of X not in the data set, 
predicted values and residuals may be obtained by 
simply including the desired X in the data set with a 
missing Y value and saving predicteds and residuals.

Meaning of b0 and b1

The parameter estimates, b0 and b1, are 
interpreted straightforwardly. The intercept b0 is the predicted value of Y when X = 0. The slope b1 is the 
predicted change in Y for a 1 unit increase in X.

Standardized and Deviation Score Regression Equations

The regression equation estimated above is sometimes called the raw score or unstandardized
regression equation because raw scores on X plugged into the equation yield predicted raw scores on Y. If 
the X and Y scores are first transformed into deviation scores before computing the regression equation, 
the resulting equation is called the deviation score regression equation. To convert scores to deviation 
scores one simply subtracts the mean from each score (e.g., y = Y - MY, and x = X -  MX. I use lower case 
letters to indicate deviation scores). The deviation score regression equation will be of the form y b x 1 , 

where b1 is exactly the same as the slope in the raw score equation. Notice that the intercept in the 
deviation score regression equation is zero.
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It is actually more common to transform the X and Y scores to standardized (Z) scores than to 
deviation scores. When this is done, the resulting equation is called the standardized regression equation. 

The form of the standardized regression equation is Z rZY X . Notice that the intercept of the 

standardized regression equation is zero and the slope is r, the correlation coefficient between X and Y. 
This equation can be obtained in JMP by right-clicking in the Parameter Estimates table and selecting 
Columns|Std Beta. It is, unfortunately, common practice to refer to standardized regression coefficients 
(or weights or slopes; they all mean the same thing) as ‘standardized betas’ even though the coefficients 
are not population parameters.

One interpretation of the correlation coefficient r, then, is as the slope of the standardized regression 
equation. Thus, an r of .6 would mean that a 1 standard deviation increase in the value of X would lead us 
to predict a .6 standard deviation increase in the value of Y.

The predictions made are the same regardless of which form (raw score, deviation score, standard 
score) of the regression equation is used.

Example. Consider the following summary statistics for ACT scores and GPA.

ACT GPA
Mean 20 2.6

Std Dev 5 0.8
r 0.6

What are the predicted GPAs for individuals with ACTs of 25, 10, 27, and 20? For the raw score 
regression equation,  b1 = .6(.8/5) = .096, and b0 = 2.6 - .096 (20) = .68. Thus,
 . .Y X 0 68 0 096 , and plugging X values into the equation gives

X Y

25 3.08

10 1.64

27 3.272

20 2.6

Note that the standardized regression equation ( Z rZY X ) yields the same predicted Y values:

For X = 25, ZX = 1,  .ZY  6 ,  . . (. ) .Y   2 6 6 8 308

For X = 10, ZX = -2,  .ZY  12 ,  . . (. ) .Y   2 6 12 8 164

For X = 27, ZX = 1.4,  .ZY  84 ,  . . (. ) .Y   2 6 84 8 3272

For X = 20, ZX = 0, ZY  0 ,  . (. ) .Y   2 6 0 8 2 6
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One interesting and important phenomenon implied by the standardized regression equation is called 
regression toward the mean. Because it is always the case that 0 ≤ |r| ≤ 1, the predicted value of ZY will be 
≤ in absolute value than ZX, that is, generally closer to the mean of zero (in standard deviation units) than 
ZX.

Assumptions

Certain assumptions are commonly made to aid in drawing inferences in regression analysis. Those 
assumptions may be stated as follows:

1) The means of all the conditional distributions of Y|X lie on a straight line (linearity).
2) The variances of the conditional distributions of Y|X are all equal (homoscedasticity).
3) The conditional distributions of Y|X are all normal.
4) The points in the sample are a random sample from the population of points.
If homoscedasticity holds, then the population variance of any conditional distribution of Y|X is equal 

to the variance of the population of residuals, and an estimate of that variance may be used as an estimate 
of the variance of Ys for any given X. The most commonly used estimate of the variance of the residuals is 
the mean square error (MSE) where MSE = Σ e2/(n - 2) = SSE/dfE. The square root of this quantity (or Root 
MSE) is sometimes called the standard error of estimate for the regression analysis and would, of course, 
be an estimate of the standard deviation of each of the conditional distributions of Y|X. It can be thought of 
as how far off typically one would expect actual Y values to be from the predicted Y of the regression 
equation.

ANOVA Partitioning

It is common to construct an ANOVA partitioning of the variation (SS) of the Y scores in a regression 
analysis. 

The total variation of the raw Y scores is measured by SSY or SSTO = ( )Y M yY   2 2 . 

The variation of the predicted Y scores is SSR = (  ) Y M yY   2 2 .

The variation of the residuals is SSE = (  )Y Y e   2 2

It is straightforward to show that SSTO = SSR + SSE. This is another example of the  Data = Fit + 
Residual idea. The total variation of the Y scores can be broken down into two pieces: (1) predictable 
variation due to the model (SSR); and (2) unpredictable, noise, or error variation (SSE). It also turns out 
that the proportion of variation in Y that is predictable is equal to r2:

r r
SSR

SSTOXY YY

2 2  . [5]

Sums of squares (SS) are converted into sample variance estimates or mean squares (MS) by dividing 
by the appropriate df. For the ANOVA breakdown here, dfTO = n - 1, dfR = 1, and dfE = n - 2, so that 
MSTO = SSTO/dfTO, MSR = SSR/dfR, and MSE = SSE/dfE. 

MSTO would thus be simply the sample variance of the Y scores, and MSE would be the sample 
variance of the residuals using n - 2 as the df.

The overall F-ratio from the ANOVA breakdown, F(dfR, dfE) = MSR/MSE, tests the null hypothesis that 
none of the variation in Y is linearly predictable from X. In the bivariate case this is exactly equivalent to 
the null hypothesis that the population slope, β1, is equal to zero.
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Example. The following hypothetical predictive validity regression analysis will illustrate the ideas in this 
and the following sections. Test score is the X variable and Job performance is the criterion.

Test Score Job Perf
69 320
55 223
67 440
52 310
82 485
62 320
70 370
90 490
50 200
77 450
83 425
72 475
55 380

Bivariate Fit of Job Perf By Test Score
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Test Score

Linear Fit

Linear Fit
Job Perf = -46.69521 + 6.216106 Test Score

Summary of Fit
RSquare 0.67861
RSquare Adj 0.649393
Root Mean Square Error 57.13172
Mean of Response 376
Observations (or Sum Wgts) 13
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Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 1 75811.63 75811.6 23.2264
Error 11 35904.37 3264.0 Prob > F
C. Total 12 111716.00 0.0005

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t| Lower 95% Upper 95% Std Beta
Intercept -46.69521 89.12735 -0.52 0.6107 -242.8632 149.47277 0
Test Score 6.216106 1.289816 4.82 0.0005 3.3772398 9.0549723 0.823778

Test Score Job Perf Pred Formula Job 
Perf

Residual Job Perf PredSE Job 
Perf

StdErr Indiv Job Perf Studentized Resid Job 
Perf

69 320 382.216106 -62.216106 15.8978975 59.3024188 -1.133774
55 223 295.190622 -72.190622 23.0701597 61.6138459 -1.3811989
67 440 369.783894 70.216106 15.8978975 59.3024188 1.27955927
52 310 276.542304 33.4576962 26.0186032 62.777396 0.65779759
82 485 463.025484 21.9745158 24.0239498 61.9772853 0.42393072
62 320 338.703364 -18.703364 17.6343428 59.7913353 -0.3441782
70 370 388.432212 -18.432212 16.0540967 59.3444838 -0.3361718
90 490 512.754332 -22.754332 32.5003751 65.7290508 -0.4842707
50 200 264.110092 -64.110092 28.1086155 63.6720346 -1.2889375
77 450 431.944954 18.0550459 19.6426374 60.4141286 0.33654107
83 425 469.24159 -44.24159 25.007905 62.3652872 -0.8612729
72 475 400.864424 74.1355759 16.6642591 59.5124463 1.35661719
55 380 295.190622 84.8093782 23.0701597 61.6138459 1.6226293
60 . 326.271152 . 18.909034 60.1796087 .

Sampling Distributions of b0 and b1

Because b0 and b1 are sample statistics, their values will fluctuate from sample to sample from the 
same population of X and Y values. It is common to assume a model to describe the population of  X and Y
values, and consider b0 and b1 to be estimates of the parameters of the model. The most commonly 
assumed model is the normal error regression model:

Yi = β0 + β 1 Xi + εi [6]
where:

Yi is the observed value of the criterion variable for the ith observation
Xi is a known constant, the value of the predictor variable for the ith observation
β 0 and β 1 are parameters
the residuals, εi, are independent and N(0, σ2) [i.e., normally distributed with mean 0 and variance 

σ2]
i = 1, ..., n

Thus, b0 and b1 are estimates of β0 and β1, and will, like all statistics, have sampling distributions 
associated with them. Under the normal error regression model above, the sampling distributions of b0 and 
b1 will both be normal. The means of the sampling distributions will be E{b0} = β0 and E{b1} = β1, 
respectively. Thus, b0 and b1 are both unbiased estimators of their respective population parameters.

The variances of the two sampling distributions may be shown to be:

For b0:  2
0

2
2

2

1
{ }

( )
b
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i X
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For b1:

 2
1

2
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{ }

( )
b

X Mi X




. [8]

Sample estimates of these variances may be obtained by replacing σ2 with its sample estimate, the 
mean square error (MSE). Thus,

s b MSE
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 and [9]

s b
MSE

X Mi X

2
1 2

{ }
( )




. [10]

The square roots of these quantities are called the standard errors of the parameter estimates and are 
given by most regression programs (including JMP) in a column next to the estimates themselves.
The standard errors of b0 and b1 reflect how far off, typically, one would expect the sample values, b0 and 
b1, to be from β0 and β1, respectively. The standard errors of b0 and b1 can be used to construct confidence 
intervals around b0 and b1 and to conduct hypothesis tests about β0 and β1. To avoid the somewhat 
cumbersome curly brace notation, I will generally use sb0 and  sb1 to refer to the standard errors of b0 and 
b1.

In the predictive validity example above, sb0 = 89.12735 and sb1 =1.289816.

Hypothesis Tests and Confidence Intervals for β1, β0, and ρ

It is common to test hypotheses and construct confidence intervals for β1, β0 and ρ where ρ is the 
population correlation between X and Y. Because

  
1 






Y

X

, [11]

it is clear that β1 = 0 when ρ = 0, and vice versa. Therefore, testing the null hypothesis that either of these 
is equal to zero is exactly equivalent to testing the hypothesis that the other is zero. These equivalent 
hypotheses are the most commonly tested null hypotheses in bivariate regression analyses because they 
test whether there is a relation between X and Y, often the hypothesis of most interest in the analysis.

When the sampling distribution of a statistic is normal, and the standard deviation of the sampling 
distribution of that statistic (i.e., the standard error of the statistic) can be estimated, a t-test may be
constructed to test null hypotheses about the value of the population parameter the statistic estimates. The 
general form of the t-test is 

t
Statistic Hypothesized value

Estimated Std Error of the Statistic



. [12]

Thus, to test H0: β 1 = 0, the appropriate t-test is

t
b

s

b

sb b




1 10

1 1

.
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In the example above, t(11) = 6.216106/1.289816 = 4.82, p = .0005, and the H0: β1 = 0, would be rejected 
even at α = .001.

The estimated standard error of r when ρ = 0 is s
r

nr 



1

2

2

, so testing the H0: ρ = 0 can be carried out 

with t
r

s

r n

rr

 




2

1 2
. The df associated with the t-tests for these two null hypotheses are n - 2. 

Because the two t-tests are testing equivalent null hypotheses, the values of t obtained in the two tests will 
be exactly the same. It is also important to note that the overall F-ratio from the bivariate regression 
analysis described above, F(dfR, dfE) = F(1, n - 2)= MSR/MSE, is exactly equivalent to the square of the t
value obtained testing the null hypotheses β1 = 0 or ρ = 0. So, these three hypothesis tests all test the same 
basic question and will all have exactly the same p-level.

In the example above, r = 0.823778, and plugging this value into the equation above yields  t(11) = 
4.82, p = .0005. Also, F(1, 11) = 23.23, p = .0005. Note that 23.23 = 4.822.

Similar logic yields a test of H0: β0 = 0 of the form t
b

sb

 0

0

, but this hypothesis is usually not of as 

much interest as the ones described above. JMP provides values for all the crucial components of these 
hypothesis tests including t values, F-ratio, and p-levels.

In addition, confidence intervals around b0 and b1 may be obtained in the usual way. For example, the 
1 - α confidence limits for β 1 would be b1 ± t(1 - α/2, n - 2) sb1. In JMP the 95% confidence limits for β0

and β1 may be obtained by right-clicking on the Parameter Estimates table and selecting Columns|Lower 
95% and Upper 95%.

In the example above, the 95% confidence interval for β1 would be (from the output): (3.38, 9.05).

Confidence intervals around r may be obtained using the Fisher’s Zr transformation: 

Zr = tanh-1(r) = 
1

2

1

1
ln










r

r
. Fisher’s  Zr values are approximately normally distributed with a standard 

deviation of  Zr n



1

3
. Ordinary normal distribution methods can thus be used to find confidence 

intervals around the  Zr values. The ends of the confidence interval obtained may then be transformed 
back to r values using r = tanh( Zr ). [See p. 85-86 in Kutner et al. or an introductory statistics text such as 
HyperStat Online (http://davidmlane.com/hyperstat/) for more details and examples.]

Two Kinds of Prediction (E{Y|X} and Y|X)  [See p. 52 and 55 in Kutner et al.]

There are two kinds of prediction that one might consider following a regression analysis:
1) prediction of the mean value of Y for all observations with a given X score (i.e., E{Y|X});
2) prediction of the value of Y for an individual observation with a given X score (i.e., Y|X).

It is important to recognize that the predicted value of Y will be the same for both cases, namely, Y . 
However, the uncertainty associated with the two kinds of prediction will differ. 
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In the first case we are trying to predict the Y value of the population regression line for the given X, 
and the uncertainty associated with that prediction will be simply how far typically we would expect 
sample regression lines to ‘wobble’ in the Y direction around the population regression line.

In the second case we must consider not only this wobble of sample regression lines around the 
population regression line, but also the variability of individual Ys around the sample regression line. 
Thus, the variability in the second case will simply be the variability in the first case (i.e., wobble) plus an 
additional component reflecting the variability of the Ys around the sample regression line.

Kutner et al. show that a sample estimate of the (wobble) variance of the Y s around the population 
regression line is

   
 

s Y MSE
n

X M

X M
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h X

i X
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2

2
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









, [13]

 where Xh is the value of X for which we wish to estimate the mean Y value (i.e., Yh ). Notice that the 

uncertainty depends on how far away Xh is away from the mean of X, MX. The further Xh is from MX, the 
greater the uncertainty. The square root of this quantity is called the ‘Std Error of Predicted’ by JMP and 
can be obtained for each observation from the Fit Model platform after a regression analysis has been 
performed by right-clicking on a section title and selecting Save Columns|Std Error of Predicted. In the 
above example, the predicted job performance for individuals with a test score of 60 is 326.27. One would 
expect this value to be off typically by 18.91 points from the true mean performance of individuals with a 
score of 60 on the test.

A sample estimate of the variance of the individual Ys around the sample regression line would then 
be the sum of the ‘wobble’ variance above and the MSE. Kutner et al. call this s2{pred}: 

   
 

s pred MSE
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X M

X M
h X

i X
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













. [14]

The square root of this quantity is called ‘Std Error of Individual’ by JMP and can be obtained for each 
observation by selecting Save Columns|Std Error of Individual. In the above example, the predicted job 
performance for an individual with a test score of 60 is 326.27. One would expect this value to be off 
typically by 60.18 points from the actual performance of an individual with a score of 60 on the test. It is 
instructive to compare this interpretation with the interpretation at the end of the last paragraph.

The standard errors of predicted and individual scores may be used with the t distribution in the usual 
way to construct confidence intervals for the two kinds of prediction. In the Fit Y by X platform of JMP, 
plots of the 95% confidence intervals for the two kinds of prediction may be obtained by clicking the 
Linear Fit red triangle and selecting ‘Confid Curves Fit’ and ‘Confid Curves Individual,’ respectively. 
(See the figure in the output for the example above.) Actual upper and lower bounds of the 95% 
confidence intervals for each observation may be obtained from the Fit Model platform regression 
analysis by right-clicking on a section title and selecting Save Columns|Mean Confidence Interval or Indiv 
Confidence Interval, respectively.

Residuals Analysis and Outliers

Examining the residuals, ei, from a regression analysis is often helpful in detecting violations of the 
assumptions underlying the model. The least squares estimation procedure forces the residuals to sum to 
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zero and to have a zero correlation with the predictor variable X. However, important diagnostic 
information can often be gained by analyzing the obtained residuals in various ways. It is common, for 

example, to plot the residuals as a function of X or Y  (the two plots would look exactly the same except 

for the scale of the horizontal axis–make sure you see why). This kind of plot can easily reveal 
nonlinearity of the relation or violations of the homoscedasticity assumption. For example, the following 
scatterplot and residual plot illustrates violations of both the linearity and homoscedasticity assumptions.

Outliers are extreme observations whose values lie far from the values of the other observations in the 
data. These observations can strongly affect the fitting of a model to the data. It is common practice to 
examine data for outliers and perhaps remove extreme observations before fitting a model. Observations 

that lie more than 3 or 4 standard deviations away 
from the mean of the other observations are usually 
considered outliers.

In the bivariate regression case the residuals (or 
better, the ‘studentized residuals,’ i.e., the residuals 
divided by their standard errors) can be helpful in 
identifying outliers. Observations with studentized 
residuals >3 or 4 would be considered outliers. JMP
provides these studentized residuals from the Fit 
Model platform under the Save Columns menu.

In multivariate situations the Multivariate 
platform in JMP provides an outlier analysis that 
uses a measure of distance (called Mahalanobis 
distance) of observations from the centroid of the 
data in multidimensional space. Again, points with 
distances of > 3 or 4 from the other points would be 
considered outliers.

The presence of outliers can, of course, strongly 
affect the size of the obtained correlation between 
two variables. Other factors that can affect the size 
of the correlation are 
(1) restriction of variability in either X or Y;
(2) measurement error or unreliability in the 
measurement of X or Y;
(3) differences in the shapes of the marginal 
distributions of X and Y; and
(4) nonlinearity of the relation between X and Y.

All of these factors tend to make the correlation 
between X and Y smaller than would otherwise be 
the case. Instructive online simulation 
demonstrations of (1) and (2) can be found at the 
HyperStat Online site or directly at 

http://davidmlane.com/hyperstat/Instructional_Demos.html.
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Two-Predictor Models

When there are two predictors in the model the simplest fitted regression equation becomes
Y b b X b X  0 1 1 2 2 . [15]

As we have seen, the simple bivariate regression equation (Equation [2]) represents the finding of the best 
fitting straight line to a two dimensional scatterplot of X and Y. When there are two predictors in the 
model, the equation in [15] represents the finding of the best fitting plane to a three dimensional cloud of 
points in 3-space. The ‘Fit’ part of Data = Fit + Residual is now a plane rather than a straight line. By 
adding predictors to, or changing the functional form of predictors in, equation [15] we may generate a 
huge variety of models of data, but the basic principles of model fitting, estimation of parameters, and 
hypothesis testing remain the same.

The sample statistics b0, b1, and b2 in [15] are estimates of the population parameters β0, β1, and β2. 
Formulas for the least squares estimates of the population parameters β1 and β2 may be found and involve 
the sample variances and covariances of the Xs and Y. These formulas quickly become very complex with 
more than two predictors, and it is generally most satisfactory to solve the least squares estimation 
problem in matrix form. We will consider that later. It is impractical to compute these estimates with a 
calculator, so we generally use a statistics program. The intercept b0, however, will always be b0 = MY -  
b1M1 -  b2M2 . . . regardless of the number of predictors, where MY is the mean of Y, M1 the mean of X1, 
etc.

Example.
The following example with hypothetical data from a study using IQ and Extraversion scores to 

predict Sale Success will illustrate the analysis. Here is the JMP output from the Fit Model platform.
Raw Data
IQ Extr Success
98 38 4
95 33 3
104 47 5
108 43 5
77 41 5
115 44 4
103 50 6
108 46 6
109 46 4
100 39 5

Variable N Mean Std Dev Min Max
Extr 10 42.7 5.03432661 33 50
IQ 10 101.7 10.4780193 77 115
Success 10 4.7 0.9486833 3 6

Multivariate 
Correlations

IQ Extr Success
IQ 1.0000 0.4510 0.0458
Extr 0.4510 1.0000 0.7003
Success 0.0458 0.7003 1.0000
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MODEL 1 - IQ ALONE

Response Success
Summary of Fit
RSquare 0.0021
RSquare Adj -0.12264
Root Mean Square Error 1.005173
Mean of Response 4.7
Observations (or Sum Wgts) 10

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 0.0170124 0.01701 0.0168
Error 8 8.0829876 1.01037 Prob > F
C. Total 9 8.1000000 0.9000

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t| Std Beta
Intercept 4.2780083 3.267579 1.31 0.2268 0
IQ 0.0041494 0.031977 0.13 0.9000 0.045829

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
IQ 1 1 0.01701245 0.0168 0.9000

Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
IQ 1 1 0.01701245 0.0168 0.9000

MODEL 2 - EXTR ALONE

Response Success
Summary of Fit
RSquare 0.490369
RSquare Adj 0.426665
Root Mean Square Error 0.718333
Mean of Response 4.7
Observations (or Sum Wgts) 10

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 3.9719860 3.97199 7.6976
Error 8 4.1280140 0.51600 Prob > F
C. Total 9 8.1000000 0.0241

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t| Std Beta
Intercept -0.934678 2.043575 -0.46 0.6596 0
Extr 0.1319597 0.047562 2.77 0.0241 0.700263

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Extr 1 1 3.9719860 7.6976 0.0241

Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
Extr 1 1 3.9719860 7.6976 0.0241
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MODEL 3 - IQ FIRST

Response Success
Summary of Fit
RSquare 0.581862
RSquare Adj 0.462394
Root Mean Square Error 0.69559
Mean of Response 4.7
Observations (or Sum Wgts) 10

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 4.7130814 2.35654 4.8704
Error 7 3.3869186 0.48385 Prob > F
C. Total 9 8.1000000 0.0473

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t| Std Beta
Intercept 0.9560894 2.499998 0.38 0.7135 0
IQ -0.030684 0.024793 -1.24 0.2558 -0.3389
Extr 0.1607603 0.051602 3.12 0.0170 0.853098

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
IQ 1 1 0.7410954 1.5317 0.2558
Extr 1 1 4.6960689 9.7057 0.0170

Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
IQ 1 1 0.0170124 0.0352 0.8566
Extr 1 1 4.6960689 9.7057 0.0170

MODEL 4 - EXTR FIRST

Response Success
Summary of Fit
RSquare 0.581862
RSquare Adj 0.462394
Root Mean Square Error 0.69559
Mean of Response 4.7
Observations (or Sum Wgts) 10

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 4.7130814 2.35654 4.8704
Error 7 3.3869186 0.48385 Prob > F
C. Total 9 8.1000000 0.0473

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t| Std Beta
Intercept 0.9560894 2.499998 0.38 0.7135 0
Extr 0.1607603 0.051602 3.12 0.0170 0.853098
IQ -0.030684 0.024793 -1.24 0.2558 -0.3389

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Extr 1 1 4.6960689 9.7057 0.0170
IQ 1 1 0.7410954 1.5317 0.2558

Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
Extr 1 1 3.9719860 8.2092 0.0242
IQ 1 1 0.7410954 1.5317 0.2558

It is very instructive to closely examine what stays the same and what changes from model to model in 
the four models above. Models 3 and 4 differ only in the order in which IQ and Extr are put into the 
model. The only differences in the output between these two models are in the Sequential (Type 1) Tests.
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Interpretation of the Parameter Estimates

The following contour and 3-D plot from the Fit Model platform (select Factor Profiling|Contour 
Profiler) can help illustrate the interpretation of the regression coefficients b0, b1, and b2.

Response Success
Contour Profiler
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0 IQ
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If we let X1 = IQ and X2 = Extr, the raw score (unstandardized) regression equation with two predictors 

is  . . .Y X X  956 031 1611 2 . The interpretation of the intercept, b0 = 0.956 is similar to the 

interpretation for the bivariate case. The predicted Sales Success score for individuals who have scores of 
zero on both IQ and Extr is 0.956. This is not a particularly meaningful value, however, because no one 
had scores close to zero on either IQ or Extr.

In a multiple regression analysis like this, the interpretation of the regression coefficients is always 
conditional. This conditionality may be expressed in various ways, but it must always be expressed in the 
interpretation of the weights. A correct interpretation of b1 = -0.031 in the above example would be 
‘holding individuals constant on extraversion, a one point increase in IQ score would lead us to predict a 
.031 point decrease in sales success. That is, the interpretation of the coefficient of any variable in the 
equation is always conditional on holding all other variables in the equation constant. Here are some other 
ways this conditionality might be expressed in interpreting b1:

(1) ‘For individuals who are similar on extraversion, a one point increase in IQ . . .’
(2) ‘Controlling for extraversion, a one point increase in IQ . . .’
(3) ‘Partialing out the effect of extraversion,  a one point increase in IQ . . .’

The third expression uses terminology that comes from the fact that the coefficients in a multiple 
regression equation are sometimes called partial regression coefficients. This usage perhaps comes from 



Bob McFatter Psychology 513

- 17 -

the fact that the coefficients, b1 and b2, in equation [15] are the partial derivatives of Y with respect to X1

and X2, respectively.

Graphically, the meaning of b1 and b2 may be seen by examining the 3-D surface plot in the JMP 
output above. The line on the front face of the cube, for example, shows the relation between predicted 
Sales Success and IQ when Extr is held constant at its lowest value. Notice that the slope is negative. In 
fact, it would be -0.031. Note also that when Extr is held constant at any value (e.g., at its highest value, 
putting us on the back face of the cube) the slope of the relation between predicted Sales Success and IQ is 
still the same, -0.031. That is, on a plane such as the one in the figure, the lines showing the relation 
between predicted Sales Success and IQ for any given value of Extr are all parallel.

The interpretation of b2 = 0.161 is directly analogous: holding individuals constant on IQ, a one point 
increase in extraversion would lead us to predict a 0.161 point increase in Sales Success. Notice that lines 
showing this positive slope would be ones parallel to the lines on the two side faces of the cube in the 
figure from the output.

Standardized Regression Equation

The standardized form of the multiple regression equation results if the scores on X1, X2, and Y are 
standardized to Z-scores before carrying out the regression analysis. The standardized regression equation 
may be written as

 * *Z b Z b ZY   1 1 2 2  [16]
for an arbitrary number of predictors, where Z1 represents the Z-scores of X1, etc., and b*

1 and b*
2 are the 

standardized regression weights in the equation. Notice that the intercept in this equation is zero. It may be 
shown that regardless of the number of predictors the standardized regression weight for the jth predictor 
is related to the unstandardized regression weight for the jth predictor by the following:

b b
s

sj j
Y

j












* [17]

where sj is the standard deviation of the jth predictor. JMP provides the standardized regression weights 
under Columns|Std Beta. In the Sales Success example the standardized regression equation from Model 3 
would be 

 . .Z Z ZY   0 34 0 851 2 [18]
and the interpretation would be exactly the same as in the unstandardized case, except that the units 
involved would be standard deviations of the variables rather than raw points. For example, one could 
interpret b*

1 = -0.34 by saying that, for individuals who all had the same extraversion score, a one 
standard deviation increase in IQ would lead us to predict a 0.34 standard deviation decrease in Sales 
Success.

In the two predictor case, the standardized regression weights may be computed simply from the 
correlations among the three variables. For example, the value of b*

2 would be 

b*
2 = (rY2 - rY1r12)/(1 - r2

12). [19]

The formula for b*
1 would be the same with the 1’s and 2’s exchanged. For more than two predictors, the 

formulas become much longer.
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ANOVA Partitioning in Multiple Regression

The overall ANOVA partitioning of the variation (SS) of the Y scores in a multiple regression analysis 
is a straightforward generalization of the bivariate case. Just as in the bivariate case, SSTO = SSR + SSE, 
with the definitions of each component of this equation being the same as in the bivariate case. The only 
difference is that in the multiple predictor case the predictable variation in Y, i.e., SSR, comes from several 
sources. Also, because there are several Xs it is not possible to talk about a single r2

XY. However, as 

equation [5] indicates, r2
XY in the bivariate case is equal to r

SSR

SSTOYY
2  , and this latter quantity serves as 

an appropriate generalization in the multiple predictor case. The proportion of variation in Y that is 
predictable from multiple predictors is called the squared multiple correlation and is denoted by R2:

R r
SSR

SSTOY k YY. , , 1 2
2 2

   , [20]

where k is the number of predictors in the regression equation.

Hypothesis Tests as Comparisons of Full vs. Reduced (Restricted) Models 
[see p. 72-73 in Kutner et al.]

The hypothesis tests carried out in the general linear model may be understood as comparisons of the 
adequacy of full vs. reduced or restricted models. For example, in the two predictor case the full model 
would be 

[Full Model] Yi = β0 + β1 X1i + β2 X2i+ εi. [21]

A test of β1 = 0 may be understood as a test of whether a restricted model that requires β1 to be zero does 
essentially as well a job at predicting Y as does a model that allows β1 to be different from zero. The 
restricted model (obtained by setting β1 to be zero in equation [21]) would be

[Restricted Model] Yi = β0 + β2 X2i + εi. [22]

The logic of the hypothesis test of β1 = 0 is to ask if the SSE is significantly smaller for the model of 
equation [21] than for the model of equation [22]. The models are compared by looking at the decrease in 
SSE (or, equivalently, the increase in SSR) that occurs when going from the restricted model to the full 
model. In terms of SSE the F-ratio for carrying out a test comparing the full model with the restricted 
model is as follows (where R and F refer to restricted and full, respectively):

       
F df df df

SSE R SSE F

df df

SSE F

dfR F F
R F F

 











 









, [23]

where dfF and dfR are error df for the full and restricted models, respectively. The above formula has the 
form of a MSR/MSE. The numerator can also be thought of as [SSR(F) - SSR(R)]/[dfR - dfF]. The error df
for any model will always be n - k - 1, where n is the number of observations, and k is the number of 
predictors in the model

This formula may also be cast in terms of R2s for the full and restricted models [see equation 7.19 on 
p. 266 of Kutner et al.]:

 F df df df
R R

df df

R

dfR F F
F R

R F

F

F

 











 









,

2 2 21
. [24]
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Thus, another way of conceptualizing the hypothesis test of, say, β1 = 0, in a model that has two 
predictors would be as a test of whether adding the predictor X1 to an equation that already has X2 in it 
significantly improves the prediction of Y beyond what can be predicted by X2 alone. It is important to 
note that this interpretation is exactly equivalent to asking whether there is a relation between Y and X1

when X2 is held constant.

Type I (sequential) & Type II SS: Alternative Breakdowns of SSR [see p. 256-271]

There are several ways of decomposing the SSR in a regression equation with several predictors. 
Decomposing or partitioning the SSTO into pieces that add up to SSTO always uses what is commonly 
called Type I (or sequential) SS. JMP does not by default provide the Type I SS, but one can always obtain 
them from the Standard Least Squares analysis of the Fit Model platform: Simply right-click and select 
Estimates|Sequential Tests.

The default SS provided by JMP in the Effect Tests section are commonly called Type II SS. Type II 
SS provide the most commonly used hypothesis tests, but they do not add up (generally) to the SSR.

In the single predictor case the Type I and Type II SS will be identical and equal to SSR, but with more 
than one predictor there are several breakdowns possible for the Type I SS, depending on the order in 
which variables are entered into the regression equation. Type II SS do not depend on the order of 
variables entered as indicated below. For one predictor the breakdown is as follows:

SSTO = SSR(X1) + SSE(X1).

With two predictors the SS breakdown can be represented as follows:
SSTO = SSR(X1) + SSR(X2|X1) + SSE(X1, X2) =SSR(X1, X2) + SSE(X1, X2). [25]

SSR(X1, X2) = SSR(X1) + SSR(X2|X1) Type I SS with X1 entered first
SSR(X1, X2) = SSR(X2) + SSR(X1|X2) Type I SS with X2 entered first

With three predictors the breakdown would be:
SSR(X1, X2, X3) = SSR(X1) + SSR(X2|X1) + SSR(X3|X1, X2) Type I SS with X1 entered first,  

X2 second,  X3 last. The extension to more than 3 predictors is obvious.

Type II SS is the Type I SS for each variable when it is entered last:
SSR(X1|X2, X3)
SSR(X2|X1, X3)
SSR(X3|X1, X2)

Type II SS is the usual SS output by JMP and used in the usual hypothesis tests.

The Type I SS breakdown of SSR leads to partial and semipartial (sometimes called part) correlations. 
The squared partial and semipartial correlations are as follows:

Squared partial correlation examples [see comments on p. 271]:
r2

Y2.1 = SSR(X2|X1)/SSE(X1) = (rY2 - rY1r12)
2/[(1 - r2

12)(1 - r2
Y1)] [26]

r2
Y2.13 = SSR(X2|X1, X3)/SSE(X1, X3)
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Squared semipartial (part) correlation examples:
r2

Y(2.1) = SSR(X2|X1)/SSTO  = (rY2 - rY1r12)
2/(1 - r2

12) [27]
r2

Y(2.13) = SSR(X2|X1, X3)/SSTO

Note that the standardized regression weight for b2 has the same numerator as both the partial and 
semipartial correlations so that they all have the same sign and when one is zero the others are as well:

b*
2 = (rY2 - rY1r12)/(1 - r2

12) [28]

Thus, the significance test for the regression coefficient is also a significance test for the partial and 
semipartial correlations.

Note that the above Type I SS breakdown of SSR means that R2
Y.123...k may be partitioned as follows:

R2
Y.123...k = r2

Y1 + r2
Y(2.1) + r2

Y(3.12) + ... [29]

Note also that there are many possible breakdowns of R2
Y.123...k depending on the order that the Xs are 

entered into the equation. Each squared semipartial correlation represents the additional increase in R2 that 
one obtains by adding a new predictor to the equation. It is also important to realize that if the predictors 
(Xs) are uncorrelated among themselves (orthogonal) the breakdown becomes

R2
Y.123...k = r2

Y1 + r2
Y2 + r2

Y3 + ... [30]

and it does not matter what order the predictors are entered into the equation. The Type I sequential SS are 
the same as the Type II SS.

Also, notice in the IQ, Extraversion and Sales Success example that the total  R2
Y.12 is greater than the 

sum  r2
Y1 + r2

Y2. Or another way of expressing the same phenomenon is to note that SSR(X2|X1) > SSR(X2) 
and SSR(X1|X2) > SSR(X1). This will not usually be the case, but it is certainly possible, as the example 
shows. The predictor variables seem to be enhancing one another in their prediction of Y. The inclusion of 
one predictor enhances the predictive effectiveness of the other predictor.  This is one example of a 
phenomenon I call enhancement for obvious reasons. Sometimes in the literature predictors exhibiting this 
phenomenon are called suppressor variables for reasons that are not so obvious. See McFatter (1979) [The 
use of structural equation models in interpreting regression equations including suppressor and enhancer 
variables, Applied Psychological Measurement, 3,123-135], for additional examples and discussion.

Matrix Algebra and Matrix Formulation of Regression Analysis

Matrix algebra is a very powerful tool for mathematical and statistical analysis. It is very commonly 
applied to problems in statistics and, in particular, to regression analysis. Here are some basic definitions 
and operations used in matrix algebra. Bold face letters will be used to indicate matrices. Lower case bold 
letters are usually used to indicate vectors (one-dimensional matrices). Matrices are often written with 
subscripts to indicate the order (i.e., number of rows and columns) of the matrix. Matrix operations like 
the ones described below may be very easily carried out in Excel or Quattro Pro. In Excel, it is important 
to remember that to carry out a matrix operation it is necessary to select the entire shape of the final 
matrix before entering the formula, enter an = sign to begin the formula, and end the formula with a Cntl-
Shift-Enter simultaneous key press.
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Definitions:

SQUARE MATRIX. A square matrix is a matrix with the same number of rows as columns.

MATRIX TRANSPOSE. The transpose of matrix A, denoted by A', is obtained by interchanging the rows 
and columns of A. The TRANSPOSE function in Excel will carry out this function.

A 3 × 2 = 

1 5

9 4

0 3

















A' 2 × 3 =
1 9 0

5 4 3











SYMMETRIC MATRIX. A symmetric matrix is a square matrix whose rows are the same as its columns. 
That is, A = A'.  For example, matrix A below is symmetric. 

A 3 × 3 =

1 5 9

5 2 4

9 4 3

















A' 3 × 3 =

1 5 9

5 2 4

9 4 3

















A common example of a symmetric matrix is a correlation matrix.

DIAGONAL MATRIX. A diagonal matrix is a square matrix whose off-diagonal elements are all zero.

A 3 × 3 =

6 0 0

0 4 0

0 0 3

















IDENTITY MATRIX. An identity matrix, I n × n is a diagonal matrix with all diagonal elements equal to 
one.

I 3 × 3 = 

1 0 0

0 1 0

0 0 1

















Matrix Addition Example: A r × c + B r × c = C r × c [31]

1 9

5 6

8 6

1 0

4 5

4 1

2 9

9 11

12 7

















































Matrix subtraction works analogously (i.e., element by element addition or subtraction). Note that only 
matrices with identical orders may be added or subtracted, and that the resultant matrix has the same 
order as the component matrices.
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Matrix Multiplication Example: A p × q B r × s = C p × s [32]

1 5 6

9 7 6

4 6 8 0

1 2 1 5

3 7 1 4

27 58 19 49

61 110 85 59





































In matrix multiplication, each row of the first matrix is multiplied with each column of the second 
matrix and the result summed. For example, in matrix C above, 27 = 1(4) + 5(1) + 6(3), and 110 = 
9(6) + 7(2) + 6(7). Note that the order of the resultant matrix, C, is the number of columns of A times 
the number of rows of B. The function in Excel that performs matrix multiplication is MMULT.

Note that in order for two matrices to be ‘conformable’ for multiplication the column order of the first 
matrix must be equal to the row order of the second matrix, i.e., q = r. Moreover, in general, in matrix 
algebra AB ≠ BA. In fact, both multiplications may not even be possible. This contrasts with ordinary 
algebra where, necessarily, ab = ba.

Note also that AI = IA = A, where I is the appropriate identity matrix. Thus, in matrix algebra the 
identity matrix functions like the number 1 in ordinary algebra.

Matrix Inverse Example: A-1A = AA-1 = I [33]

Division, as such, is not defined in matrix algebra. However, the operation that functions analogously 
to division in ordinary algebra is multiplication by the inverse matrix. In ordinary algebra, division is 
equivalent to multiplication by the reciprocal (or inverse) of a number—dividing by a is equivalent to 
multiplying by 1/a = a-1. Thus a (a-1) = 1. In matrix algebra, the inverse of a square matrix A is the 
matrix A-1 which when multiplied by A yields the identity matrix I.

A = 
6 4

1 2









 A-1 = 

2
8

4
8

1
8

6
8











 AA-1 = 

1 0

0 1









 [34]

Finding the inverse of a square matrix is computationally tedious for anything more than a 2 × 2 
matrix. The function that does this in Excel is the MINVERSE function.

The computation of the inverse of a square matrix involves the computation of a quantity called the 
determinant of the matrix. The determinant of A is sometimes denoted by |A|. To find the inverse of A, 
a matrix called the adjoint of A (Adj A) is multiplied by the reciprocal of the determinant of A, i.e., 

A-1 = 
1

| |A
Adj A . [35]

In the 2 x 2 case, the determinant of matrix A = 
a b

c d









  is |A| = ad - bc. And the adjoint of A  is 

Adj A = 
d b

c a











 . Thus, in the numerical example above, the determinant is 8 and the adjoint of A

is 
2 4

1 6











 .
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Because computation of the inverse of a matrix involves division of numbers by the determinant of the 
matrix, the operation becomes undefined when the determinant of the matrix is zero. When a matrix has a 
determinant that is zero, the matrix is said to be singular, and its inverse does not exist.

Linear Dependence and the Rank of a Matrix

A matrix will be singular when its rows or columns are linearly dependent. For example, if one of the 
columns of a matrix can be expressed as an exact linear combination of the other columns of the matrix, 
then the columns are linearly dependent. The following matrix is singular (its determinant is zero) because 
its columns are linearly dependent. The third column is equal to 3 times the first column minus 2 times the 
second column.

A = 

6 4 10

7 3 15

4 5 2

















. No inverse exists for this matrix.

When the rows and columns of a matrix are not linearly dependent the matrix is said to be of full rank.
If a matrix is not of full rank, then it is singular. The rank of a matrix is defined to be the maximum 
number of linearly independent columns (or rows) of the matrix. The matrix above is of rank 2 because 
only two of the columns are linearly independent. It can be shown that the rank of an r x c matrix cannot 
exceed the minimum of r and c. For example, the rank of a 6 x 10 matrix can at most be 6. Also, when two 
matrices are multiplied, the rank of the resulting matrix can be at most the rank of the matrix with the 
smallest rank. Linear dependence and rank become important in regression analysis because the 
computation of regression coefficients involves finding the inverse of a matrix. If that matrix is singular, 
no solution exists. 

Basic Theorems from Matrix Algebra

Below are some basic theorems for manipulation of matrices in matrix algebra. I have reproduced 
these from Kutner et al., p. 193:

A + B = B + A
(A + B) + C = A + (B + C)

(AB)C = A(BC)
C(A + B) = CA + CB
λ(A + B) = λA + λB                                (λ is any scalar)

(A')' = A
(A + B)' = A' + B'                                                  [36]

(AB)' = B'A'
(ABC)' = C'B'A'

(AB)-1 = B-1A-1

(ABC)-1 = C-1B-1A-1

(A-1)-1 = A
(A')-1 = (A-1)'

  
Notice that a major difference between matrix algebra and ordinary algebra is that sequential order of 

multiplication is crucial in matrix algebra whereas it is not in ordinary algebra.
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Matrix Formulation of Regression Analysis

The general multiple regression model and the solution of its equations may be formulated very 
compactly using matrix notation:

Yn × 1 = X n × (k + 1) β (k + 1) × 1 + ε n × 1 [37]

where k is the number of predictors in the regression model.

In the simple bivariate case using equation [2] and the simple data set from p. 3, the matrix 
formulation would be

Y5 × 1 = X 5 × 2 b 2 × 1 + e 5 × 1   where

Y =

1

2

3

4

5























X = 

1 6

1 6

1 3

1 3

1 2























b = 
b

b
0

1









 e = 

e

e

e

e

e

1

2

3

4

5























The ‘normal equations’ which reflect the solution to the least squares estimation of the model’s 
parameters can be shown to be (p. 199-200, Kutner et al.)

X'X b = X'Y. [38]

This is a set of equations with the parameter estimates in b being the unknowns. The solution to this 
matrix equation may be found using the matrix algebra operations described above. We wish to solve for 
b. Because X'X is a square matrix its inverse may be found as long as it is nonsingular. Premultiplying 
both sides of equation [38] by (X'X)-1 leads to

(X'X)-1X'X b = (X'X)-1 X'Y, [39]

but (X'X)-1X'X = I, and Ib = b, so we have

b =  (X'X)-1 X'Y. [40]

Equation [40] is the general matrix solution for the regression coefficients of any multiple regression 
problem regardless of the number of predictors or their nature.

The following Excel spreadsheet shows the computation of b as well as many of the other commonly 
calculated quantities in the regression analysis for the small bivariate example above.
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X Y X'X (X'X)inv X'Y b=(X'X)inv*X'Y
1 6 1 5 20 1.34286 -0.2857 15 6.142857
1 6 2 20 94 -0.2857 0.0714 49 -0.78571

1 3 3
1 3 4
1 2 5

Yhat e e'e Var{b}
1.429 -0.4 1.3571 =SSE 0.60748 -0.1293
1.429 0.57 -0.1293 0.0323
3.786 -0.8
3.786 0.21 MSE S{b}
4.571 0.43 0.4524 0.77941

0.1798
Hat=X(X'X)invX'

0.486 0.486 0.06 0.06 -0.09
0.486 0.486 0.06 0.06 -0.09
0.057 0.057 0.27 0.27 0.343
0.057 0.057 0.27 0.27 0.343
-0.09 -0.09 0.34 0.34 0.486

Following are some of the important quantities we have looked at regression analysis expressed in 
matrix terms:

Y  Xb [41]

e Y Y   [42]

SSE   =   e'e   =   Y'Y – b'X'Y [43]

MSE =   e'e/(n-k-1) [44]

s2{b} = MSE (X'X)-1 [45]

When the X and Y variables have been standardized (M = 0, s = 1), the normal equations [38] become

RXX b* = rYX [46]

where RXX is the correlation matrix of the X variables, rYX is the column vector of correlations between Y 
and the X variables, and b* is the column vector of standardized regression coefficients. Solving this 
matrix equation for b* leads to 

b* = R-1
XX rYX. [47]

Thus, one could easily obtain the standardized regression coefficients from correlation matrix of all 
the variables in the analysis.

Multicollinearity

When the predictor variables in a regression analysis are correlated with one another they are said to 
be multicollinear. The degree of relationship (or multicollinearity) among the predictor variables is related 
to a number of problems in interpreting the results of a regression analysis. Although moderate levels of 
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multicollinearity do not ordinarily produce major difficulties of interpretation, the multicollinearity does 
affect the interpretation of the equation, and extreme multicollinearity can make it impossible, or next to 
impossible, to even estimate the equation, let alone interpret it. It should be noted that some authors 
restrict use of the term ‘multicollinearity’ to these situations of extreme multicollinearity.

If the predictors are all uncorrelated with one another (i.e., no multicollinearity) then interpretation of 
the analysis is quite straightforward. The relative contribution that each variable makes to the prediction of 
the criterion variable is simply the square of the correlation of that predictor with the criterion, and the 
total R2 may be partitioned into components that unambiguously reflect the contribution of each predictor 
as equation [30] shows.

Testing Blocks of Variables

The following is the output from a SAS analysis testing the effect of a block of variables in an 
omnibus test:

1                Example for Testing Blocks of variables     1

 Model: MODEL1
 Dependent Variable: DEP

                           Analysis of Variance

                           Sum of         Mean
  Source          DF      Squares       Square      F Value       Prob>F

  Model            9   2159.38844    239.93205        5.868       0.0001
  Error          294  12021.86156     40.89069
  C Total        303  14181.25000

      Root MSE       6.39458     R-square       0.1523
      Dep Mean       9.62500     Adj R-sq       0.1263
      C.V.          66.43722

                           Parameter Estimates

                    Parameter      Standard    T for H0:
   Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

   INTERCEP   1     17.258054    3.84824995         4.485        0.0001
   IMP        1      0.234499    0.21341461         1.099        0.2728
   SOC        1     -0.772616    0.14636501        -5.279        0.0001
   AB1        1      0.010397    0.80341100         0.013        0.9897
   AB2        1     -0.594332    0.67680400        -0.878        0.3806
   AB3        1     -0.170676    0.53212308        -0.321        0.7486
   AB4        1      2.024047    1.16603605         1.736        0.0836
   AB5        1     -2.240639    0.63629947        -3.521        0.0005
   AB6        1      1.566799    1.00810390         1.554        0.1212
   AB7        1     -2.094335    0.95305308        -2.198        0.0288

   Variable  DF     Type I SS    Type II SS

   INTERCEP   1         28163    822.396981
   IMP        1      6.897263     49.369243
   SOC        1   1137.985210   1139.401802
   AB1        1     14.906676      0.006848
   AB2        1    180.175464     31.532414
   AB3        1     18.265787      4.206740
   AB4        1     21.949314    123.208791
   AB5        1    552.665954    507.043403
   AB6        1     29.081151     98.773434
   AB7        1    197.461618    197.461618
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                Example for Testing Blocks of variables                2

 Model: MODEL2
 Dependent Variable: DEP

                           Analysis of Variance

                           Sum of         Mean
  Source          DF      Squares       Square      F Value       Prob>F

  Model            9   2159.38844    239.93205        5.868       0.0001
  Error          294  12021.86156     40.89069
  C Total        303  14181.25000

      Root MSE       6.39458     R-square       0.1523
      Dep Mean       9.62500     Adj R-sq       0.1263
      C.V.          66.43722

                           Parameter Estimates

                    Parameter      Standard    T for H0:
   Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

   INTERCEP   1     17.258054    3.84824995         4.485        0.0001
   AB1        1      0.010397    0.80341100         0.013        0.9897
   AB2        1     -0.594332    0.67680400        -0.878        0.3806
   AB3        1     -0.170676    0.53212308        -0.321        0.7486
   AB4        1      2.024047    1.16603605         1.736        0.0836
   AB5        1     -2.240639    0.63629947        -3.521        0.0005
   AB6        1      1.566799    1.00810390         1.554        0.1212
   AB7        1     -2.094335    0.95305308        -2.198        0.0288
   IMP        1      0.234499    0.21341461         1.099        0.2728
   SOC        1     -0.772616    0.14636501        -5.279        0.0001

   Variable  DF     Type I SS    Type II SS

   INTERCEP   1         28163    822.396981
   AB1        1     32.823095      0.006848
   AB2        1    176.975460     31.532414
   AB3        1      6.427272      4.206740
   AB4        1     17.201841    123.208791
   AB5        1    553.739673    507.043403
   AB6        1     54.363970     98.773434
   AB7        1    162.753435    197.461618
   IMP        1     15.701890     49.369243
   SOC        1   1139.401802   1139.401802

 Dependent Variable: DEP
 Test: ABUSE Numerator:    144.9294  DF:    7   F value:   3.5443
             Denominator:  40.89069  DF:  294   Prob>F:    0.0011

 Dependent Variable: DEP
 Test: EXTR  Numerator:    577.5518  DF:    2   F value:  14.1243
             Denominator:  40.89069  DF:  294   Prob>F:    0.0001
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Stepwise Selection of Predictors

The following is the output from a JMP analysis using the forward selection and backwards 
elimination techniques to select predictors in a regression analysis predicting subjective well-being (W) 
from demographic and social relationship variables: 

Stepwise Fit
Response: 
w

Stepwise Regression Control
Prob to Enter 0.030
Prob to Leave 0.030

Direction:

Current Estimates
SSE DFE MSE RSquare RSquare Adj Cp AIC

1622.202 139 11.67052 0.4162 0.3994 10.72091 358.7286

Lock

Entered

Parameter Estimate nDF SS "F Ratio" "Prob>F"
Intercept 8.05864558 1 0 0.000 1.0000
sex . 1 41.72756 3.643 0.0584
race . 1 6.257591 0.534 0.4660
empl . 1 0.686317 0.058 0.8094
spouse . 1 7.123479 0.609 0.4366
mom 2.31127751 1 121.2652 10.391 0.0016
dad . 1 39.5474 3.448 0.0654
sibs 2.32482843 1 133.2412 11.417 0.0009
rel . 1 0.542101 0.046 0.8303
numso . 1 6.752823 0.577 0.4488
timeso . 1 34.81695 3.027 0.0841
e 0.35800083 1 259.1405 22.205 0.0000
n -0.3067543 1 344.9606 29.558 0.0000
l . 1 2.138198 0.182 0.6702
acq . 1 21.91027 1.889 0.1715
frnd . 1 45.22244 3.957 0.0486

Step History
Step Parameter Action "Sig Prob" Seq SS RSquare Cp p

1 e Entered 0.0000 479.4523 0.1725 65.118 2
2 n Entered 0.0000 348.7243 0.2980 36.008 3
3 sibs Entered 0.0001 207.0159 0.3726 19.539 4
4 mom Entered 0.0016 121.2652 0.4162 10.721 5

Stepwise Fit
Response: 
w

Stepwise Regression Control
Prob to Enter 0.030
Prob to Leave 0.030
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Current Estimates
SSE DFE MSE RSquare RSquare Adj Cp AIC

1434.7743 128 11.20917 0.4836 0.4231 16 363.0487

Lock

Entered

Parameter Estimate nDF SS "F Ratio" "Prob>F"
Intercept 6.60702504 1 0 0.000 1.0000
sex -1.2972898 1 50.85201 4.537 0.0351
race 0.50082994 1 7.165031 0.639 0.4255
empl -0.0623098 1 0.12838 0.011 0.9149
spouse 0.44541743 1 5.984767 0.534 0.4663
mom 1.46533811 1 37.36558 3.333 0.0702
dad 1.20316572 1 35.57343 3.174 0.0772
sibs 2.16149578 1 104.601 9.332 0.0027
rel -0.7012345 1 11.16948 0.996 0.3201
numso -0.0573344 1 0.44578 0.040 0.8422
timeso 0.34307195 1 22.82063 2.036 0.1561
e 0.27976401 1 131.9864 11.775 0.0008
n -0.3231491 1 336.0496 29.980 0.0000
l -0.0953823 1 3.246401 0.290 0.5914
acq 0.03976322 1 4.032358 0.360 0.5497
frnd 0.14580884 1 29.51324 2.633 0.1071

Step History
Step Parameter Action "Sig Prob" Seq SS RSquare Cp p

1 e Entered 0.0000 479.4523 0.1725 65.118 2
2 n Entered 0.0000 348.7243 0.2980 36.008 3
3 sibs Entered 0.0001 207.0159 0.3726 19.539 4
4 mom Entered 0.0016 121.2652 0.4162 10.721 5

Stepwise Fit
Response: 
w

Stepwise Regression Control
Prob to Enter 0.030
Prob to Leave 0.030

Direction:
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Current Estimates
SSE DFE MSE RSquare RSquare Adj Cp AIC

1521.3101 137 11.10445 0.4525 0.4285 5.720085 353.482

Entered

Parameter Estimate nDF SS "F Ratio" "Prob>F"
Intercept 8.93337147 1 0 0.000 1.0000
sex -1.2945208 1 55.66942 5.013 0.0268
race . 1 7.209445 0.648 0.4224
empl . 1 0.096685 0.009 0.9261
spouse . 1 3.273621 0.293 0.5890
mom 1.94450411 1 82.84942 7.461 0.0071
dad . 1 36.98623 3.389 0.0678
sibs 2.2709447 1 126.754 11.415 0.0009
rel . 1 3.567762 0.320 0.5727
numso . 1 0.000593 0.000 0.9942
timeso . 1 25.4668 2.315 0.1304
e 0.2798742 1 137.3623 12.370 0.0006
n -0.3241244 1 380.7799 34.291 0.0000
l . 1 2.254577 0.202 0.6539
acq . 1 1.229298 0.110 0.7407
frnd 0.18183481 1 59.16431 5.328 0.0225

Step History
Step Parameter Action "Sig Prob" Seq SS RSquare Cp p

1 e Entered 0.0000 479.4523 0.1725 65.118 2
2 n Entered 0.0000 348.7243 0.2980 36.008 3
3 sibs Entered 0.0001 207.0159 0.3726 19.539 4
4 mom Entered 0.0016 121.2652 0.4162 10.721 5
5 empl Removed 0.9149 0.12838 0.4836 14.011 15
6 numso Removed 0.8448 0.427913 0.4834 12.05 14
7 l Removed 0.5918 3.189925 0.4823 10.334 13
8 acq Removed 0.6265 2.612655 0.4814 8.5673 12
9 race Removed 0.5129 4.698999 0.4797 6.9865 11

10 spouse Removed 0.5187 4.551578 0.4780 5.3926 10
11 rel Removed 0.2944 11.9927 0.4737 4.4625 9
12 timeso Removed 0.1569 21.9474 0.4658 4.4204 8
13 dad Removed 0.0678 36.98623 0.4525 5.7201 7
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‘Intrinsically Linear’ Nonlinear Functions

It is common to desire to fit a function more complex than a linear one to a set of data. Of course, 
there are a huge number of possible nonlinear functions that one could fit. Iterative methods are 
commonly used to estimate many nonlinear functions, but for a class of nonlinear functions called 
‘intrinsically linear,’ the usual methods of standard least squares multiple regression analysis may be used 
to estimate the model. Intrinsically linear functions are ones that, through some combination of 
transformations of the variables involved, may be brought into the form of the general linear regression 
model:

Yi = β0 + β1 X1i + β2 X2i+ . . . + εi. [48]

Some examples of intrinsically linear functions are the simple ‘power function’

Y = α X βε, [49]

which may be transformed into a linear function by taking the logarithm of both sides:

ln(Y) = ln(α) + β ln(X) + ln(ε) [50]

and estimated by simply regressing the logarithm of Y on the logarithm of X using usual least squares 
methods,

or Y = α e β X ε [51]

which may also be transformed into a linear function by taking the logarithm of both sides:

ln(Y) = ln(α) + β X + ln(ε) [52]

and estimated by simply regressing the logarithm of Y on untransformed X using usual least squares 
methods.

Polynomial Regression

Another family of intrinsically linear functions is the class of polynomial functions:

Y = β0 + β1 X + β2 X 2 +  β3 X 3 . . . + ε. [53]

These functions may be estimated simply by regressing Y on the untransformed, squared, cubed, etc. 
values of the Xs.

Polynomial Regression Example.
Consider the following hypothetical set of data from a study examining performance as a function of 

drug dosage with subjects randomly assigned to receive one of five dosages (50mg, 100mg, 150mg, 
200mg, 250mg) of a certain drug. There are five subjects in each condition.
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Obs Prfrmnc Dose DoseDev Dose2 Dose3 Dose4 Predicted Prfrmnc
1 15 50 -100 2500 125000 6250000 10
2 5 50 -100 2500 125000 6250000 10
3 8 50 -100 2500 125000 6250000 10
4 12 50 -100 2500 125000 6250000 10
5 10 50 -100 2500 125000 6250000 10
6 58 100 -50 10000 1000000 100000000 50.2
7 51 100 -50 10000 1000000 100000000 50.2
8 49 100 -50 10000 1000000 100000000 50.2
9 42 100 -50 10000 1000000 100000000 50.2

10 51 100 -50 10000 1000000 100000000 50.2
11 90 150 0 22500 3375000 506250000 79.6
12 83 150 0 22500 3375000 506250000 79.6
13 77 150 0 22500 3375000 506250000 79.6
14 76 150 0 22500 3375000 506250000 79.6
15 72 150 0 22500 3375000 506250000 79.6
16 88 200 50 40000 8000000 1600000000 88.4
17 91 200 50 40000 8000000 1600000000 88.4
18 81 200 50 40000 8000000 1600000000 88.4
19 89 200 50 40000 8000000 1600000000 88.4
20 93 200 50 40000 8000000 1600000000 88.4
21 103 250 100 62500 15625000 3906250000 94.2
22 85 250 100 62500 15625000 3906250000 94.2
23 96 250 100 62500 15625000 3906250000 94.2
24 93 250 100 62500 15625000 3906250000 94.2
25 94 250 100 62500 15625000 3906250000 94.2

Bivariate Fit of Prfrmnc By Dose

0
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0 50 100 150 200 250 300

Dose

Linear Fit
Prfrmnc = 2.5 + 0.4132 Dose

Summary of Fit
RSquare 0.856541
RSquare Adj 0.850304
Root Mean Square Error 12.46641
Mean of Response 64.48
Observations (or Sum Wgts) 25
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 21341.780 21341.8 137.3245
Error 23 3574.460 155.4 Prob > F
C. Total 24 24916.240 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 2.5 5.847263 0.43 0.6730
Dose 0.4132 0.03526 11.72 <.0001

Bivariate Fit of Prfrmnc By Dose

0
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Dose

Polynomial Fit Degree=2
Polynomial Fit Degree=2
Prfrmnc = 15.271429 + 0.4132 Dose - 0.0025543 (Dose-150)^2

Summary of Fit
RSquare 0.971101
RSquare Adj 0.968474
Root Mean Square Error 5.720957
Mean of Response 64.48
Observations (or Sum Wgts) 25

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 24196.194 12098.1 369.6406
Error 22 720.046 32.7 Prob > F
C. Total 24 24916.240 <.0001



Bob McFatter Psychology 513

- 34 -

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 15.271429 3.011761 5.07 <.0001
Dose 0.4132 0.016181 25.54 <.0001
(Dose-150)^2 -0.002554 0.000274 -9.34 <.0001

Bivariate Fit of Prfrmnc By Dose
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Polynomial Fit Degree=4
Polynomial Fit Degree=4
Prfrmnc = 24.25 + 0.369 Dose - 0.0045767 (Dose-150)^2 + 0.0000052 (Dose-150)^3 + 1.8267e-7 (Dose-150)^4

Summary of Fit
RSquare 0.974474
RSquare Adj 0.969369
Root Mean Square Error 5.639149
Mean of Response 64.48
Observations (or Sum Wgts) 25

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 4 24280.240 6070.06 190.8824
Error 20 636.000 31.80 Prob > F
C. Total 24 24916.240 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 24.25 7.618071 3.18 0.0047
Dose 0.369 0.047924 7.70 <.0001
(Dose-150)^2 -0.004577 0.001581 -2.90 0.0089
(Dose-150)^3 0.0000052 0.000005 0.98 0.3397
(Dose-150)^4 1.8267e-7 1.407e-7 1.30 0.2089
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Bivariate Fit of Prfrmnc By Dose
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Polynomial Fit Degree=4
Polynomial Fit Degree=4
Prfrmnc = -3.8 - 0.373 Dose + 0.0177433 Dose^2 - 0.0001044 Dose^3 + 1.8267e-7 Dose^4

Summary of Fit
RSquare 0.974474
RSquare Adj 0.969369
Root Mean Square Error 5.639149
Mean of Response 64.48
Observations (or Sum Wgts) 25

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 4 24280.240 6070.06 190.8824
Error 20 636.000 31.80 Prob > F
C. Total 24 24916.240 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept -3.8 39.95447 -0.10 0.9252
Dose -0.373 1.468045 -0.25 0.8020
Dose^2 0.0177433 0.017598 1.01 0.3254
Dose^3 -0.000104 0.000085 -1.23 0.2313
Dose^4 1.8267e-7 1.407e-7 1.30 0.2089

Response Prfrmnc
Summary of Fit
RSquare 0.974474
RSquare Adj 0.969369
Root Mean Square Error 5.639149
Mean of Response 64.48
Observations (or Sum Wgts) 25
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 4 24280.240 6070.06 190.8824
Error 20 636.000 31.80 Prob > F
C. Total 24 24916.240 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept -3.8 39.95447 -0.10 0.9252
Dose -0.373 1.468045 -0.25 0.8020
Dose*Dose 0.0177433 0.017598 1.01 0.3254
Dose*Dose*Dose -0.000104 0.000085 -1.23 0.2313
Dose*Dose*Dose*Dose 1.8267e-7 1.407e-7 1.30 0.2089

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Dose 1 1 2.052891 0.0646 0.8020
Dose*Dose 1 1 32.327780 1.0166 0.3254
Dose*Dose*Dose 1 1 48.465534 1.5241 0.2313
Dose*Dose*Dose*Dose 1 1 53.625714 1.6863 0.2089

Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
Dose 1 1 21341.780 671.1252 <.0001
Dose*Dose 1 1 2854.414 89.7615 <.0001
Dose*Dose*Dose 1 1 30.420 0.9566 0.3397
Dose*Dose*Dose*Dose 1 1 53.626 1.6863 0.2089

Response Prfrmnc
Summary of Fit
RSquare 0.974474
RSquare Adj 0.969369
Root Mean Square Error 5.639149
Mean of Response 64.48
Observations (or Sum Wgts) 25

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 4 24280.240 6070.06 190.8824
Error 20 636.000 31.80 Prob > F
C. Total 24 24916.240 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 79.6 2.521904 31.56 <.0001
DoseDev 0.369 0.047924 7.70 <.0001
DoseDev*DoseDev -0.004577 0.001581 -2.90 0.0089
DoseDev*DoseDev*DoseDev 0.0000052 0.000005 0.98 0.3397
DoseDev*DoseDev*DoseDev*DoseDev 1.8267e-7 1.407e-7 1.30 0.2089

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
DoseDev 1 1 1885.3062 59.2864 <.0001
DoseDev*DoseDev 1 1 266.6378 8.3848 0.0089
DoseDev*DoseDev*DoseDev 1 1 30.4200 0.9566 0.3397
DoseDev*DoseDev*DoseDev*DoseDev 1 1 53.6257 1.6863 0.2089
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Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
DoseDev 1 1 21341.780 671.1252 <.0001
DoseDev*DoseDev 1 1 2854.414 89.7615 <.0001
DoseDev*DoseDev*DoseDev 1 1 30.420 0.9566 0.3397
DoseDev*DoseDev*DoseDev*DoseDev 1 1 53.626 1.6863 0.2089

Response Prfrmnc
Summary of Fit
RSquare 0.974474
RSquare Adj 0.969369
Root Mean Square Error 5.639149
Mean of Response 64.48
Observations (or Sum Wgts) 25

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 4 24280.240 6070.06 190.8824
Error 20 636.000 31.80 Prob > F
C. Total 24 24916.240 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 64.48 1.12783 57.17 <.0001
Dose[50] -54.48 2.25566 -24.15 <.0001
Dose[100] -14.28 2.25566 -6.33 <.0001
Dose[150] 15.12 2.25566 6.70 <.0001
Dose[200] 23.92 2.25566 10.60 <.0001

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Dose 4 4 24280.240 190.8824 <.0001

Effect Details
Dose
Least Squares Means Table
Level Least Sq Mean Std Error Mean
50 10.000000 2.5219040 10.0000
100 50.200000 2.5219040 50.2000
150 79.600000 2.5219040 79.6000
200 88.400000 2.5219040 88.4000
250 94.200000 2.5219040 94.2000

Lack of Fit

Because the cubic and quartic trends in the above analyses are both nonsignificant (from the sequential 
Type 1 tests) the best model appears to be one that has both linear and quadratic components only. The 
model on the following page shows the analysis with only those two components. Note that this model 
and the previous ones have really only one predictor, Dose, and it is simply the form of the model (i.e., 
how complex the polynomial should be) that is in question. Note also that we have only five levels of the 
predictor, Dose, and multiple observations at each level of Dose. There is a limit, therefore, to the degree 
of fit that any model that includes only Dose could have to this set of observations. Any model that 
perfectly fits the means of the five groups will have obtained the maximum fit possible. Additional 
variation of Performance scores around those means represents pure (irreducible) error.
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It is common to evaluate how well a model fits a set of data by testing whether the error variation left 
over after the model fit is significantly greater than pure error. If this lack of fit error is not significant, 
then we conclude that the model is a good fit to the data. In the polynomial trend analysis example above, 
the pure error estimate would be the MSE for the quartic model that perfectly fits the five means. No 
model with only Dose as a predictor will do better than perfectly fitting the five means. Is the quadratic 
model (with only linear and quadratic components) a good fit to the data? The Lack of Fit section of the 
JMP output tests this by testing whether the block of two additional predictors that would lead to a perfect 
fit (cubic and quartic) significantly improves prediction over the linear and quadratic. Because it does not, 
F(2, 20) = 1.32, p = .2890, we conclude that the quadratic model is a good fit.

Response Prfrmnc 
Summary of Fit
RSquare 0.971101
RSquare Adj 0.968474
Root Mean Square Error 5.720957
Mean of Response 64.48
Observations (or Sum Wgts) 25

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 24196.194 12098.1 369.6406
Error 22 720.046 32.7 Prob > F
C. Total 24 24916.240 <.0001

Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 2 84.04571 42.0229 1.3215
Pure Error 20 636.00000 31.8000 Prob > F
Total Error 22 720.04571 0.2890

Max RSq
0.9745

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 77.251429 1.783094 43.32 <.0001
DoseD 0.4132 0.016181 25.54 <.0001
DoseD*DoseD -0.002554 0.000274 -9.34 <.0001

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
DoseD 1 1 21341.780 652.0685 <.0001
DoseD*DoseD 1 1 2854.414 87.2127 <.0001
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Models with Cross-Product (Interaction) Terms

In the simple multiple regression model with two predictors,
Y b b X b X  0 1 1 2 2 , [54]

it is important to notice that the value of b1, which is the conditional or partial effect of X1 on Y holding X2

constant, does not depend on the value at which one holds X2 constant. That is, the effect of X1 on Y is the 
same, namely, b1, whether X2 is held constant at a very low level or at a high level. This is clearly 
reflected in the parallel lines in the 3-D surface plot of the best-fitting plane (see the plot in the IQ, 
extraversion, sales success example above).

If one includes a cross-product term in the equation, however, the response surface is no longer a 
plane, but rather a warped surface with nonparallel lines in the 3-D plot. Such a model would be

Y b b X b X b X X   0 1 1 2 2 3 1 2 . [55]
Notice that because X1 appears in the equation more than once, the conditional effect of X1 on Y, holding 
X2 constant, is not simply b1. It is easy to see what the conditional effect of X1 is, however, by simply 
algebraically rearranging the equation:

 Y b b b X X b X   0 1 3 2 1 2 2 . [56]

Notice that the coefficient of X1 in this equation is the quantity (b1 + b3 X2). This quantity is the 
conditional effect of X1 on Y, holding X2 constant, and its value depends on the value of X2. If X2 is zero, 
then the effect of X1 is b1. However, if X2 = 1, for example, then the effect of X1 is b1 + b3. When the effect 
of one independent or predictor variable on the criterion depends on the level of a second predictor, the 
two predictors are said to interact. Thus, a model that contains a cross-product term is an interaction
model, as opposed to a purely additive model.

The interaction effect works the same way for X2. A rearrangement of equation [55] isolating X2 leads 
to the conditional effect of X2 being (b2 + b3 X1).

Notice, in particular, what the implications of these considerations are for the interpretations of the 
three regression coefficients, b1, b2, and b3, and their significance tests. It is a common error for 
researchers to interpret b1 and b2 as ‘main effects’ similar to the main effects in an ANOVA. It is 
important to see exactly why in general that is not correct. As equation [56] shows, b1 is the conditional 
effect of X1 on Y, holding X2 constant at zero. Therefore, b1 only has a meaningful interpretation for 
individuals who have a score of zero on X2. If zero is not a possible score for X2, or a score of interest, 
then b1 and its significance test do not have much interpretive value. Certainly one could not interpret it as 
the ‘main effect’ or average or simple effect of X1. The same goes for b2.

The interpretation of b3 is much less problematic. It is how much the conditional effect (slope) of X1

on Y, holding X2 constant, changes as X2 increases by one unit. Notice that it is also how much the 
conditional effect (slope) of X2 on Y, holding X1 constant, changes as X1 increases by one unit.

The problems in interpreting b1 and b2 occur because of the presence of the higher order term, X1X2, in 
the equation as well as the fact that zero may not be an interesting or meaningful value for X1 and X2. The 
coefficients b1 and b2 become much more interpretable if one rescales X1 and X2 before the analysis so that 
zero becomes an interesting value for the two variables. The most common way to do this is to standardize 
X1 and X2 to have means of zero and standard deviations of one before computing the cross-product. When 
that is done, b1 becomes the effect of X1 on Y for individuals who are at the mean on X2. The significance 
test of b1 tests whether that conditional effect is different from zero.
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In models that have higher order terms (e.g., cross-products, squared terms) it is crucial in interpreting 
the lower order coefficients to pay careful attention to what a zero on the variables means. Without 
meaningful zeros on the variables the lower order coefficients and their significance tests become 
uninterpretable. Consequently, I recommend that unless a variable has a naturally interesting and 
interpretable zero, it should be standardized (or at least centered) prior to making cross-products or higher 
order terms in a regression model.

It is important to recognize that this procedure is not the same as simply doing a raw score regression 
analysis with higher order terms and then looking at the standardized regression weights from the analysis. 
The standardized regression weights from such an analysis are uninterpretable. This abominable practice 
is, unfortunately, all too common in the literature.

It is also important for interpretability of the coefficients that if a higher order term is in the model 
(e.g., X1X2), then all the components of the higher order term must also be in the model as lower order 
terms.

Extended Example.  Predicting Subjective Well-being (W) from Extraversion (E) and Neuroticism (N).

Response W
Summary of Fit
RSquare 0.353161
RSquare Adj 0.349765
Root Mean Square Error 3.860245
Mean of Response 16.54427
Observations (or Sum Wgts) 384

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 3099.7785 1549.89 104.0090
Error 381 5677.4689 14.90 Prob > F
C. Total 383 8777.2474 <.0001

Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 209 3012.5404 14.4141 0.9303
Pure Error 172 2664.9286 15.4938 Prob > F
Total Error 381 5677.4689 0.6917

Max RSq
0.6964

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 16.544271 0.196992 83.98 <.0001
Std E 1.9318696 0.198589 9.73 <.0001
Std N -1.87633 0.198589 -9.45 <.0001

Response W
Summary of Fit
RSquare 0.366178
RSquare Adj 0.359488
Root Mean Square Error 3.831274
Mean of Response 16.54427
Observations (or Sum Wgts) 384
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 4 3214.0339 803.508 54.7399
Error 379 5563.2135 14.679 Prob > F
C. Total 383 8777.2474 <.0001

Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 207 2898.2849 14.0014 0.9037
Pure Error 172 2664.9286 15.4938 Prob > F
Total Error 379 5563.2135 0.7576

Max RSq
0.6964

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 17.144342 0.296088 57.90 <.0001
Std E 1.8246413 0.201551 9.05 <.0001
Std E*Std E -0.398624 0.16596 -2.40 0.0168
Std N -1.892636 0.197274 -9.59 <.0001
Std N*Std N -0.203014 0.158653 -1.28 0.2015

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Std E 1 1 1203.0119 81.9565 <.0001
Std E*Std E 1 1 84.6845 5.7692 0.0168
Std N 1 1 1351.0858 92.0442 <.0001
Std N*Std N 1 1 24.0350 1.6374 0.2015
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Response W
Summary of Fit
RSquare 0.373968
RSquare Adj 0.369025
Root Mean Square Error 3.802645
Mean of Response 16.54427
Observations (or Sum Wgts) 384

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 3282.4055 1094.14 75.6658
Error 380 5494.8419 14.46 Prob > F
C. Total 383 8777.2474 <.0001

Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 208 2829.9133 13.6054 0.8781
Pure Error 172 2664.9286 15.4938 Prob > F
Total Error 380 5494.8419 0.8151

Max RSq
0.6964

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 16.621353 0.195261 85.12 <.0001
Std E 1.9239807 0.195638 9.83 <.0001
Std N -1.861427 0.195671 -9.51 <.0001
Std E*Std N 0.6664521 0.187531 3.55 0.0004
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Interaction Profiles
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Response W
Summary of Fit
RSquare 0.383923
RSquare Adj 0.375773
Root Mean Square Error 3.782256
Mean of Response 16.54427
Observations (or Sum Wgts) 384

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 5 3369.7836 673.957 47.1119
Error 378 5407.4638 14.305 Prob > F
C. Total 383 8777.2474 <.0001

Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 206 2742.5352 13.3133 0.8593
Pure Error 172 2664.9286 15.4938 Prob > F
Total Error 378 5407.4638 0.8516

Max RSq
0.6964



Bob McFatter Psychology 513

- 45 -

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 17.144204 0.2923 58.65 <.0001
Std E 1.830522 0.198981 9.20 <.0001
Std E*Std E -0.349243 0.164519 -2.12 0.0344
Std N -1.876914 0.194808 -9.63 <.0001
Std N*Std N -0.180504 0.156771 -1.15 0.2503
Std E*Std N 0.6187539 0.187523 3.30 0.0011
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Response W
Summary of Fit
RSquare 0.390899
RSquare Adj 0.377905
Root Mean Square Error 3.775793
Mean of Response 16.54427
Observations (or Sum Wgts) 384
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 8 3431.0180 428.877 30.0827
Error 375 5346.2294 14.257 Prob > F
C. Total 383 8777.2474 <.0001

Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 203 2681.3008 13.2084 0.8525
Pure Error 172 2664.9286 15.4938 Prob > F
Total Error 375 5346.2294 0.8629

Max RSq
0.6964

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 17.037417 0.32351 52.66 <.0001
Std E 1.5332287 0.258934 5.92 <.0001
Std E*Std E -0.210954 0.217855 -0.97 0.3335
Std N -1.871318 0.25667 -7.29 <.0001
Std N*Std N -0.071266 0.208559 -0.34 0.7328
Std E*Std N 0.6716616 0.193684 3.47 0.0006
Std E*Std N*Std E -0.006914 0.157244 -0.04 0.9649
Std E*Std N*Std N 0.2725322 0.153589 1.77 0.0768
Std E*Std N*Std E*Std N -0.11746 0.128814 -0.91 0.3624
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Response W
Summary of Fit
RSquare 0.389549
RSquare Adj 0.378184
Root Mean Square Error 3.774947
Mean of Response 16.54427
Observations (or Sum Wgts) 384

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 7 3419.1639 488.452 34.2768
Error 376 5358.0835 14.250 Prob > F
C. Total 383 8777.2474 <.0001

Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 204 2693.1549 13.2017 0.8521
Pure Error 172 2664.9286 15.4938 Prob > F
Total Error 376 5358.0835 0.8639

Max RSq
0.6964

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 17.164222 0.292031 58.78 <.0001
Std E 1.5236879 0.258665 5.89 <.0001
Std E*Std E -0.341289 0.164374 -2.08 0.0385
Std N -1.863745 0.256478 -7.27 <.0001
Std N*Std N -0.195864 0.157527 -1.24 0.2145
Std E*Std N 0.6699262 0.193631 3.46 0.0006
Std E*Std N*Std E 0.0018896 0.156912 0.01 0.9904
Std E*Std N*Std N 0.2847394 0.15297 1.86 0.0635
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Interaction Profiles

0

6.85714

13.7143

20.5714

W

0

6.85714

13.7143

20.5714

W

Std E

-2.5812.3763

-2.6412 0

-2.443

2.3596

Std N

-2.7263 0
S

td E
S

td N

Contour Profiler

2.
37

63
16

S
td

 N
-2

.5
80

61

W

-2.44253 Std E 2.359602

0

Std E

Std N

W

Response W
Summary of Fit
RSquare 0.373968
RSquare Adj 0.369025
Root Mean Square Error 3.802645
Mean of Response 16.54427
Observations (or Sum Wgts) 384

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 3282.4055 1094.14 75.6658
Error 380 5494.8419 14.46 Prob > F
C. Total 383 8777.2474 <.0001
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Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 16.621353 0.195261 85.12 <.0001
Std E 1.9239807 0.195638 9.83 <.0001
Std N -1.861427 0.195671 -9.51 <.0001
Std E*Std N 0.6664521 0.187531 3.55 0.0004

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Std E 1 1 1398.5069 96.7148 <.0001
Std N 1 1 1308.6137 90.4982 <.0001
Std E*Std N 1 1 182.6270 12.6297 0.0004
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Excel Plot for Mood Model Example - E×N Interactive Model

513 Mood Example Predicting W from E and N
Model with E, N, and E×N
Predicted W Std Err

Low E Mean E High E Low E Mean E High E
Low N 17.22525 18.48278 19.74031 0.407458 0.276102 0.367412
Mean N 14.69737 16.62135 18.54533 0.276582 0.195261 0.276234
High N 12.16949 14.75993 17.35036 0.361576 0.27676 0.40948

INTERACTION SLOPE TESTS WITH MOOD DATA EXAMPLE

Key Idea: To test the slope for E at different levels of N (e.g., N = 1), use JMP’s Custom Test… option, 
which tests linear combinations of the model parameters. The key thing to understand is that the slope 
for E at N = 0 (Mean N) is simply the regression weight for E. The slope for E at N = 1 (High N) is the 
regression weight for E plus the regression weight for the interaction. Similarly, the slope for E at N = 
-1 (Low N) is the regression weight for E minus the regression weight for the interaction. Thus, by 
using 1 or -1 at the appropriate places in the Custom Test… dialog the desired test may be obtained.

Response W
Summary of Fit

RSquare 0.373968
RSquare Adj 0.369025
Root Mean Square Error 3.802645
Mean of Response 16.54427
Observations (or Sum Wgts) 384

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 3282.4055 1094.14 75.6658
Error 380 5494.8419 14.46 Prob > F
C. Total 383 8777.2474 <.0001*
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Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 208 2829.9133 13.6054 0.8781
Pure Error 172 2664.9286 15.4938 Prob > F
Total Error 380 5494.8419 0.8151

Max RSq
0.6964

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 16.621353 0.195261 85.12 <.0001*
Std E 1.9239807 0.195638 9.83 <.0001*
Std N -1.861427 0.195671 -9.51 <.0001*
Std E*Std N 0.6664521 0.187531 3.55 0.0004*

Custom Test
Slope for E at  Low N (-1)

Parameter
Intercept 0
Std E 1
Std N 0
Std E*Std N -1
 = 0

Value 1.2575285725
Std Error 0.2725338848
t Ratio 4.6142099847
Prob>|t| 5.4032577e-6
SS 307.86925112

Sum of Squares 307.86925112
Numerator DF 1
F Ratio 21.290933783
Prob > F 5.4032577e-6

Custom Test
Slope for E at High N (+1)

Parameter
Intercept 0
Std E 1
Std N 0
Std E*Std N 1
 = 0

Value 2.5904328197
Std Error 0.2694616313
t Ratio 9.6133642742
Prob>|t| 9.967099e-20
SS 1336.3567274

Sum of Squares 1336.3567274
Numerator DF 1
F Ratio 92.416772669
Prob > F 9.967099e-20
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Interpretation of the Lower-Order Terms in the Output on pp. 50-51

The intercept (16.62) in the regression equation reflects the predicted well-being (W) score for 
individuals who are at the mean on both E and N because it is the predicted Y when all predictors are zero. 
The regression weight for E (1.92) is the slope of the relation between E and W for individuals who are at 
the mean on neuroticism (N = 0). That is, for individuals at the mean on neuroticism, a one SD increase in 
E would lead us to predict a 1.92 point increase in W (note that the difference in scaling between E and W 
is reflected in the interpretation). An analogous interpretation applies to the weight for N. That is, the 
regression weight for N (-1.86) is the slope of the relation between N and W for individuals who are at the 
mean on extraversion (E = 0). For individuals at the mean on extraversion, a one SD increase in N would 
lead us to predict a 1.86 point decrease in W.

Interpretation of the Two-Way Interaction in the Output on pp. 50-51

The 2-way E  N weight in this output is 0.67. The weight, 0.67, reflects the increase in the slope of 
the relation between E and W that results from a one unit increase in N. Since E and N are both 
standardized, one unit is one standard deviation. Thus, an increase of one standard deviation in N would 
lead to an increase of 0.67 in the slope of the relation between E and W. The slope of the relation between 
E and W at the mean on N (N = 0) is 1.92 (from the output). Thus, for individuals at the mean on N a one 
standard deviation increase in E would lead us to predict a 1.92 point increase in positive intensity. 
However, for neurotic individuals at one standard deviation above the mean on N (N = 1), the slope of the 
relation between E and W would be 1.92 + (1)*0.67 = 2.59 (see the highlighted value in the second 
Custom Test in the output above). Thus, for neurotic individuals, a one standard deviation increase in E 
would lead us to predict a 2.59 point increase in well-being.  Thus, while the relation between extraversion 
and well-being is positive for both those at the mean on neuroticism (b = 1.92) and those at one standard 
deviation above the mean on neuroticism (b = 2.59), the relation between E and W is significantly 
stronger for neurotics than for those at the mean on N. The significant t(380) = 3.55 tests the significance 
of the difference (0.67) between the two slopes.

Note also that for stable individuals, at one standard deviation below the mean on N (N = -1), the slope 
of the relation between E and W is still significantly positive: 1.92 + (-1)*.67 = 1.26 (see the highlighted 
value in the first Custom Test in the output above), though significantly weaker than that for individuals at 
the mean on N (b = 1.92). Note, as well, that the 3 slopes discussed above (1.92, 2.59, and 1.26) are not
predicted W scores. They are predicted changes in W scores for a one SD increase in E. 
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Response W
Summary of Fit
RSquare 0.383923
RSquare Adj 0.375773
Root Mean Square Error 3.782256
Mean of Response 16.54427
Observations (or Sum Wgts) 384

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 5 3369.7836 673.957 47.1119
Error 378 5407.4638 14.305 Prob > F
C. Total 383 8777.2474 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 17.144204 0.2923 58.65 <.0001
Std E 1.830522 0.198981 9.20 <.0001
Std E*Std E -0.349243 0.164519 -2.12 0.0344
Std N -1.876914 0.194808 -9.63 <.0001
Std N*Std N -0.180504 0.156771 -1.15 0.2503
Std E*Std N 0.6187539 0.187523 3.30 0.0011

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Std E 1 1 1210.6817 84.6307 <.0001
Std E*Std E 1 1 64.4651 4.5063 0.0344
Std N 1 1 1327.9371 92.8273 <.0001
Std N*Std N 1 1 18.9646 1.3257 0.2503
Std E*Std N 1 1 155.7497 10.8874 0.0011
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Response W
Summary of Fit
RSquare 0.381762
RSquare Adj 0.375237
Root Mean Square Error 3.783881
Mean of Response 16.54427
Observations (or Sum Wgts) 384

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 4 3350.8191 837.705 58.5081
Error 379 5426.4283 14.318 Prob > F
C. Total 383 8777.2474 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 16.975262 0.252912 67.12 <.0001
Std E 1.833212 0.199052 9.21 <.0001
Std E*Std E -0.359275 0.164359 -2.19 0.0294
Std N -1.867677 0.194726 -9.59 <.0001
Std E*Std N 0.6281495 0.187426 3.35 0.0009

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Std E 1 1 1214.4101 84.8185 <.0001
Std E*Std E 1 1 68.4136 4.7782 0.0294
Std N 1 1 1317.1326 91.9930 <.0001
Std E*Std N 1 1 160.8202 11.2322 0.0009
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Qualitative, Indicator or Dummy Variable Models and ANOVA

The general linear regression model which is given generally by the equation

Yi = β0 + β1 X1i + β2 X2i+ . . . + εi. [57]

may be used to test hypotheses about the means and differences between means of different groups 
identified by way of variables called qualitative, indicator or dummy variables. These variables code 
group membership in a numerical code so that the variable may be included in a regression analysis. The 
most common coding is to use 0 and 1 to encode group membership. Variables that use 0 and 1 in this 
way are called dummy variables.

In the simplest case, two groups of subjects (e.g., males and females) are coded with one group 
receiving a 1, the other a 0. If this group dummy variable is correlated with another (criterion) variable, 
the correlation is often called a point biserial correlation, and a test of H0: ρ = 0 is equivalent to a test of 
whether the means of the two groups on the criterion variable are equal.

Point-biserial Correlation Example

Subject Score Group Dummy Group
1 45 1 Experimental
2 52 1 Experimental
3 40 1 Experimental
4 55 1 Experimental
5 43 1 Experimental
6 44 1 Experimental
7 48 1 Experimental
8 37 1 Experimental
9 44 1 Experimental

10 56 0 Control
11 54 0 Control
12 61 0 Control
13 48 0 Control
14 57 0 Control
15 50 0 Control
16 56 0 Control
17 55 0 Control
18 47 0 Control
19 60 0 Control
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Oneway Analysis of Score By Group
S

co
re

35

40

45

50

55

60

65

Control Experimental

Group

Oneway Anova
Summary of Fit
Rsquare 0.461477
Adj Rsquare 0.429799
Root Mean Square Error 5.170049
Mean of Response 50.10526
Observations (or Sum Wgts) 19

t-Test
Difference t-Test DF Prob > |t|

Estimate 9.0667 3.817 17 0.0014
Std Error 2.3755
Lower 95% 4.0549
Upper 95% 14.0785

Assuming equal variances

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F
Group 1 389.38947 389.389 14.5678 0.0014
Error 17 454.40000 26.729
C. Total 18 843.78947

Means for Oneway Anova
Level Number Mean Std Error Lower 95% Upper 95%
Control 10 54.4000 1.6349 50.951 57.849
Experimental 9 45.3333 1.7233 41.697 48.969

Std Error uses a pooled estimate of error variance

Means and Std Deviations
Level Number Mean Std Dev Std Err Mean Lower 95% Upper 95%
Control 10 54.4000 4.74225 1.4996 51.008 57.792
Experimental 9 45.3333 5.61249 1.8708 41.019 49.647
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Multivariate 
Correlations

Score Group Dummy
Score 1.0000 -0.6793
Group Dummy -0.6793 1.0000

Pairwise Correlations
Variable by Variable Correlation Count Signif Prob
Group Dummy Score -0.6793 19 0.0014 ----------------------------

Bivariate Fit of Score By Group Dummy
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-0.25 0 .25 .5 .75 1 1.25

Group Dummy

Linear Fit
Linear Fit
Score = 54.4 - 9.0666667 Group Dummy

Summary of Fit
RSquare 0.461477
RSquare Adj 0.429799
Root Mean Square Error 5.170049
Mean of Response 50.10526
Observations (or Sum Wgts) 19

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 389.38947 389.389 14.5678
Error 17 454.40000 26.729 Prob > F
C. Total 18 843.78947 0.0014

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 54.4 1.634913 33.27 <.0001
Group Dummy -9.066667 2.375474 -3.82 0.0014
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Example for different coding methods

Assume we have scores on 3 subjects in each of 4 groups:

a1 a2 a3 a4

2 9 5 9
4 6 5 8
3 3 2 4

We may code group membership in several ways as shown in the table below. The first set of three 
predictors is ‘dummy coding,’ the second is ‘effects coding,’ the third ‘Helmert coding,’ the fourth 
‘effects coding’ for a two way factorial ANOVA, and the last columns just use index numbers to indicate 
group membership.

Perf D1 D2 D3 E1 E2 E3 H1 H2 H3 A B A×B Betw FacA FacB
2 1 0 0 1 0 0 3 0 0 1 1 1 1 1 1
4 1 0 0 1 0 0 3 0 0 1 1 1 1 1 1
3 1 0 0 1 0 0 3 0 0 1 1 1 1 1 1
9 0 1 0 0 1 0 -1 2 0 1 -1 -1 2 1 2
6 0 1 0 0 1 0 -1 2 0 1 -1 -1 2 1 2
3 0 1 0 0 1 0 -1 2 0 1 -1 -1 2 1 2
5 0 0 1 0 0 1 -1 -1 1 -1 1 -1 3 2 1
5 0 0 1 0 0 1 -1 -1 1 -1 1 -1 3 2 1
2 0 0 1 0 0 1 -1 -1 1 -1 1 -1 3 2 1
9 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 1 4 2 2
8 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 1 4 2 2
4 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 1 4 2 2
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1                     Example for various coding methods                1
                     General Linear Models Procedure
                 Number of observations in data set = 12

                           Dummy Coding                         2

                     General Linear Models Procedure

 Dependent Variable: PERF
                                   Sum of         Mean
 Source                  DF       Squares       Square  F Value    Pr > F

 Model                    3     30.000000    10.000000     2.00    0.1927
 Error                    8     40.000000     5.000000
 Corrected Total         11     70.000000

                   R-Square          C.V.     Root MSE          PERF Mean
                   0.428571      44.72136       2.2361             5.0000

 Source                  DF     Type I SS  Mean Square  F Value    Pr > F
 D1                       1     16.000000    16.000000     3.20    0.1114
 D2                       1      0.500000     0.500000     0.10    0.7599
 D3                       1     13.500000    13.500000     2.70    0.1390

 Source                  DF   Type III SS  Mean Square  F Value    Pr > F
 D1                       1     24.000000    24.000000     4.80    0.0598
 D2                       1      1.500000     1.500000     0.30    0.5988
 D3                       1     13.500000    13.500000     2.70    0.1390

                                  T for H0:     Pr > |T|    Std Error of
 Parameter          Estimate     Parameter=0                  Estimate
 INTERCEPT       7.000000000            5.42      0.0006      1.29099445
 D1             -4.000000000           -2.19      0.0598      1.82574186
 D2             -1.000000000           -0.55      0.5988      1.82574186
 D3             -3.000000000           -1.64      0.1390      1.82574186

                          Effects Coding                        3
                     General Linear Models Procedure
                 Number of observations in data set = 12
                          This is effects coding                        4
                     General Linear Models Procedure

 Dependent Variable: PERF
                                   Sum of         Mean
 Source                  DF       Squares       Square  F Value    Pr > F
 Model                    3     30.000000    10.000000     2.00    0.1927
 Error                    8     40.000000     5.000000
 Corrected Total         11     70.000000

                   R-Square          C.V.     Root MSE          PERF Mean
                   0.428571      44.72136       2.2361             5.0000

 Source                  DF     Type I SS  Mean Square  F Value    Pr > F
 E1                       1     24.000000    24.000000     4.80    0.0598
 E2                       1      2.000000     2.000000     0.40    0.5447
 E3                       1      4.000000     4.000000     0.80    0.3972

 Source                  DF   Type III SS  Mean Square  F Value    Pr > F
 E1                       1     16.000000    16.000000     3.20    0.1114
 E2                       1      4.000000     4.000000     0.80    0.3972
 E3                       1      4.000000     4.000000     0.80    0.3972

                                  T for H0:     Pr > |T|    Std Error of
 Parameter          Estimate     Parameter=0                  Estimate
 INTERCEPT       5.000000000            7.75      0.0001      0.64549722
 E1             -2.000000000           -1.79      0.1114      1.11803399
 E2              1.000000000            0.89      0.3972      1.11803399
 E3             -1.000000000           -0.89      0.3972      1.11803399
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                    Helmert Contrast Coding                    5
                     General Linear Models Procedure
                 Number of observations in data set = 12
                     This is helmert contrast coding                    6
                     General Linear Models Procedure

 Dependent Variable: PERF
                                   Sum of         Mean
 Source                  DF       Squares       Square  F Value    Pr > F
 Model                    3     30.000000    10.000000     2.00    0.1927
 Error                    8     40.000000     5.000000

 Corrected Total         11     70.000000

                   R-Square          C.V.     Root MSE          PERF Mean
                   0.428571      44.72136       2.2361             5.0000

 Source                  DF     Type I SS  Mean Square  F Value    Pr > F
 H1                       1     16.000000    16.000000     3.20    0.1114
 H2                       1      0.500000     0.500000     0.10    0.7599
 H3                       1     13.500000    13.500000     2.70    0.1390

 Source                  DF   Type III SS  Mean Square  F Value    Pr > F
 H1                       1     16.000000    16.000000     3.20    0.1114
 H2                       1      0.500000     0.500000     0.10    0.7599
 H3                       1     13.500000    13.500000     2.70    0.1390

                                  T for H0:     Pr > |T|    Std Error of
 Parameter          Estimate     Parameter=0                  Estimate
 INTERCEPT       5.000000000            7.75      0.0001      0.64549722
 H1             -0.666666667           -1.79      0.1114      0.37267800
 H2              0.166666667            0.32      0.7599      0.52704628
 H3             -1.500000000           -1.64      0.1390      0.91287093

              2×2 Factorial Design Effects Coding             7
                     General Linear Models Procedure
                 Number of observations in data set = 12
                  This is a 2×2 factorial design coding                 8
                     General Linear Models Procedure

 Dependent Variable: PERF
                                   Sum of         Mean
 Source                  DF       Squares       Square  F Value    Pr > F
 Model                    3     30.000000    10.000000     2.00    0.1927
 Error                    8     40.000000     5.000000
 Corrected Total         11     70.000000

                   R-Square          C.V.     Root MSE          PERF Mean
                   0.428571      44.72136       2.2361             5.0000

 Source                  DF     Type I SS  Mean Square  F Value    Pr > F
 A                        1      3.000000     3.000000     0.60    0.4609
 B                        1     27.000000    27.000000     5.40    0.0486
 AXB                      1      0.000000     0.000000     0.00    1.0000

 Source                  DF   Type III SS  Mean Square  F Value    Pr > F
 A                        1      3.000000     3.000000     0.60    0.4609
 B                        1     27.000000    27.000000     5.40    0.0486
 AXB                      1      0.000000     0.000000     0.00    1.0000

                                  T for H0:     Pr > |T|    Std Error of
 Parameter          Estimate     Parameter=0                  Estimate
 INTERCEPT       5.000000000            7.75      0.0001      0.64549722
 A              -0.500000000           -0.77      0.4609      0.64549722
 B              -1.500000000           -2.32      0.0486      0.64549722
 AXB             0.000000000            0.00      1.0000      0.64549722
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Usual One-Way ANOVA

The JMP output for the usual one-way ANOVA (using the nominal factor Between as the between 
subjects factor) is

Response Perf
Summary of Fit
RSquare 0.428571
RSquare Adj 0.214286
Root Mean Square Error 2.236068
Mean of Response 5
Observations (or Sum Wgts) 12

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 30.000000 10.0000 2.0000
Error 8 40.000000 5.0000 Prob > F
C. Total 11 70.000000 0.1927

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 5 0.645497 7.75 <.0001
Between[1] -2 1.118034 -1.79 0.1114
Between[2] 1 1.118034 0.89 0.3972
Between[3] -1 1.118034 -0.89 0.3972

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Between 3 3 30.000000 2.0000 0.1927

Effect Details
Between
Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 3.0000000 1.2909944 3.00000
2 6.0000000 1.2909944 6.00000
3 4.0000000 1.2909944 4.00000
4 7.0000000 1.2909944 7.00000

Note that the parameter estimates are the same as for the effects coded regression analysis. Thus, JMP by 
default uses effects coding in carrying out ANOVAs.
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Usual Two-Way ANOVA 

The JMP output for the usual two-way ANOVA (using the nominal factors FacA and FacB and their 
interaction as the between subjects factors) is
Response Perf
Summary of Fit
RSquare 0.428571
RSquare Adj 0.214286
Root Mean Square Error 2.236068
Mean of Response 5
Observations (or Sum Wgts) 12

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 30.000000 10.0000 2.0000
Error 8 40.000000 5.0000 Prob > F
C. Total 11 70.000000 0.1927

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 5 0.645497 7.75 <.0001
FacA[1] -0.5 0.645497 -0.77 0.4609
FacB[1] -1.5 0.645497 -2.32 0.0486
FacA[1]*FacB[1] 0 0.645497 0.00 1.0000

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
FacA 1 1 3.000000 0.6000 0.4609
FacB 1 1 27.000000 5.4000 0.0486
FacA*FacB 1 1 0.000000 0.0000 1.0000

Effect Details
FacA
Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 4.5000000 0.91287093 4.50000
2 5.5000000 0.91287093 5.50000

FacB
Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 3.5000000 0.91287093 3.50000
2 6.5000000 0.91287093 6.50000

FacA*FacB
Least Squares Means Table
Level Least Sq Mean Std Error
1,1 3.0000000 1.2909944
1,2 6.0000000 1.2909944
2,1 4.0000000 1.2909944
2,2 7.0000000 1.2909944

Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
FacA 1 1 3.000000 0.6000 0.4609
FacB 1 1 27.000000 5.4000 0.0486
FacA*FacB 1 1 0.000000 0.0000 1.0000
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Meaning of Regression Coefficients for Coded Predictors

Although the omnibus ANOVA will be identical for all the coding methods, the values of the 
estimated regression coefficients and their associated hypothesis tests will vary depending on the coding 
scheme used. For the three coding schemes used in the example above (dummy coding, effects coding, 
orthogonal contrast coding, and factorial effects coding) the values of the estimated regression weights 
and their associated hypothesis tests are as follows:

Dummy Coding

b0 = Y4 (the mean of the group always coded zero) H0: μ4 = 0

b1 = Y Y1 4 H0: μ1 - μ4 = 0

b2 = Y Y2 4 H0: μ2 - μ4 = 0

b3 = Y Y3 4 H0: μ3 - μ4 = 0

Effects Coding

b0 = Y   H0: μ = 0

b1 = Y Y1 1   H0: α1 = μ1 - μ = 0

b2 = Y Y2 2   H0: α2 = μ2 - μ = 0

b3 = Y Y3 3   H0: α3 = μ3 - μ = 0

Orthogonal Contrast Coding  

In general, for orthogonal contrast coding the regression coefficients will be equal to 

ci

2
, where 

  c Yi i  is the contrast among the group means. Thus, we have

b0 = Y   H0: μ = 0

b1 = 
 1

1
2c i

H0: ψ1 = c i i1   =  0,

and similarly for b2 and b3.

Factorial Effects Coding

b0 = Y   H0: μ = 0

b1 = A Y1 1   H0: α1 = μA1 - μ = 0

b2 = B Y1 1   H0: β1 = μB1 - μ = 0

b3 =  AB A B Y11 1 1
11

      H0: (αβ)11 = 0
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Correlations Among Coded Predictor Variables

It is instructive to consider the correlations among the coded predictor variables. For the example 
above, summary statistics for the variables are as follows:

Variable N Mean Std Dev Min Max
Perf 12 5 2.522625 2 9
D1 12 0.25 0.452267 0 1
D2 12 0.25 0.452267 0 1
D3 12 0.25 0.452267 0 1
E1 12 0 0.738549 -1 1
E2 12 0 0.738549 -1 1
E3 12 0 0.738549 -1 1
H1 12 0 1.809068 -1 3
H2 12 0 1.279204 -1 2
H3 12 0 0.738549 -1 1
A 12 0 1.044466 -1 1
B 12 0 1.044466 -1 1
A×B 12 0 1.044466 -1 1

Note that all the coding schemes except dummy coding are deviation scores (M = 0); thus the intercept 
in all these schemes will be the grand mean. The correlations among the variables are as follows:

Perf D1 D2 D3 E1 E2 E3 H1 H2 H3 A B A×B

Perf 1 -0.48 0.239 -0.24 -0.59 -0.15 -0.44 -0.48 0.085 -0.44 -0.21 -0.62 0
D1 -0.48 1 -0.33 -0.33 0.817 0 0 1 0 0 0.577 0.577 0.577
D2 0.239 -0.33 1 -0.33 0 0.817 0 -0.33 0.943 0 0.577 -0.58 -0.58
D3 -0.24 -0.33 -0.33 1 0 0 0.817 -0.33 -0.47 0.817 -0.58 0.577 -0.58
E1 -0.59 0.817 0 0 1 0.5 0.5 0.817 0.289 0.5 0.707 0.707 0
E2 -0.15 0 0.817 0 0.5 1 0.5 0 0.866 0.5 0.707 0 -0.71
E3 -0.44 0 0 0.817 0.5 0.5 1 0 0 1 0 0.707 -0.71
H1 -0.48 1 -0.33 -0.33 0.817 0 0 1 0 0 0.577 0.577 0.577
H2 0.085 0 0.943 -0.47 0.289 0.866 0 0 1 0 0.817 -0.41 -0.41
H3 -0.44 0 0 0.817 0.5 0.5 1 0 0 1 0 0.707 -0.71
A -0.21 0.577 0.577 -0.58 0.707 0.707 0 0.577 0.817 0 1 0 0
B -0.62 0.577 -0.58 0.577 0.707 0 0.707 0.577 -0.41 0.707 0 1 0
A×B 0 0.577 -0.58 -0.58 0 -0.71 -0.71 0.577 -0.41 -0.71 0 0 1

Note that only the orthogonal Helmert contrasts and the orthogonal factorial effects coding have 
uncorrelated predictors. Thus, it is only in these two cases that the Type 1 sequential SS and the Type 2 (or 
3) SS will be the same.

Nonorthogonal (Unbalanced) Analysis of Variance

When cell sizes are equal in a factorial ANOVA the design is said to be balanced. When this is the 
case, as in the example above, the A, B, and A×B effects are independent (i.e., orthogonal or uncorrelated) 
as the above correlation matrix shows. If cell sizes are unequal, however, this orthogonality of the 
predictors doesn’t hold. The design is then said to be unbalanced or nonorthogonal. This nonorthogonality 
has implications for hypothesis testing because the Type 1 sequential SS now depend on the order in 
which factors are entered into the model. Furthermore, there will be two different types of marginal 
means, weighted and unweighted (or in SAS and JMP terminology, means and least squares means or LS 
means).
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By removing one of the fives from the a2b1 group in the data set above the design may be made 
nonorthogonal. The correlations between A, B, and A×B are no longer zero but now

A B A×B

A 1.0000 0.1000 -0.1000
B 0.1000 1.0000 0.1000
A×B -0.1000 0.1000 1.0000

Below are several JMP analyses of the new data with different orders of the A, B, and A×B effects. 
Note the differences in the Type 1 sequential SS and the distinction between means and LS means in the 
first analysis (the means in the subsequent analyses would be identical to the ones in the first analysis, so I 
have left them out).

Order of Effects: A, B, A×B

Response Perf
Summary of Fit
RSquare 0.45
RSquare Adj 0.214286
Root Mean Square Error 2.345208
Mean of Response 5
Observations (or Sum Wgts) 11

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 31.500000 10.5000 1.9091
Error 7 38.500000 5.5000 Prob > F
C. Total 10 70.000000 0.2166

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 4.875 0.71807 6.79 0.0003
FacA[1] -0.375 0.71807 -0.52 0.6176
FacB[1] -1.625 0.71807 -2.26 0.0581
FacA[1]*FacB[1] 0.125 0.71807 0.17 0.8667

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
FacA 1 1 1.500000 0.2727 0.6176
FacB 1 1 28.166667 5.1212 0.0581
FacA*FacB 1 1 0.166667 0.0303 0.8667

Effect Details
FacA
Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 4.5000000 0.9574271 4.50000
2 5.2500000 1.0704360 5.60000

FacB
Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 3.2500000 1.0704360 3.20000
2 6.5000000 0.9574271 6.50000



Bob McFatter Psychology 513

- 66 -

FacA*FacB
Least Squares Means Table
Level Least Sq Mean Std Error
1,1 3.0000000 1.3540064
1,2 6.0000000 1.3540064
2,1 3.5000000 1.6583124
2,2 7.0000000 1.3540064

Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
FacA 1 1 3.300000 0.6000 0.4639
FacB 1 1 28.033333 5.0970 0.0585
FacA*FacB 1 1 0.166667 0.0303 0.8667

Order of Effects: B, A, A×B

Response Perf
Summary of Fit
RSquare 0.45
RSquare Adj 0.214286
Root Mean Square Error 2.345208
Mean of Response 5
Observations (or Sum Wgts) 11

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 31.500000 10.5000 1.9091
Error 7 38.500000 5.5000 Prob > F
C. Total 10 70.000000 0.2166

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 4.875 0.71807 6.79 0.0003
FacB[1] -1.625 0.71807 -2.26 0.0581
FacA[1] -0.375 0.71807 -0.52 0.6176
FacA[1]*FacB[1] 0.125 0.71807 0.17 0.8667

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
FacB 1 1 28.166667 5.1212 0.0581
FacA 1 1 1.500000 0.2727 0.6176
FacA*FacB 1 1 0.166667 0.0303 0.8667

Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
FacB 1 1 29.700000 5.4000 0.0531
FacA 1 1 1.633333 0.2970 0.6027
FacA*FacB 1 1 0.166667 0.0303 0.8667
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Order of Effects: A×B, A, B

Response Perf
Summary of Fit
RSquare 0.45
RSquare Adj 0.214286
Root Mean Square Error 2.345208
Mean of Response 5
Observations (or Sum Wgts) 11

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 31.500000 10.5000 1.9091
Error 7 38.500000 5.5000 Prob > F
C. Total 10 70.000000 0.2166

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 4.875 0.71807 6.79 0.0003
FacA[1]*FacB[1] 0.125 0.71807 0.17 0.8667
FacA[1] -0.375 0.71807 -0.52 0.6176
FacB[1] -1.625 0.71807 -2.26 0.0581

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
FacA*FacB 1 1 0.166667 0.0303 0.8667
FacA 1 1 1.500000 0.2727 0.6176
FacB 1 1 28.166667 5.1212 0.0581

Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
FacA*FacB 1 1 0.000000 0.0000 1.0000
FacA 1 1 3.333333 0.6061 0.4618
FacB 1 1 28.166667 5.1212 0.0581

Note that the Type 1 sequential SS F-tests test different hypotheses depending on the order of entry of 
factors into the model. These hypothesis tests depend on the number of observations in the cells. The 
usual Type 2 SS F-tests test hypotheses about the least squares (unweighted) marginal means, which are 
obtained by averaging the cell means rather than the individual scores in each row or column. These are 
the hypothesis tests most commonly recommended (for good reason) in the nonorthogonal ANOVA, but it 
is important to bear in mind always that they are testing the differences between the least squares means 
rather than the weighted means.

Analysis of Covariance

When indicator variables (such as dummy variables) are combined in an additive (no interaction) 
regression model with continuous (or many-valued) predictor variables, the model is said to be an analysis 
of covariance (ANCOVA) model. The continuous predictor variable is called the covariate and is 
routinely centered (converted to deviation scores) first. The model for a simple one-way ANCOVA with a 
single covariate is

Y xij i j ij       [58]
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where αi is the treatment effect for the ith group, xj is the score for the jth subject on the centered covariate 
(i.e., deviation scores: x = X - MX), and β is the slope of the common or pooled regression line relating the 
covariate to Y in the several groups. 

The values of the αis could be estimated by using effects coded predictor variables along with the 
covariate in a multiple regression analysis. Note that there is only one slope in the model, so the model 
assumes that the slope of the regression line relating Y to X is the same in each group. This assumption of 
parallel regression lines is called the homogeneity of regression slope assumption.

Just as with any ANOVA model, different coding schemes for group membership are possible. For 
example, with two groups one could use a simple dummy coded variable, D, to indicate group 
membership and estimate the simple ANCOVA model by obtaining the regression equation

Y b b D b x  0 1 2 . [59]

Note that here b0 would be the adjusted mean of Y for the group coded 0 for subjects who are at the 
mean (of zero) on X. The coefficient b1 would be the difference between the adjusted means of the two 
groups for individuals at the mean on X. The coefficient b2 would be the common slope of the regression 
line for the two groups. Below is an example analysis using JMP.

Example.

I have included two possible covariates (Cov and Cov2), along with their deviation scores in this data 
set to illustrate some issues. The criterion variable is DV.

DV Trtmt Cov TrtEff Cov2 D CovDev Cov2Dev
13 1 13 1 43 1 -7.0625 -14.5625
22 1 23 1 53 1 2.9375 -4.5625
23 1 25 1 55 1 4.9375 -2.5625
20 1 22 1 52 1 1.9375 -5.5625
24 1 26 1 56 1 5.9375 -1.5625
17 1 19 1 49 1 -1.0625 -8.5625
5 1 6 1 36 1 -14.0625 -21.5625

16 1 18 1 48 1 -2.0625 -9.5625
11 2 11 -1 56 0 -9.0625 -1.5625
23 2 22 -1 67 0 1.9375 9.4375
24 2 22 -1 67 0 1.9375 9.4375
16 2 14 -1 59 0 -6.0625 1.4375
25 2 25 -1 70 0 4.9375 12.4375
26 2 27 -1 72 0 6.9375 14.4375
28 2 27 -1 72 0 6.9375 14.4375
20 2 21 -1 66 0 0.9375 8.4375

The regression analysis predicting DV from CovDev2 and D using the Fit Model platform is

Response DV
Summary of Fit
RSquare 0.97885
RSquare Adj 0.975596
Root Mean Square Error 0.964621
Mean of Response 19.5625
Observations (or Sum Wgts) 16
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 559.84108 279.921 300.8301
Error 13 12.09642 0.930 Prob > F
C. Total 15 571.93750 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 13.564021 0.489141 27.73 <.0001
Cov2Dev 0.9414282 0.04095 22.99 <.0001
D 11.996959 0.851125 14.10 <.0001

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Cov2Dev 1 1 491.77858 528.5136 <.0001
D 1 1 184.87128 198.6809 <.0001

Separate analyses for the two groups using the Fit Y by X platform are as follows:

Bivariate Fit of DV By Cov2Dev

0

5

10

15

20

25

30

D
V

-25 -20 -15 -10 -5 0 5 10 15

Cov2Dev

Linear Fit  Trtmt==1
Linear Fit  Trtmt==2

Linear Fit  Trtmt==1
DV = 25.493473 + 0.9335443 Cov2Dev

Summary of Fit
RSquare 0.990632
RSquare Adj 0.98907
Root Mean Square Error 0.658841
Mean of Response 17.5
Observations (or Sum Wgts) 8
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 275.39557 275.396 634.4471
Error 6 2.60443 0.434 Prob > F
C. Total 7 278.00000 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 25.493473 0.393662 64.76 <.0001
Cov2Dev 0.9335443 0.037063 25.19 <.0001

Linear Fit  Trtmt==2
DV = 13.474719 + 0.9518577 Cov2Dev

Summary of Fit
RSquare 0.958179
RSquare Adj 0.951209
Root Mean Square Error 1.254749
Mean of Response 21.625
Observations (or Sum Wgts) 8

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 216.42864 216.429 137.4679
Error 6 9.44636 1.574 Prob > F
C. Total 7 225.87500 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 13.474719 0.824632 16.34 <.0001
Cov2Dev 0.9518577 0.081184 11.72 <.0001

Note that the slopes of the two regression lines, though similar, are slightly different. The ANCOVA, 
by contrast, uses a pooled common slope for the two regression lines so that they are forced to be exactly 
parallel.

A single equation that combines the separate analyses for the two groups and allows separate slopes 
can be carried out by estimating an equation that includes the Dx interaction term:

Y b b D b x b Dx   0 1 2 3 . [60]

The JMP output for this analysis is

Response DV
Summary of Fit
RSquare 0.97893
RSquare Adj 0.973662
Root Mean Square Error 1.002114
Mean of Response 19.5625
Observations (or Sum Wgts) 16
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 559.88671 186.629 185.8423
Error 12 12.05079 1.004 Prob > F
C. Total 15 571.93750 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 13.474719 0.658598 20.46 <.0001
D 12.018754 0.890099 13.50 <.0001
Cov2Dev 0.9518577 0.064838 14.68 <.0001
Cov2Dev*D -0.018313 0.085918 -0.21 0.8348

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
D 1 1 183.09489 182.3232 <.0001
Cov2Dev 1 1 216.42864 215.5164 <.0001
Cov2Dev*D 1 1 0.04562 0.0454 0.8348

It is worth comparing the above analyses to analyses in JMP that use Trtmt as a nominal variable 
along with the additional CovDev2 as the covariate:

Response DV
Summary of Fit
RSquare 0.97885
RSquare Adj 0.975596
Root Mean Square Error 0.964621
Mean of Response 19.5625
Observations (or Sum Wgts) 16

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 559.84108 279.921 300.8301
Error 13 12.09642 0.930 Prob > F
C. Total 15 571.93750 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 19.5625 0.241155 81.12 <.0001
Trtmt[1] 5.9984794 0.425562 14.10 <.0001
Cov2Dev 0.9414282 0.04095 22.99 <.0001

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Trtmt 1 1 184.87128 198.6809 <.0001
Cov2Dev 1 1 491.77858 528.5136 <.0001

Effect Details
Trtmt
Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 25.560979 0.48914123 17.5000
2 13.564021 0.48914123 21.6250
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Cov2Dev

Response DV
Summary of Fit
RSquare 0.97893
RSquare Adj 0.973662
Root Mean Square Error 1.002114
Mean of Response 19.5625
Observations (or Sum Wgts) 16

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 559.88671 186.629 185.8423
Error 12 12.05079 1.004 Prob > F
C. Total 15 571.93750 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 19.484096 0.44505 43.78 <.0001
Trtmt[1] 6.0093772 0.44505 13.50 <.0001
Cov2Dev 0.942701 0.042959 21.94 <.0001
Cov2Dev*Trtmt[1] -0.009157 0.042959 -0.21 0.8348

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Trtmt 1 1 183.09489 182.3232 <.0001
Cov2Dev 1 1 483.58246 481.5442 <.0001
Cov2Dev*Trtmt 1 1 0.04562 0.0454 0.8348

Effect Details
Trtmt
Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 25.493473 0.59876966 17.5000
2 13.474719 0.65859849 21.6250

Cov2Dev
Cov2Dev*Trtmt

Response DV
Summary of Fit
RSquare 0.119003
RSquare Adj 0.056075
Root Mean Square Error 5.999256
Mean of Response 19.5625
Observations (or Sum Wgts) 16

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 68.06250 68.0625 1.8911
Error 14 503.87500 35.9911 Prob > F
C. Total 15 571.93750 0.1907
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Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 19.5625 1.499814 13.04 <.0001
Trtmt[1] -2.0625 1.499814 -1.38 0.1907

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Trtmt 1 1 68.062500 1.8911 0.1907

Effect Details
Trtmt
Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 17.500000 2.1210573 17.5000
2 21.625000 2.1210573 21.6250

A test of the significance of the Dx interaction term equation [60] is a test of the homogeneity of 
regression slopes assumption of the ANCOVA. This kind of test should be routinely carried out as a 
preliminary to an ANCOVA.

ANOVA vs. ANCOVA

It is instructive to compare the results of an ordinary ANOVA with two groups with the ANCOVA 
with those same two groups. Here is the JMP output for these two analyses.

ANOVA output

Response DV
Summary of Fit
RSquare 0.119003
RSquare Adj 0.056075
Root Mean Square Error 5.999256
Mean of Response 19.5625
Observations (or Sum Wgts) 16

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 68.06250 68.0625 1.8911
Error 14 503.87500 35.9911 Prob > F
C. Total 15 571.93750 0.1907

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 19.5625 1.499814 13.04 <.0001
Trtmt[1] -2.0625 1.499814 -1.38 0.1907

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Trtmt 1 1 68.062500 1.8911 0.1907
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Effect Details
Trtmt
Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 17.500000 2.1210573 17.5000
2 21.625000 2.1210573 21.6250

The highlighted quantities are worth particular attention and comparison with the ANCOVA below.

ANCOVA output

Response DV
Summary of Fit
RSquare 0.97885
RSquare Adj 0.975596
Root Mean Square Error 0.964621
Mean of Response 19.5625
Observations (or Sum Wgts) 16

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 559.84108 279.921 300.8301
Error 13 12.09642 0.930 Prob > F
C. Total 15 571.93750 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 19.5625 0.241155 81.12 <.0001
Trtmt[1] 5.9984794 0.425562 14.10 <.0001
Cov2Dev 0.9414282 0.04095 22.99 <.0001

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Trtmt 1 1 184.87128 198.6809 <.0001
Cov2Dev 1 1 491.77858 528.5136 <.0001

Effect Details
Trtmt
Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 25.560979 0.48914123 17.5000
2 13.564021 0.48914123 21.6250

Cov2Dev
Sequential (Type 1) Tests
Source Nparm DF Seq SS F Ratio Prob > F
Trtmt 1 1 68.06250 73.1467 <.0001
Cov2Dev 1 1 491.77858 528.5136 <.0001

Note the reduction in MSE that results from including the covariate in the model. This is the major 
advantage of ANCOVA.
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Lord’s Paradox

Bock (1975, Multivariate Statistical Methods in Behavioral Research, p. 490ff) describes what has 
come to be known as Lord’s Paradox:

Suppose a large university obtains measurements, at the beginning and end of the school year, of the 
weight of each student who takes his meals in the university dining halls. . . Suppose two statisticians 
analyze these data for differences in weight gain of men versus women. The first statistician analyzes 
simple gain scores [spring weight minus fall weight] and concludes that ‘as far as these data are 
concerned, there is no evidence of any interesting effect of the school diet (or of anything else) on 
student weight; in particular, there is no evidence of any differential effect on the two sexes, since 
neither group shows any systematic change.

The second statistician, on the other hand, decides to do an analysis of covariance. ‘After some 
necessary preliminaries, he determines that the slope of the regression line of final weight on initial 
weight is essentially the same for the two sexes. This is fortunate since it makes possible a fruitful 
comparison of the intercepts of the regression lines . . . He finds that the difference between the 
intercepts is statistically highly significant. The second statistician concludes . . . that the [men] 
showed significantly more gain in weight than the [women] when proper allowance is made for 
differences in initial weight between the two sexes.’ (from Lord, 1967)

As they are stated, the conclusions of the two statisticians are contradictory, and some form of paradox 
seems implied. On closer inspection, however, it is seen that these alternative methods of analyzing 
the data are actually directed toward different inferential problems. Moreover, each method provides 
the correct solution of the problem to which it is relevant.

These inferential problems may be described briefly as unconditional and conditional, respectively. 
The first statistician correctly analyzes gain scores to answer the unconditional question, “Is there a 
difference in the average gain in weight of the populations?” . . . The answer to this question, “No, 
there is no difference in average gain represented by the two sexes. At the same time, the second 
statistician correctly employs analysis of covariance to answer the conditional question, “Is a man 
expected to show a greater weight gain than a woman, given that they are initially of the same 
weight?” . . . The answer to this question is, “Yes, the man will be expected to gain more, for if he is 
initially of the same weight as the woman, he is either underweight and will be expected to gain, or the 
woman is overweight and will be expected to lose.” Because the regression lines are parallel, this 
expectation is independent of the given initial weight.



Bob McFatter Psychology 513

- 76 -

JMP example illustrating Lord’s paradox.

Sex Fall Spring D=Sp-Fa
Male 213 214 1
Male 148 155 7
Male 135 149 14
Male 154 168 14
Male 129 142 13
Male 174 188 14
Male 258 265 7
Male 180 194 14
Female 185 184 -1
Female 108 112 4
Female 101 112 11
Female 153 164 11
Female 95 93 -2
Female 88 92 4
Female 75 89 14
Female 127 119 -8

Response D=Sp-Fa
Summary of Fit

RSquare 0.221042
RSquare Adj 0.165402
Root Mean Square Error 6.396846
Mean of Response 7.3125
Observations (or Sum Wgts) 16

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 162.56250 162.563 3.9727
Error 14 572.87500 40.920 Prob > F
C. Total 15 735.43750 0.0661

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 7.3125 1.599212 4.57 0.0004
Sex[Female] -3.1875 1.599212 -1.99 0.0661

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Sex 1 1 162.56250 3.9727 0.0661
Effect Details
Sex
Least Squares Means Table
Level Least Sq Mean Std Error Mean
Female 4.125000 2.2616267 4.1250
Male 10.500000 2.2616267 10.5000
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Response Spring
Regression Plot
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Summary of Fit

RSquare 0.986965
RSquare Adj 0.98496
Root Mean Square Error 6.053748
Mean of Response 152.5
Observations (or Sum Wgts) 16

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 36073.578 18036.8 492.1648
Error 13 476.422 36.6 Prob > F
C. Total 15 36550.000 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 16.780885 6.029403 2.78 0.0155
Fall 0.9347851 0.040199 23.25 <.0001
Sex[Female] -5.058352 1.902727 -2.66 0.0197

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Fall 1 1 19817.328 540.7499 <.0001
Sex 1 1 259.008 7.0675 0.0197
Effect Details
Fall
Sex
Least Squares Means Table
Level Least Sq Mean Std Error Mean
Female 147.44165 2.4312266 120.625
Male 157.55835 2.4312266 184.375

Example with Both Interactions and Indicator Variables

Below is the SAS output for a regression analysis predicting positive emotional intensity (PI) from 
three predictors, extraversion (E), neuroticism (N), and sex (coded in various ways). E and N were 
standardized (M = 0, s = 1) prior to creating cross-products.
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                             EPI F94 & S95                             2

                        SEXD: 0=Males; 1=Females
                  NI2 is non-anger negative intensity
                       SEXE: -1=Males; 1=Females

                    General Linear Models Procedure

Dependent Variable: PI   
                                  Sum of         Mean
Source                  DF       Squares       Square  F Value    Pr > F

Model                    7     32.010227     4.572890    26.87    0.0001

Error                 1497    254.792180     0.170202

Corrected Total       1504    286.802407

                  R-Square          C.V.     Root MSE            PI Mean

                  0.111611      10.89072       0.4126             3.7881

Source                  DF     Type I SS  Mean Square  F Value    Pr > F

E                        1     11.299174    11.299174    66.39    0.0001
N                        1     10.903866    10.903866    64.06    0.0001
SEXD                     1      8.203511     8.203511    48.20    0.0001
E*N                      1      0.008766     0.008766     0.05    0.8205
E*SEXD                   1      0.224650     0.224650     1.32    0.2508
N*SEXD                   1      0.052366     0.052366     0.31    0.5792
E*N*SEXD                 1      1.317892     1.317892     7.74    0.0055

Source                  DF   Type III SS  Mean Square  F Value    Pr > F

E                        1     8.1300794    8.1300794    47.77    0.0001
N                        1     2.3810579    2.3810579    13.99    0.0002
SEXD                     1     7.4903956    7.4903956    44.01    0.0001
E*N                      1     1.0346205    1.0346205     6.08    0.0138
E*SEXD                   1     0.2074294    0.2074294     1.22    0.2698
N*SEXD                   1     0.0320519    0.0320519     0.19    0.6644
E*N*SEXD                 1     1.3178923    1.3178923     7.74    0.0055

                                 T for H0:     Pr > |T|    Std Error of
Parameter          Estimate     Parameter=0                  Estimate

INTERCEPT       3.694665501          206.40      0.0001      0.01790010
E               0.122413262            6.91      0.0001      0.01771182
N               0.064418417            3.74      0.0002      0.01722294
SEXD            0.150048878            6.63      0.0001      0.02261843
E*N             0.041980318            2.47      0.0138      0.01702697
E*SEXD         -0.025116632           -1.10      0.2698      0.02275141
N*SEXD          0.009693299            0.43      0.6644      0.02233709
E*N*SEXD       -0.061604284           -2.78      0.0055      0.02213875
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                             EPI F94 & S95                             2

                        SEXD: 0=Females; 1=Males
                  NI2 is non-anger negative intensity
                       SEXE: -1=Males; 1=Females

                    General Linear Models Procedure

Dependent Variable: PI   
                                  Sum of         Mean
Source                  DF       Squares       Square  F Value    Pr > F

Model                    7     32.010227     4.572890    26.87    0.0001

Error                 1497    254.792180     0.170202

Corrected Total       1504    286.802407

                  R-Square          C.V.     Root MSE            PI Mean

                  0.111611      10.89072       0.4126             3.7881

Source                  DF     Type I SS  Mean Square  F Value    Pr > F

E                        1     11.299174    11.299174    66.39    0.0001
N                        1     10.903866    10.903866    64.06    0.0001
SEXD                     1      8.203511     8.203511    48.20    0.0001
E*N                      1      0.008766     0.008766     0.05    0.8205
E*SEXD                   1      0.224650     0.224650     1.32    0.2508
N*SEXD                   1      0.052366     0.052366     0.31    0.5792
E*N*SEXD                 1      1.317892     1.317892     7.74    0.0055

Source                  DF   Type III SS  Mean Square  F Value    Pr > F

E                        1     7.9013987    7.9013987    46.42    0.0001
N                        1     4.6206966    4.6206966    27.15    0.0001
SEXD                     1     7.4903956    7.4903956    44.01    0.0001
E*N                      1     0.3273855    0.3273855     1.92    0.1657
E*SEXD                   1     0.2074294    0.2074294     1.22    0.2698
N*SEXD                   1     0.0320519    0.0320519     0.19    0.6644
E*N*SEXD                 1     1.3178923    1.3178923     7.74    0.0055

                                 T for H0:     Pr > |T|    Std Error of
Parameter          Estimate     Parameter=0                  Estimate

INTERCEPT       3.844714378          278.06      0.0001      0.01382679
E               0.097296629            6.81      0.0001      0.01427999
N               0.074111716            5.21      0.0001      0.01422379
SEXD           -0.150048878           -6.63      0.0001      0.02261843
E*N            -0.019623966           -1.39      0.1657      0.01414944
E*SEXD          0.025116632            1.10      0.2698      0.02275141
N*SEXD         -0.009693299           -0.43      0.6644      0.02233709
E*N*SEXD        0.061604284            2.78      0.0055      0.02213875
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                             EPI F94 & S95                             2
                        SEXD: 0=Males; 1=Females
                  NI2 is non-anger negative intensity

                       SEXE: -1=Males; 1=Females

                    General Linear Models Procedure

Dependent Variable: PI   
                                  Sum of         Mean
Source                  DF       Squares       Square  F Value    Pr > F

Model                    7     32.010227     4.572890    26.87    0.0001

Error                 1497    254.792180     0.170202

Corrected Total       1504    286.802407

                  R-Square          C.V.     Root MSE            PI Mean

                  0.111611      10.89072       0.4126             3.7881

Source                  DF     Type I SS  Mean Square  F Value    Pr > F

E                        1     11.299174    11.299174    66.39    0.0001
N                        1     10.903866    10.903866    64.06    0.0001
SEXE                     1      8.203511     8.203511    48.20    0.0001
E*N                      1      0.008766     0.008766     0.05    0.8205
E*SEXE                   1      0.224650     0.224650     1.32    0.2508
N*SEXE                   1      0.052366     0.052366     0.31    0.5792
E*N*SEXE                 1      1.317892     1.317892     7.74    0.0055

Source                  DF   Type III SS  Mean Square  F Value    Pr > F

E                        1     15.872553    15.872553    93.26    0.0001
N                        1      6.546354     6.546354    38.46    0.0001
SEXE                     1      7.490396     7.490396    44.01    0.0001
E*N                      1      0.173564     0.173564     1.02    0.3127
E*SEXE                   1      0.207429     0.207429     1.22    0.2698
N*SEXE                   1      0.032052     0.032052     0.19    0.6644
E*N*SEXE                 1      1.317892     1.317892     7.74    0.0055

                                 T for H0:     Pr > |T|    Std Error of
Parameter          Estimate     Parameter=0                  Estimate

INTERCEPT       3.769689940          333.33      0.0001      0.01130922
E               0.109854945            9.66      0.0001      0.01137571
N               0.069265066            6.20      0.0001      0.01116855
SEXE            0.075024439            6.63      0.0001      0.01130922
E*N             0.011178176            1.01      0.3127      0.01106938
E*SEXE         -0.012558316           -1.10      0.2698      0.01137571
N*SEXE          0.004846650            0.43      0.6644      0.01116855
E*N*SEXE       -0.030802142           -2.78      0.0055      0.01106938
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                             EPI F94 & S95                             2
                        SEXD: 0=Males; 1=Females
                  NI2 is non-anger negative intensity

                      SEXE: -.5=Males; .5=Females

                    General Linear Models Procedure

Dependent Variable: PI   
                                  Sum of         Mean
Source                  DF       Squares       Square  F Value    Pr > F

Model                    7     32.010227     4.572890    26.87    0.0001

Error                 1497    254.792180     0.170202

Corrected Total       1504    286.802407

                  R-Square          C.V.     Root MSE            PI Mean

                  0.111611      10.89072       0.4126             3.7881

Source                  DF     Type I SS  Mean Square  F Value    Pr > F

E                        1     11.299174    11.299174    66.39    0.0001
N                        1     10.903866    10.903866    64.06    0.0001
SEXE                     1      8.203511     8.203511    48.20    0.0001
E*N                      1      0.008766     0.008766     0.05    0.8205
E*SEXE                   1      0.224650     0.224650     1.32    0.2508
N*SEXE                   1      0.052366     0.052366     0.31    0.5792
E*N*SEXE                 1      1.317892     1.317892     7.74    0.0055

Source                  DF   Type III SS  Mean Square  F Value    Pr > F

E                        1     15.872553    15.872553    93.26    0.0001
N                        1      6.546354     6.546354    38.46    0.0001
SEXE                     1      7.490396     7.490396    44.01    0.0001
E*N                      1      0.173564     0.173564     1.02    0.3127
E*SEXE                   1      0.207429     0.207429     1.22    0.2698
N*SEXE                   1      0.032052     0.032052     0.19    0.6644
E*N*SEXE                 1      1.317892     1.317892     7.74    0.0055

                                 T for H0:     Pr > |T|    Std Error of
Parameter          Estimate     Parameter=0                  Estimate

INTERCEPT       3.769689940          333.33      0.0001      0.01130922
E               0.109854945            9.66      0.0001      0.01137571
N               0.069265066            6.20      0.0001      0.01116855
SEXE            0.150048878            6.63      0.0001      0.02261843
E*N             0.011178176            1.01      0.3127      0.01106938
E*SEXE         -0.025116632           -1.10      0.2698      0.02275141
N*SEXE          0.009693299            0.43      0.6644      0.02233709
E*N*SEXE       -0.061604284           -2.78      0.0055      0.02213875
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Excel plot illustrating the previous four regression analyses. Note how the equations in the figure are 
obtained from the first regression output (with Sex dummy coding: Males = 0; Females = 1) and how the 
equations are related to the other outputs.
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Interpretation of the Lower-Order Terms in the Output on p. 78

The intercept (3.695) in the regression equation reflects the predicted positive intensity (PI) score for 
males who are at the mean on both E and N because it is the predicted Y when all predictors are zero. The 
regression weight for E (0.1224) is the slope of the relation between E and PI for males (Sex = 0) who are 
at the mean on neuroticism (N = 0). An analogous interpretation applies to the weight for N. The weight 
for Sex (0.150) is the difference in predicted PI between males and females who are at the mean on both E 
and N, with the female predicted PI being 0.15 points higher than that for males. The interpretations of the 
2-way interaction weights are given below in the discussion of the interpretation of the 3-way interaction.

Interpretation of the Two and Three-Way Interactions in the Output on p. 78

The 3-way interaction weight may be interpreted as the change in a 2-way interaction weight one 
would get for a one unit increase in the 3rd variable. That is, for example, the Sex  E  N weight reflects 
how the E  N 2-way interaction weight changes for a one unit increase in Sex. Since Sex is dummy 
coded here (M = 0, F = 1), a one unit increase in Sex means the change in going from male to female. The 
2-way E  N weight for males in this output is 0.04198. This is the coefficient for males only because 
when Sex = 0 (males) the 3-way term goes away because it's multiplied by zero, and the only E  N term 
left is 0.04198. When Sex = 1 (females) there are 2 E  N terms in the equation: 0.04198 and -0.0616. The 
latter term becomes a simple E  N term because it's multiplied by Sex, which is 1. Therefore, the 2-way 
E  N term for females would thus be  0.04198 + (-0.0616) = -0.01962. These two E  N weights in fact 
show up in the separate equations shown in the figure on p. 82. The difference between the two 2-way E 
N interaction weights is thus the 3-way interaction weight, and in this example it's highly significant. That 
means that the two E  N interactions shown in the figure are significantly different from one another. The 
one for males is pretty pronounced with a positive fan shape (as reflected in the 0.04198). The  one for 
females is less pronounced and has a negative fan shape (as reflected in the -0.01962).

Because the 3-way interaction is significant here, the interpretation of the E  N interactions must be 
carried out separately for males and females. Interpreting the E  N interaction for males (0.04198) would 
go something like this (it needs to be explicitly stated that all of the following applies only to males): The 
weight, 0.04198, reflects the increase in the slope of the relation between E and PI (positive intensity) that 
results from a one unit increase in N. Since E and N are standardized, one unit is one standard deviation. 
Thus, an increase of one standard deviation in N would lead to an increase of 0.04198 in the slope of the 
relation between E and PI. The slope of the relation between E and PI for males at the mean on N (N = 0) 
is 0.1224 (from the output). Thus, for males at the mean on N a one standard deviation increase in E 
would lead us to predict a 0.1224 point increase in positive intensity. However, for neurotic males at one 
standard deviation above the mean on N (N = 1), the slope of the relation between E and PI would be 
0.1224 + 0.04198 = 0.16438. Thus, for neurotic males, a one standard deviation increase in E would lead 
us to predict a 0.16438 point increase in positive intensity.  Thus, while the relation between extraversion 
and positive intensity is positive for both those at the mean on neuroticism and those at one standard 
deviation above the mean on neuroticism, that relation between E and PI is much stronger (and 
significantly so) for neurotics than for those at the mean on N.
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Logistic Regression

If the criterion variable in a regression analysis is dichotomous (0, 1), then special considerations arise 
in the analysis. The predicted value of Y for any given X may be considered to be the probability that Y
takes on the value 1 for observations with the given X. As Kutner et al. point out, if one uses the ordinary 
simple linear regression model

Yi = β0 + β1 Xi + εi [61]

to analyze the data, at least three problems arise:

1) Nonnormal error terms
2) Violation of the homoscedasticity assumption
3) Predicted Ys that fall outside the 0 to 1 range.

The most common solution is to use a logistic response function rather than the simple linear model of 
equation [61] to model the data. The logistic response function (generalized to the case of several 
predictors) may be written as

 
   

 exp

exp exp
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b b X b X

b b X b X b b X b X
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

 
. [62]

This function is a monotonic, flattened S-shaped curve often called a sigmoidal curve which 
asymptotes at 0 and 1.

A nice property of the logistic response function is that it may be linearized by using the logit or log 
odds transform. If the predicted Y is considered to be the probability, p, of obtaining a 1 for the given 
value of X, and the model of equation [62] is assumed, then it can be shown that the natural log (i.e., 
logarithm to the base e) of the odds associated with p is a linear function of the Xs:

ln
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p
b b X b X

1 0 1 1 2 2






     [63]

The ratio p/(1 - p) is called the odds associated with the probability, p. Values for b0, b1, etc. may be 
obtained, usually by iterative maximum likelihood estimation, by many programs for logistic regression 
analysis. JMP will do logistic regression with one predictor in the Fit Y by X platform and many 
predictors in the Fit Model platform.

Odds and Probability

Because odds play such a prominent role in logistic regression and have properties that in some 
respects are nicer than those of probabilities, it is worth considering some of the characteristics of odds 
and their relation to probability. Odds are usually represented as a ratio of the chances of an event 
occurring to the chances of the event not occurring. For example, odds of 3:2 mean 3 chances out of 5 that 
the event occurs, 2 chances out of 5 the event doesn’t occur. One could represent this as a fraction, 3/2 = 
1.5 or odds of 1.5:1, and the meaning would be the same. Notice that the probability of the event 
occurring would be 3/5 = .6, and the probability of the event not occurring would be 2/5 = .4.
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Note that the scale on which odds are measured goes from 0 to ∞, whereas the scale on which 
probabilities are measured goes from 0 to 1. The algebraic relations between odds (o) and probability (p) 
are as follows:  

o
p

p


1
[64]

and p
o

o


1
. [65]

Because the logistic regression equation [63] predicts the log of the odds, odds play an important role 
in the interpretation of the regression coefficients obtained from the logistic regression analysis. The first 
step in interpreting the coefficients is to take the antilog of each, i.e., exponentiate each coefficient. In the 
case of just one predictor, X1, the interpretations of b0 and b1 would proceed as follows:

eb0 = exp(b0) = the odds that Y takes on the value 1 when X1 = 0. This value may be converted to a 
probability using equation [65] if one wishes.

eb1 = exp(b1) = the ratio of the odds that Y takes on the value 1 when X1 = a to the odds that Y takes on 
the value 1 when X1 = a + 1. This is sometimes called the odds ratio, and it reflects how the odds 
of Y taking on the value 1 change as X1 increases by one point. 

For example, if exp(b1) = 1, then a one point increase in X1 predicts no change in the odds of Y taking 
on the value 1. If exp(b1) = 1.10, then a one point increase in X1 predicts a 10% increase in the odds of 
Y taking on the value 1. If exp(b1) = .80, then a one point increase in X1 predicts that the odds of Y
taking on the value 1 would be only 80% as great as before the one point increase (in other words, the 
odds decrease as X1 increases).

If one desires the odds ratio comparing points on X1 that are, say, farther apart than one point, one 
simply multiplies b1 by the difference one is interested in before exponentiating b1. For example, if one 
were interested in the odds ratio for a 5 point difference in X1, one would find exp(5b1). By default, JMP 
will provide the odds ratio for the difference between the lowest and highest values of X1 in the data set.

Example.

Below is the JMP analysis of some clinical smoking cessation data obtained by a local therapist who 
was interested in predicting whether or not a client would relapse as a function of post-therapy self-
efficacy (for quitting smoking) score. The data file is available on my web site. First, the ordinary linear 
regression fit:
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Bivariate Fit of RlpsD By PostSE
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Linear Fit
Linear Fit
RlpsD = 1.7430458 - 0.0097354 PostSE

Summary of Fit
RSquare 0.146795
RSquare Adj 0.131559
Root Mean Square Error 0.462982
Mean of Response 0.586207
Observations (or Sum Wgts) 58

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 2.065256 2.06526 9.6349
Error 56 12.003709 0.21435 Prob > F
C. Total 57 14.068966 0.0030

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 1.7430458 0.377617 4.62 <.0001
PostSE -0.009735 0.003136 -3.10 0.0030
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Now the logistic regression model analysis:

Logistic Fit of RelapsLbl By PostSE
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1Relapse

2Abstain

Whole Model Test
Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 4.546697 1 9.093394 0.0026
Full 34.789448
Reduced 39.336145

RSquare (U) 0.1156
Observations (or Sum Wgts) 58

Converged by Gradient

Parameter Estimates
Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept 5.87454534 2.0638865 8.10 0.0044
PostSE -0.0460273 0.0168984 7.42 0.0065

For log odds of 1Relapse/2Abstain
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Nominal Logistic Fit for RelapsLbl
Whole Model Test
Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 4.546697 1 9.093394 0.0026
Full 34.789448
Reduced 39.336145

RSquare (U) 0.1156
Observations (or Sum Wgts) 58

Converged by Gradient

Lack Of Fit
Source DF -LogLikelihood ChiSquare
Lack Of Fit 37 18.764290 37.52858
Saturated 38 16.025158 Prob>ChiSq
Fitted 1 34.789448 0.4449

Parameter Estimates
Term Estimate Std Error ChiSquare Prob>ChiSq Odds Ratio
Intercept 5.87454534 2.0638865 8.10 0.0044 .
PostSE -0.0460273 0.0168984 7.42 0.0065 0.02295465

For log odds of 1Relapse/2Abstain

Effect Wald Tests
Source Nparm DF Wald ChiSquare Prob>ChiSq
PostSE 1 1 7.41885645 0.0065

Now a model that includes post-therapy self-efficacy along with number of prior attempts to quit as 
predictors along with the interaction:

Nominal Logistic Fit for RelapsLbl
Whole Model Test
Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 6.592714 3 13.18543 0.0043
Full 32.743431
Reduced 39.336145

RSquare (U) 0.1676
Observations (or Sum Wgts) 58

Converged by Gradient

Lack Of Fit
Source DF -LogLikelihood ChiSquare
Lack Of Fit 50 28.061300 56.1226
Saturated 53 4.682131 Prob>ChiSq
Fitted 3 32.743431 0.2562

Parameter Estimates
Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept 8.77016896 3.2256597 7.39 0.0066
PostSE -0.0734596 0.0267743 7.53 0.0061
PriorAt -0.7084395 0.6222344 1.30 0.2549
PostSE*PriorAt 0.00712071 0.0051451 1.92 0.1664

For log odds of 1Relapse/2Abstain
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Effect Wald Tests
Source Nparm DF Wald ChiSquare Prob>ChiSq
PostSE 1 1 7.52766897 0.0061
PriorAt 1 1 1.29627631 0.2549
PostSE*PriorAt 1 1 1.91536066 0.1664

Excel may be used to get nice probability plots for logistic regression models as the following two 
Excel pages illustrate. Note the formula in the formula window for the selected cell in each worksheet.
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