Download Conference Schedule



Detailed Program

November 18, 2017  
8:00 am - 8:30 am Workshop open
8:30 am to 10:00 am Workshop Sessions, ICDM PhD Forum
 

DSBDA - Data Science and Big Data Analytics
DaMNet - Data Mining in Networks
DSHCM - Data Science for Human Capital Management
SSTDM - Spatial and Spatiotemporal Data Mining
DMESS - Data Mining in Earth System Science
SENTIRE - Sentiment Elicitation from Natural Text for Information Retrieval and Extraction
DMBIH - Data Mining in Biomedical Informatics and Healthcare
HDM - High Dimensional Data Mining
MoDat - Market of Data: Creating tools, data, and sensors from the Social Intelligence
DMS - Data Mining for Service
Data Mining in Politics
Big Data and Data Science in Retail
ICDM International Workshop on Intelligence and Security Informatics(ISI-ICDM)
ARIAL - Data mining for Aging, Rehabilitation and Assisted Living
Data-driven Discovery of Models (D3M)
Data Mining for Cyber-physical and Industrial Systems (DMCIS);
Automation in Machine Learning
Data Mining on a Budget

10:00 am - 10:15 am Coffee Break
10:15 am - 11:45 am Workshop Sessions, ICDM PhD Forum
  DSBDA - Data Science and Big Data Analytics
DaMNet - Data Mining in Networks
DSHCM - Data Science for Human Capital Management
SSTDM - Spatial and Spatiotemporal Data Mining
DMESS - Data Mining in Earth System Science
SENTIRE - Sentiment Elicitation from Natural Text for Information Retrieval and Extraction
DMBIH - Data Mining in Biomedical Informatics and Healthcare
HDM - High Dimensional Data Mining
MoDat - Market of Data: Creating tools, data, and sensors from the Social Intelligence
DMS - Data Mining for Service
Data Mining in Politics
Big Data and Data Science in Retail
ICDM International Workshop on Intelligence and Security Informatics(ISI-ICDM)
ARIAL - Data mining for Aging, Rehabilitation and Assisted Living
Data-driven Discovery of Models (D3M)
Data Mining for Cyber-physical and Industrial Systems (DMCIS);
Automation in Machine Learning
Data Mining on a Budget
11:45 pm - 1:00 pm Lunch
1:00 pm - 3:00 pm Workshop Sessions, ICDM PhD Forum
  DSBDA - Data Science and Big Data Analytics
DaMNet - Data Mining in Networks
DSHCM - Data Science for Human Capital Management
SSTDM - Spatial and Spatiotemporal Data Mining
DMESS - Data Mining in Earth System Science
SENTIRE - Sentiment Elicitation from Natural Text for Information Retrieval and Extraction
DMBIH - Data Mining in Biomedical Informatics and Healthcare
HDM - High Dimensional Data Mining
MoDat - Market of Data: Creating tools, data, and sensors from the Social Intelligence
DMS - Data Mining for Service
Privacy and Anonymity in the Information Society
Data Science for Human Performance in Social Networks
DAPS 2017: 2nd International Workshop on Datamining for the Analysis of Performance and Success
High Performance Graph Data Mining and Machine Learning
The Workshop on Optimization Based Techniques for Emerging Data Mining Problems
DMCS - Data Mining for Cyber Security
SERecSys - Semantics-Enabled Recommender Systems
3:00 pm - 3:15 pm Coffee Break
3:00 pm - 6:00 pm Workshop Sessions, ICDM PhD Forum
  DSBDA - Data Science and Big Data Analytics
DaMNet - Data Mining in Networks
DSHCM - Data Science for Human Capital Management
SSTDM - Spatial and Spatiotemporal Data Mining
DMESS - Data Mining in Earth System Science
SENTIRE - Sentiment Elicitation from Natural Text for Information Retrieval and Extraction
DMBIH - Data Mining in Biomedical Informatics and Healthcare
HDM - High Dimensional Data Mining
MoDat - Market of Data: Creating tools, data, and sensors from the Social Intelligence
DMS - Data Mining for Service
Privacy and Anonymity in the Information Society
Data Science for Human Performance in Social Networks
DAPS 2017: 2nd International Workshop on Datamining for the Analysis of Performance and Success
High Performance Graph Data Mining and Machine Learning
The Workshop on Optimization Based Techniques for Emerging Data Mining Problems
DMCS - Data Mining for Cyber Security
SERecSys - Semantics-Enabled Recommender Systems
7:00 pm - 9:00 pm ICDM Steering Committee Meeting
   
November 19, 2017  
9:00 am - 9:30 am ICDM 2017 Opening Remarks
9:30 am -10:30 am Keynote: Leslie Valiant
10:30 am - 11:00 am Coffee Break
11:00 am - 12:40 pm Sessions
  Session 1: Pattern Mining and Structure Learning
 

Regular

  1. DM722     Efficiently Discovering Locally Exceptional yet Globally Representative Subgroups    Janis Kalofolias, Mario Boley, Jilles Vreeken
  2. DM800     Scalable Hashing-Based Network Discovery    Tara Safavi, Chandra Sripada, Danai Koutra
  3. DM406     Discovering Truths from Distributed Data    Yaqing Wang, Fenglong Ma, Lu Su, Jing Gao

Short:

  1. DM361     Robust Estimation of Gaussian Copula Causal Structure from Mixed Data with Missing Values    Ruifei Cui, Perry Groot, Tom Heskes
  2. DM627     MDL for Causal Inference on Discrete Data    Kailash Budhathoki, Jilles Vreeken
  3. DM678     High-Dimensional Dependency Structure Learning for Physical Processes    Jamal Golmohammadi, Imme Ebert-Uphoff, Sijie He, Yi Deng, Arindam Banerjee
  4. DM588     Exploring Common and Distinct Structural Connectivity Patterns Between Schizophrenia and Major Depression via Cluster-driven Nonnegative Matrix Factorization    Junming Shao, Zhongjing Yu, Peiyan Li, Wei Han, Christian Sorg,, Qinli Yang
  Session 2: Scalable Algorithms and High Performance Computing
 

Regular:

  1. DM324     Distributing Frank-Wolfe via Map-Reduce    Armin Moharrer, Stratis Ioannidis
  2. DM690     Scalable Algorithms for Locally Low-Rank Matrix Modeling    Qilong Gu, Joshua D. Trzasko, Arindam Banerjee
  3. DM915     Importance Sketching of Influence Dynamics in Billion-scale Networks    Hung T. Nguyen, Tri P. Nguyen, NhatHai Phan, Thang N. Dinh

 Short:

  1. DM433     Data Prefetching for Large Tiered Storage Systems    Giovanni Cherubini, Yusik Kim, Mark Lantz, Vinodh Venkatesan
  2. DM565     DPiSAX: Massively Distributed Partitioned iSAX    Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, Themis Palpanas
  3. DM632     GaDei: On Scale-up Training As A Service For Deep Learning    Wei Zhang, Minwei Feng, Yunhui Zheng, Yufei Ren, Yandong Wang, Ji Liu, Peng Liu, Bing Xiang, Li Zhang, Bowen Zhou, Fei Wang
  4. DM856     LCD: A Fast Contrastive Divergence Based Algorithm for Restricted Boltzmann Machine    Lin Ning, Randall Pittman, Xipeng Shen
  Session 3: Text Mining
 

Regular: 

  1. DM363     A Self-adaptive Sliding Window based Topic Model for Non-uniform Texts    Jin He, Lei Li, Xindong Wu
  2. DM581     MetaLDA: a Topic Model that Efficiently Incorporates Meta information    He Zhao, Lan Du, Wray Buntine, Gang Liu
  3. DM929     Accurate Detection of Automatically Spun Content via Stylometric Analysis    Usman Shahid, Shehroze Farooqi, Raza Ahmad, Zubair Shafiq, Padmini Srinivasan, Fareed Zaffar

Short:

  1. DM245     Sub-Gibbs Sampling: a New Strategy for Inferring LDA    Chuan Hu, Huiping Cao, Qixu Gong
  2. DM623     Aspect Sentiment Model for Micro Reviews    Reinald Kim Amplayo, Seung-won Hwang
  3. DM667     Identifying Media Bias by Analyzing Reported Speech    Konstantina Lazaridou, Ralf Krestel, Felix Naumann
  4. DM776     An Influence-Receptivity Model for Topic based Information Cascades    Ming Yu, Varun Gupta, Mladen Kolar
  Session 4: Theory 
 

Regular: 

  1. DM341:  Bayesian Optimization in Weakly Specified Search Space    Vu Nguyen, Sunil Gupta, Santu Rane, Cheng Li, Svetha Venkatesh
  2. DM798     GoGP: Fast Online Regression with Gaussian Processes    Trung Le, Khanh Nguyen, Vu Nguyen, Tu Dinh Nguyen, Dinh Phung
  3. DM887     Learning doubly stochastic affinity matrix via Davis-Kahan theorem    Jiwoong Park, Taejeong Kim

Short:

  1. DM353     Hierarchical Multinomial-Dirichlet model for the estimation of conditional probability tables    Laura Azzimonti, Giorgio Corani, Marco Zaffalon
  2. DM467     Effective Large-Scale Online Influence Maximization    Paul Lagrée, Olivier Cappé, Bogdan Cautis, Silviu Maniu
  3. DM821     Theoretically and Empirically High Quality Estimation of Closeness Centrality    Shogo Murai
12:40 pm - 2:00 pm Lunch Break
2:00 pm - 3:30 pm Sessions
  Session 5: Recommender Systems I
 

Regular:

  1. DM234     BiCycle: Item Recommendation with Life Cycles    Xinyue Liu, Yuanfang Song, Charu Aggarwal, Yao Zhang, Xiangnan Kong
  2. DM585     Exploiting Hierarchical Structures for POI Recommendation    Pengpeng Zhao, Xiefeng Xu, Yanchi Liu, Ziting Zhou, Kai Zheng, Victor S. Sheng,, Hui Xiong
  3. DM587     Collaborative Filtering with Social Local Models    Huan Zhao, Quanming Yao, James T. Kwok, Dik Lun Lee

Short:

  1. DM383     Dynamic Propagation Rates: New Dimension to Viral Marketing in Online Social Networks    Tianyi Pan, Alan Kuhnle, Xiang Li, My T. Thai
  2. DM626     A Broad Learning Approach for Context-Aware Mobile Application Recommendation    Tingting Liang, Lifang He, Chun-Ta Lu, Liang Chen, Philip S. Yu
  3. DM680     A Practically Competitive and Provably Consistent Algorithm for Uplift Modeling    Yan Zhao, Xiao Fang, David Simchi-Levi
  Session 6: Geospatial/Mobility Data
 

Regular: 

  1. DM236     Tracking Hit-and-run Vehicle with Sparse Video Surveillance Cameras and Mobile Taxicabs    Yang Wang, Wuji Chen, Wei Zheng, He Huang, Wen Zhang, Hengchang Liu
  2. DM879     Data-Driven Utilization-Aware Trip Advisor for Bike-sharing Systems    Ji Hu, Zidong Yang, Yuanchao Shu, Peng Cheng, Jiming Chen
  3. DM740     Spatio-Temporal Neural Networks for Space-Time Series Forecasting and Relations Discovery    Ali Ziat, Edouard Delasalles, Ludovic Denoyer, Patrick Gallinari

Short:

  1. DM316     Recover Fine-Grained Spatial Data from Coarse Aggregation    Bang Liu, Borislav Mavrin, Linglong Kong, Di Niu
  2. DM510     Autoregressive Tensor Factorization for Spatio-temporal Predictions    Koh Takeuchi, Hisashi Kashima, Naonori Ueda
  3. DM601     A Probabilistic Geographical Aspect-Opinion Model for Geo-tagged Microblogs    Aman Ahuja, Wei Wei, Wei Lu, Kathleen M. Carley, Chandan K. Reddy
  Session 7: Sequences and Time series I
 

Regular: 

  1. DM408     Matrix Profile VIII: Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels    Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar, Liudmila Ulanova, Eamonn Keogh
  2. DM516     Situation Aware Multi-Task Learning for Traffic Prediction    Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, Linhong Zhu
  3. DM830     Linear Time Complexity Time Series Classification with Bag-of-Pattern-Features    Xiaosheng Li, Jessica Lin

Short:

  1. DM295     Market Basket Prediction using User-Centric Temporal Annotated Recurring Sequences    Riccardo Guidotti, Giulio Rossetti, Luca Pappalardo, Fosca Giannotti, Dino Pedreschi
  2. DM480     Learning to Fuse Music Genres with Generative Adversarial Dual Learning    Zhiqian Chen,Chih-Wei Wu,Yen-Cheng Lu,Alexander Lerch,Chang-Tien Lu
  3. DM890     Incorporating Spatio-Temporal Smoothness for Air Quality Inference    Xiangyu Zhao, Tong Xu, Yanjie Fu, Enhong Chen, Hao Guo
  Session 8: Risk Minimization and Adaptive Learning
 

Regular:

  1. DM387     Local Bayes Risk Minimization Based Stopping Strategy for Hierarchical Classification    Yu Wang, Qinghua Hu, Yucan Zhou, Hong Zhao, Yuhua Qian, Jiye Liang
  2. DM395     Adaptive Laplace Mechanism: Differential Privacy Preservation in Deep Learning    NhatHai Phan, Xintao Wu, Han Hu, Dejing Dou
  3. DM326     AWDA: An Adaptive Wishart Discriminant Analysis    Haoyi Xiong, Wei Cheng, Wenqing Hu, Jiang Bian, Zhishan Guo,

Short:

  1. DM630     Risk Control of Best Arm Identification in Multi-Armed Bandits via Successive Rejects    Xiaotian Yu, Irwin King, Michael R. Lyu
  2. DM777     Reputation-based Ranking Systems and their Resistance to Bribery    Joao Saude, Guilherme Ramos, Carlos Caleiro, Soummya Kar
  3. DM237     HitFraud: A Broad Learning Approach for Collective Fraud Detection in Heterogeneous Information Networks    Bokai Cao, Mia Mao, Siim Viidu, Philip S. Yu
  Demo Session
3:30 pm - 4:00 pm Coffee Break
4:00 pm - 6:30 pm Session 9: Deep Learning
 

Regular: 

  1. DM375     Topological Recurrent Neural Network for Diffusion Prediction    Jia Wang, Vincent W. Zheng, Zemin Liu, Kevin Chen-Chuan Chang
  2. DM453     A Deep Transfer Learning Approach for Improved Post-Traumatic Stress Disorder Diagnosis    Debrup Banerjee, Kazi Islam, Gang Mei, Lemin Xiao, Guangfan Zhang, Roger Xu, Shuiwang Ji, Jiang Li
  3. DM550     A Short-Term Rainfall Prediction Model using Multi-Task Convolutional Neural Networks    Minghui Qiu,Peilin Zhao,Ke Zhang,Jun Huang,Xing Shi,Xiaoguang Wang,Wei Chu
  4. DM1003     Deep Similarity-Based Batch Mode Active Learning with Exploration-Exploitation    Changchang Yin,Buyue Qian,Shilei Cao,Xiaoyu Li,Jishang Wei,Qinghua Zheng,Ian Davidson

Short:

  1. DM216     Efficient and Invariant Convolutional Neural Networks for Dense Prediction    Hongyang Gao, Shuiwang Ji
  2. DM222     Recurrent Encoder-Decoder Networks for Time-Varying Dense Prediction    Tao Zeng,Bian Wu,Jiayu Zhou,Ian Davidson,Shuiwang Ji
  3. DM788     Differentially Private Mixture of Generative Neural Networks    Gergely Acs, Luca Melis, Claude Castelluccia, Emiliano De Cristofaro
  4. DM794     A Self-Paced Category-Aware Approach For Unsupervised Adaptation Networks    Wenzhen Huang,Peipei Yang,Kaiqi Huang
  Session 10: Biology and Medicine
 

Regular:

  1. DM214     Multi-task Survival Analysis    Lu Wang, Yan Li, Jiayu Zhou, Dongxiao Zhu, Jieping Ye
  2. DM409     Generating Medical Hypotheses Based on Evolutionary Medical Concepts    Guangxu Xun, Kishlay Jha, Vishrawas Gopalakrishnan, Yaliang Li, Aidong Zhang
  3. DM857     Data-Driven Immunization    Yao Zhang, Arvind Ramanathan, Anil Vullikanti, Laura Pullum, B. Aditya Prakash
  4. DM876     Knowledge Guided Short-Text Classification For Healthcare Applications    Shilei Cao,Buyue Qian,Changchang Yin,Xiaoyu Li,Jishang Wei,Qinghua Zheng,Ian Davidson

Short:

  1. DM894     Wave2Vec: Learning Deep Representations for Biosignals    Ye Yuan, Guangxu Xun, Qiuling Suo, Kebin Jia, Aidong Zhang
  2. DM449     Boosting Deep Learning Risk Prediction with Generative Adversarial Networks for Electronic Health Records    Zhengping Che, Yu Cheng, Shuangfei Zhai, Zhaonan Sun, Yan Liu
  3. DM866     Epidemic Forecasting Framework Combining Agent-Based Models and Smart Beam Particle Filtering    Farzaneh S. Tabataba, Bryan Lewis, Milad Hosseinipour, Foroogh S. Tabataba, Srinivasan Venkatramanan, Jiangzhuo Chen, Dave Higdon, Madhav Marathe
  4. DM425     Synchronization-inspired Co-clustering and Its Application to Gene Expression Data    Junming Shao, Chongming Gao, Wei Zeng, Jingkuan Song, Qinli Yang
  Session 11: Streaming and Online learning
 

Regular:

  1. DM292     Large Scale Kernel Methods for Online AUC Maximization    Yi Ding, Chenghao Liu, Peilin Zhao, Steven C.H. Hoi
  2. DM458     HistoSketch: Fast Similarity-Preserving Sketching of Streaming Histograms with Concept Drift    Dingqi Yang, Bin Li, Laura Rettig, Philippe Cudre-Mauroux
  3. DM796     Online learning of acyclic conditional preference networks from noisy data    Fabien Labernia, Bruno Zanuttini, Brice Mayag, Florian Yger, Jamal Atif
  4. DM660     Online and Distributed Robust Regressions under Adversarial Data Corruption    Xuchao Zhang, Liang Zhao, Arnold P. Boedihardjo, Chang-Tien Lu

Short:

  1. DM224     WRS: Waiting Room Sampling for Accurate Triangle Counting in Real Graph Streams    Kijung Shin
  2. DM815     Domain Adaptation for Online ECG Monitoring    Diego Carrera, Beatrice Rossi, Pasqualina Fragneto, Giacomo Boracchi
  3. DM863     New Class Adaptation via Instance Generation in One-Pass Class Incremental Learning    Yue Zhu, Kai Ming Ting, Zhi-Hua Zhou
  4. DM842     Finding Streams in Knowledge Graphs to Support Fact Checking    Prashant Shiralkar, Alessandro Flammini, Filippo Menczer, Giovanni Luca Ciampaglia
  Tutorial 1
  Challenges and Solutions in Group Recommender Systems
by Ludovico Boratto
7:00 pm Welcome Reception
   
November 20, 2017  
9:00 am - 10:00 am Aidong Zhang, University at Buffalo, SUNY and the National Science Foundation
10:00 am - 10:30 am Coffee Break
10:30 am - 1:00 pm Sessions
  Session 12: Clustering
 

Regular:

  1. DM358     AnySCAN: An Efficient Anytime Framework with Active Learning for Large-scale Network Clustering    Weizhong Zhao, Gang Chen, Xiaowei Xu
  2. DM370     Revisiting Spectral Graph Clustering with Generative Community Models    Pin-Yu Chen, Lingfei Wu
  3. DM535     Kernel Conditional Clustering    Xiao He, Thomas Gumbsch, Damian Roqueiro, Karsten Borgwardt
  4. DM810     A Generic Framework for Interesting Subspace Cluster Detection in Multi-attributed Networks    Feng Chen, Baojian Zhou, Adil Alim, Liang Zhao

Short:

  1. DM275     Clustering by Shift    Morteza Haghir Chehreghani
  2. DM659     Crowdsourced correlation clustering with relative distance comparisons    Antti Ukkonen
  3. DM983     CRAD: Clustering with Robust Autocuts and Depth    Xin Huang, Yulia R. Gel
  4. DM914     Online Nearest Neighbor Search in Binary Space    Sepehr Eghbali, Hassan Ashtiani, Ladan Tahvildari
  5. DM769     Efficient Computation of Multiple Density-Based Clustering Hierarchies    Antonio Cavalcante Araujo Neto, Joerg Sander, Ricardo J. G. B. Campello, Mario A. Nascimento
  6. DM686     Efficient Computation of Pairwise Minimax Distance Measures    Morteza Haghir Chehreghani
  7. DM674     Novel Exact and Approximate Algorithms for the Closest Pair Problem    Sanguthevar Rajasekaran, Subrata Saha,, Xingyu Cai
  Session 13: Graph Analytics
 

Regular:

  1. DM468     Improving I/O Complexity of Triangle Enumeration    Yi Cui, Di Xiao, Daren B.H. Cline, Dmitri Loguinov,
  2. DM687     Scalable and Adaptive Algorithms for the Triangle Interdiction Problem on Billion-Scale Networks    Alan Kuhnle, Victoria G. Crawford, My T. Thai
  3. DM710     Exploratory Analysis of Graph Data by Leveraging Domain Knowledge    Di Jin, Danai Koutra,
  4. DM924     Edge-Based Wedge Sampling to Estimate Triangle Counts in Very Large Graphs    Duru Turkoglu, Ata Turk;
  5. DM397     Glocalized Weisfeiler-Lehman Graph Kernels: Global-Local Feature Maps of Graphs    Christopher Morris, Kristian Kersting, Petra Mutzel

Short:

  1. DM258     Fast Compressive Spectral Clustering    Ting Li, Yiming Zhang, Dongsheng Li, Xinwang Liu, Yuxing Peng
  2. DM610     Spectral Lens: Explainable Diagnostics, Tools and Discoveries in Directed, Weighted Graphs    Sebastian Goebl, Srijan Kumar, Christos Faloutsos
  3. DM325     Scalable Constrained Spectral Clustering via the Randomized Projected Power Method    Weifeng Zhi, Buyue Qian, Ian Davidson
  4. DM691     Efficient Mining of Subsample-Stable Graph Patterns    Aleksey Buzmakov, Sergei O. Kuznetsov, Amedeo Napoli
  5. DM956     Statistical Link Label Modeling for Sign Prediction: Smoothing Sparsity by Joining Local and Global Information    HongXiang Qiu, Elham Barzegaran, Mahdi Jalili, Kevin Chen-Chuan Chang
  Session 14: Learning Methods
 

Regular:

  1. DM500     Supervised Belief Propagation: Scalable Supervised Inference on Attributed Networks    Jaemin Yoo, Saehan Jo, U Kang,
  2. DM773     An Analysis of Boosted Linear Classifiers on Noisy Data with Applications to Multiple-Instance Learning    Rui Liu, Soumya Ray
  3. DM923     A Probabilistic Approach for Learning with Label Proportions Applied to the US Presidential Election    Tao Sun, Dan Sheldon, Brendan O’Connor
  4. DM635     Telling Cause from Effect using MDL-based Local and Global Regression    Alexander Marx, Jilles Vreeken

Short:

  1. DM215     Learning with Inadequate and Incorrect Supervision    Chen Gong, Hengmin Zhang, Jian Yang, Dacheng Tao
  2. DM261     Automatic Classification of Music Genre using Masked Conditional Neural Networks    Fady Medhat, David Chesmore, John Robinson
  3. DM345     Balanced Distribution Adaptation for Transfer Learning    Jindong Wang, Yiqiang Chen, Shuji Hao, Wenjie Feng, Zhiqi Shen
  4. DM534     Multi-Party Sparse Discriminant Learning    Jiang Bian, Haoyi Xiong, Wei Cheng, Wenqing Hu, Zhishan Guo, Yanjie Fu
  5. DM592     Tensor based Relations Ranking for Multi-relational Collective Classification    Chao Han, Qingyao Wu, Michael K. Ng, Jiezhang Cao, Mingkui Tan, Jian Chen
  6. DM843     Informing the Use of Hyperparameter Optimization Through Metalearning    Samantha Sanders, Christophe Giraud-Carrier
  Tutorial 2
  Mining Cohorts & Patient Data: Challenges and Solutions for the Pre-Mining, the Mining and the Post-Mining Phases
by Panagiotis Papapetrou and Myra Spiliopoulou
1:00 pm - 2:00 pm Lunch Break
2:00 pm - 3:00 pm Special Paper Session
  1. DM364     TensorCast: Forecasting with Context using Coupled Tensors    Miguel Ramos de Araujo, Pedro Manuel Pinto Ribeiro, Christos Faloutsos
  2. DM552     Matrix Profile VII: Time Series Chains: A New Primitive for Time Series Data Mining    Yan Zhu, Makoto Imamura, Daniel Nikovski, Eamonn Keogh
3:00 pm - 6:00 pm Social Event
6:30 pm Conf Banquet
   
November 21, 2017  
9:00 am - 10:00 am Keynote: Michael Franklin, University of Chicago
10:00 am - 10:30 am Coffee Break
10:30 am - 12:30 pm Sessions
  Session 15: Network Science
 

Regular:

  1. DM269     Many Heads are Better than One: Local Community Detection by the Multi-Walker Chain    Yuchen Bian, Jingchao Ni, Wei Cheng, Xiang Zhang,
  2. DM274     Benchmark Generator for Dynamic Overlapping Communities in Networks    Neha Sengupta, Michael Hamann, Dorothea Wagner
  3. DM518     Collective Entity Resolution in Familial Networks    Pigi Kouki, Jay Pujara, Christopher Marcum, Laura Koehly, Lise Getoor
  4. DM522     Overlapping Community Detection via Constrained PARAFAC: A Divide and Conquer Approach    Fatemeh Sheikholeslami, Georgios B. Giannakis

Short:

  1. DM308     iNEAT: Incomplete Network Alignment    Si Zhang, Hanghang Tong, Jie Tang, Jiejun Xu, Wei Fan
  2. DM277     Automated Medical Diagnosis by Ranking Clusters Across the Symptom-Disease Network    Jingchao Ni, Hongliang Fei, Wei Fan, Xiang Zhang
  3. DM803     Local Community Detection in Dynamic Networks    Daniel J. DiTursi, Gaurav Ghosh, Petko Bogdanov
  4. DM947     Network Clocks: Detecting the Temporal Scale of Information Diffusion    Daniel J. DiTursi, Gregorios A. Katsios, Petko Bogdanov
  Session 16: Feature Selection and Extraction
 

Regular:

  1. DM430     AutoLearn - Automated Feature Generation and Selection    Ambika Kaul, Saket Maheshwary, Vikram Pudi
  2. DM598     Unsupervised feature learning with discriminative encoder    Gaurav Pandey, Ambedkar Dukkipati
  3. DM981     A Hyperplane-based Algorithm for Semi-supervised Dimension Reduction    Huang Fang, Minhao Cheng, Cho-Jui Hsieh
  4. DM434     SCED: A General Framework for Sparse Tensor Decomposition with Constraints and Elementwise Dynamic Learning    Shuo Zhou, Sarah M. Erfani, James Bailey

Short:

  1. DM285     Domain Specific Feature Transfer for Hybrid Domain Adaptation    WEI PENGFEI, Ke Yiping, Goh Chi Keong
  2. DM681     Kernel-Based Feature Extraction For Collaborative Filtering    Saket Sathe, Charu C. Aggarwal, Xiangnan Kong, Xinyue Liu
  3. DM699     Reductions for Frequency-Based Data Mining Problems    Stefan Neumann, Pauli Miettinen
  4. DM790     Warehouse Site Selection for Online Retailers in Inter-connected Warehouse Networks    Can Chen, Junming Liu, Qiao Li, Yijun Wang, Hui Xiong, Shanshan Wu
  Session 17: Recommender Systems II
 

Regular:

  1. DM287     SPTF: A Scalable Probabilistic Tensor Factorization Model for Semantic-Aware Behavior Prediction    Hongzhi Yin, Hongxu Chen, Xiaoshuai Sun, Hao Wang, Yang Wang, Quoc Viet Hung Nguyen
  2. DM608     Mining Customer Valuations to Optimize Product Bundling Strategy    Li Ye,Hong Xie,Weijie Wu,John C.S. Lui
  3. DM643     Visually-Aware Fashion Recommendation and Design with Generative Image Models    Wang-Cheng Kang, Chen Fang, Zhaowen Wang, Julian McAuley
  4. DM892     Relational Mixture of Experts: Explainable Demographics Prediction with Behavioral Data    Masafumi Oyamada, Shinji Nakadai

Short:

  1. DM384     Multi-level Feedback Web Links Selection Problem: Learning and Optimization    Kechao Cai, Kun Chen, Longbo Huang, John C.S. Lui
  2. DM418     Collaborative Inference of Coexisting Information Diffusions    Yanchao Sun, Cong Qian, Ning Yang, Philip S. Yu
  3. DM664     An Automatic Approach for Transit Advertising in Public Transportation Systems    Chen Zhang,Hao Wang,Hui Xiong
  4. DM816     Learning Multiple Similarities of Users and Items in Recommender Systems    Huiyuan Chen, Jing Li
  Tutorial 3
  Mining Misinformation in Social Media: Understanding Its Rampant Spread, Harm, and Intervention
by Liang Wu, Giovanni Luca Ciampaglia, Filippo Menczer and Huan Liu
12:30 pm - 2:00 pm ICDM Community Meeting (Lunch provided by the conference)
Student Travel Awards
ICDM '17 & '18
Citi Talk: Big Data in Credit Cards
Cisco Talk: Application Performance Management and Deep Learning
2:00 pm - 3:30 pm Sessions
  Session 18: Social Networks
 

Regular:

  1. DM365     GANG: Detecting Fraudulent Users in Online Social Networks via Guilt-by-Association on Directed Graphs    Binghui Wang, Neil Zhenqiang Gong, Hao Fu
  2. DM609     BL-MNE: Emerging Heterogeneous Social Network Embedding through Broad Learning with Aligned Autoencoder    Jiawei Zhang, Congying Xia, Chenwei Zhang, Limeng Cui, Yanjie Fu, Philip S. Yu

Short:

  1. DM653     SLANT+ : A Nonlinear Model for Opinion Dynamics in Social Networks    Bhushan Kulkarni, Sumit Agarwal, Abir De, Sourangshu Bhattacharya,, Niloy Ganguly
  2. DM779     Mining the Demographics of Political Sentiment from Twitter Using Learning from Label Proportions    Ehsan Mohammady Ardehaly, Aron Culotta
  3. DM368     The Many Faces of Link Fraud    Neil Shah, Hemank Lamba, Alex Beutel, Christos Faloutsos
  Session 19: Multi-view and Multimodal Learning
 

Regular: 

  1. DM244     A Randomized Approach for Crowdsourcing in the Presence of Multiple Views    Yao Zhou,Jingrui He
  2. DM284     HiMuV: Hierarchical Framework for Modeling Multi-Modality Multi-Resolution Data    Jianboi Li, Jingrui He, Yada Zhu

Short:

  1. DM520     EC3: Combining Clustering and Classification for Ensemble Learning    Tanmoy Chakraborty
  2. DM622     Multi-view Graph Embedding with Hub Detection for Brain Network Analysis    Guixiang Ma, Chun-Ta Lu, Lifang He, Philip S. Yu, Ann B. Ragin,
  3. DM671     Multi-Level Multi-Task Learning for Modeling Cross-Scale Interactions in Nested Geospatial Data    Shuai Yuan, Jiayu Zhou, Pang-Ning Tan, Emi Fergus, Tyler Wagner,, Patricia Soranno
  4. DM714     Multimodal Content Analysis for Effective Advertisements on YouTube    Nikhita Vedula, Wei Sun, Hyunhwan Lee, Harsh Gupta, Mitsunori Ogihara, Joseph Johnson, Gang Ren, Srinivasan Parthasarathy
  5. DM781     Multi-level Multiple Attentions for Contextual Multimodal Sentiment Analysis    Soujanya Poria, Erik Cambria, Devamanyu Hazarika, Navonil Mazumder, Amir Zadeh, Louis-Philippe Morency
  Session 20: Event Mining and Anomaly Detection
 

Regular:

  1. DM789 STExNMF: Spatio-Temporally Exclusive Topic Discovery for Anomalous Event Detection    Dear Sungbok Shin, Minsuk Choi, Jinho Choi, Scott Langevin, Christopher Bethune, Philippe Horne, Nathan Kronenfeld, Ramakrishnan Kannan, Barry Drake, Haesun Park, Jaegul Choo
  2. DM959  Multi-task Multi-modal Models for Collective Anomaly Detection    Tsuyoshi    Ide, Dzung T. Phan, Jayant Kalagnanam
  3. DM523 Split Miner: Discovering Accurate and Simple Business Process Models from Event Logs    Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa

Short:

  1. DM424     BEEP: a Bayesian perspective Early stage Event Prediction model for online social networks    Xiao Ma, Xiaofeng Gao, Guihai Chen
  2. DM278     Ranking Causal Anomalies by Modeling Local Propagations on Networked Systems    Jingchao Ni, Wei Cheng, Kai Zhang, Dongjin Song, Tan Yan, Haifeng Chen, Xiang Zhang
  3. DM994     Behind Distribution Shift: Mining Driving Forces of Changes and Causal Arrows    Biwei Huang, Kun Zhang, Jiji Zhang, Ruben Sanchez-Romero, Clark Glymour, Bernhard Schölkopf
  Session 21: Sequences and Time Series II
 

Regular:

  1. DM948     Efficient Discovery of Time Series Motifs with Large Length Range in Million Scale Time Series    Yifeng Gao, Jessica Lin
  2. DM537     Matrix Profile VI: Meaningful Multidimensional Motif Discovery    Chin-Chia Michael Yeh, Nickolas Kavantzas, Eamonn Keogh

Short:

  1. DM314     Generating synthetic time series to augment sparse datasets    Germain Forestier, François Petitjean, Hoang Anh Dau, Geoffrey I. Webb, Eamonn Keogh
  2. DM509     Audio-Visual Sentiment Analysis for Learning Emotional Arcs in Movies    Eric Chu, Deb Roy
  3. DM547     Time-aware Latent Hierarchical Model for Predicting House Prices    Fei Tan, Chaoran Cheng, Zhi Wei
3:30 pm - 4:00 pm Coffee Break
4:00 pm - 5:30 pm Conference Panel Session: Ethics and Professionalism in the age of Social Data
Huan Liu, Eirini Ntoutsi, Jilles Vreeken, Tanushree Mitra