Computational Formulas for ANOVA

One-Way ANOVA

Let a = # of levels of the independent variable = # of groups N = total # of observations in the experiment $n_1 = \#$ of observations in group 1, etc.

 $H_0: \hspace{0.1in} \mu_1 = \mu_2 = \mu_3 = \hspace{0.1in} \ldots \hspace{0.1in} = \mu_a$

ANOVA analyzes sample variances to draw inferences about population means. Sample variances can always be calculated as *SS/df* and these sample variances are called mean squares (*MS*):

$$SS_{Total} = \sum X^2 - \frac{\left(\sum X\right)^2}{N} \quad df_{Total} = N - 1$$

$$SS_{Between} = SS_{Within} \quad SS_{Between} = \frac{\left(\sum X_1\right)^2}{n_1} + \frac{\left(\sum X_2\right)^2}{n_2} + \dots + \frac{\left(\sum X_a\right)^2}{n_a} - \frac{\left(\sum X\right)^2}{N} \quad df_{Between} = a - 1$$

$$SS_{Between} = MS \quad F = \frac{MS}{MS_{Within}} \quad SS_{Between} = \frac{\left(\sum X_1\right)^2}{n_1} + \frac{\left(\sum X_2\right)^2}{n_2} + \dots + \frac{\left(\sum X_a\right)^2}{n_a} - \frac{\left(\sum X\right)^2}{N} \quad df_{Between} = a - 1$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Between} \quad df_{Within} = N - a$$

$$SS_{Within} = SS_{Total} - SS_{Within} - a$$

$$SS_{Within} = SS_{Total} - SS_{Within} - a$$

$$SS_{Within} = SS_{Within} - a$$

An alternative computational approach emphasizing the conceptual basis of ANOVA is given below.

$$\hat{\sigma}_T^2 = \frac{\sum X^2 - \frac{\left(\sum X\right)^2}{N}}{N-1} = MS_{Total}$$
$$\hat{\sigma}_W^2 = \frac{s_1^2 + s_2^2 + \dots + s_a^2}{a} = MS_{Within}$$
$$\hat{\sigma}_B^2 = n\hat{\sigma}_M^2 = MS_{Between}$$

Multiple Comparisons:

$$LSD = t_{Crit} \sqrt{\frac{2MS_{Error}}{n}}$$

This is the variance of all scores in the experiment = 6.667.

This is the average of the variances within the groups = 2.50. $(1.22^2 + 1.87^2 + 1.58^2)/3 = 2.50.$

This is *n* times the variance of the means = 5(6.333) = 31.667.

 t_{Crit} is the critical value from a *t*-table using the *df* of the error term from the ANOVA table. The error term is always the denominator of the *F*-ratio. Thus, in the above example, the error *df* would be 12. The *MS*_{Error} would be 2.50; *n* is always the number of observations each mean you're comparing is based on.

 $\sum X_{ac}$

n_{ac}

 $(\sum X)$ Ν

 $(\sum X)$

Ν

 $(\sum$ Χ

Ν

Two-Way Factorial ANOVA

2 x 3 factorial design		Crime (C)			Let:
DV = Years		Forgery	Swindle	Burglary	
Attractiveness of Offender (A)	Attractive	3	6	2	a = #
		4	7	4	<i>c</i> = # (
		5	8	6	<i>ac</i> = #
	Unattractive	4	3	4	N = tc
		6	4	6	$n_1 = #$
		8	5	8	

of levels of the independent variable A of levels of the independent variable C # of cells in the experiment otal # of observations in the experiment t of observations in cell 1, etc.

 $\left(\sum X_2\right)$

 n_2

 $SS_{Total} = \sum X^2 - \frac{\left(\sum X\right)}{N}$

 $\overline{SS}_{Within} = SS_{Total} - SS_{Between}$

 $SS_A = \sum \frac{\left(\sum \text{ for each row}\right)^2}{n \text{ for each row}}$

 $SS_{AC} = SS_{Between} - SS_A - SS_C$

8

7

6

 $SS_c = \sum$

 $\frac{\left(\sum for \ each \ column\right)}{n \ for \ each \ column}$

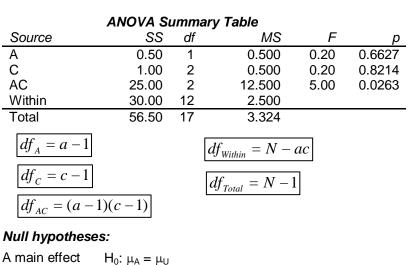
Table of Totals

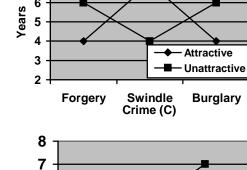
	Forgery	Swindle	Burglary	Marginal Totals
Attractive	12	21	12	45
Unattractive	18	12	18	48
Marginal Totals	30	33	30	93

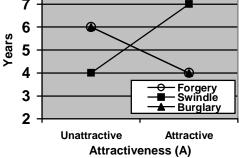
Table of Means

	Forgery	Swindle	Burglary	Marginal
Attractive	4	7	4	5
Unattractive	6	4	6	5.33
Marginal Means	5	5.5	5	5.17

 $SS_{T} = 537 - 93^{2}/18 = 56.50$ $SS_B = 12^2/3 + 21^2/3 + \ldots - 93^2/18 = 26.50$ $SS_W = 56.50 - 26.50 = 30.00$ $SS_A = 45^2/9 + 48^2/9 - 93^2/18 = 0.50$ $SS_{C} = 30^{2}/6 + 33^{2}/6 + 30^{2}/6 - 93^{2}/18 = 1.00$ $SS_{AxC} = 26.50 - 0.50 - 1.00 = 25.00$







- C main effect $H_0: \mu_F = \mu_S = \mu_B$
- AC interaction

 $H_0: (\mu_{AF} - \mu_{UF}) = (\mu_{AS} - \mu_{US}) = (\mu_{AB} - \mu_{UB})$ or equivalently H₀: parallel lines in the cell mean plot