8.4 Probabilistic Retrieval Model

- an alternative model for query optimization
- two main parameters P(REL), probability of relevance and P(NREL), probability of non-relevance of a document.
- the probability that a document d is relevant is given by

$$P(REL \& d) = P(REL) \times P(d / REL)$$
$$= P(d) \times P(REL / d)$$

$$P(REL/d) = P(REL) \times P(d/REL) / P(d)$$

- given two classes relevant and nonrelevant, and their probabilities; there are two classes of user judgments and two actions provided by the retrieval system
 - a. REL (relevant) and NREL (nonrelvant).
 - b. α_1 (retrieve actions) and α_2 (not retrieve action).

Optimal Decision is

$$P(REL/d) \stackrel{\alpha_1}{\underset{\alpha_2}{>}} P(NREL/d)$$

Retrieve d if

$$\left(\frac{P(d \mid REL)}{P(d \mid NREL)}\right) \left(\frac{P(REL)}{P(NREL)}\right) > 1$$

Taking log,

$$\log\left(\frac{P(d/REL)}{P(d/NREL)}\right) + \log\left(\frac{P(REL)}{P(NREL)}\right) > 0$$

$$P_{\alpha_1/d}(Error) = P(NREL/d)$$

$$P_{\alpha_2/d}(Error) = P(REL/d)$$

Average P(Error)

$$\sum_{\substack{d \in D \\ \alpha_1 / d}} P(NREL/d) \bullet P(d) + \sum_{\substack{d \in D \\ \alpha_2 / d}} P(REL/d) \bullet P(d)$$

PROBLEM

Find a decision rule and associated q such that Average P(Error) is minimized.

I. Binary "Independence" Model

• documents are represented as

$$d = (w_1, w_2, ..., w_t)$$

where each
$$w_i = \begin{cases} 1 & \text{if term i appears in d} \\ 0 & \text{otherwise} \end{cases}$$

 the value of w_i conforms to Bernouli distribution, given by

$$P(w_i = 1/REL) = p_i$$

$$P(w_i = 1/REL) = p_i^{w_i} (1 - p_i)^{1 - w_i}$$

$$P(w_i = 0/REL) = 1 - p_i$$

$$P(w_i = 1/NREL) = q_i$$

$$P(w_i = 1/NREL) = q_i^{w_i} (1 - q_i)^{1 - w_i}$$

$$P(w_i = 0/NREL) = 1 - q_i$$

where p_i and q_i are the probabilities of term t_i in a relevant document and a nonrelevant document respectively.

• because of term independence

$$P(d / REL) = \prod_{i=1}^{t} p_i^{w_i} (1 - p_i)^{1 - w_i}$$

$$P(d / NREL) = \prod_{i=1}^{t} q_i^{w_i} (1 - q_i)^{1 - w_i}$$

therefore

$$log\left(\frac{P(d / REL)}{P(d / NREL)}\right) = log\left(\frac{\prod_{i=1}^{t} p_{i}^{w_{i}} (1 - p_{i})^{1 - w_{i}}}{\prod_{i=1}^{t} q_{i}^{w_{i}} (1 - q_{i})^{1 - w_{i}}}\right)$$

$$= \sum_{i=1}^{t} w_{i} log\left(\frac{p_{i}}{q_{i}}\right) + \sum_{i=1}^{t} (1 - w_{i}) log\left(\frac{1 - p_{i}}{1 - q_{i}}\right)$$

$$= \sum_{i=1}^{t} w_{i} log\left(\frac{p_{i}}{q_{i}}\right) - \sum_{i=1}^{t} w_{i} log\left(\frac{1 - p_{i}}{1 - q_{i}}\right) + \sum_{i=1}^{t} log\left(\frac{1 - p_{i}}{1 - q_{i}}\right)$$

$$= \sum_{i=1}^{t} w_i \log \left(\frac{p_i}{q_i} * \frac{(1-q_i)}{(1-p_i)} \right) + \sum_{i=1}^{t} \log \left(\frac{1-p_i}{1-q_i} \right)$$

in the final equation above, factor # 1 alone affects the ranking of the document, factor # 2 is used as a cut-off.

• if $X = (x_1, x_2,...,x_n)$ where each

$$x_i = \log \left(\frac{p_i(1 - q_i)}{q_i(1 - p_i)} \right)$$

then the rule is to retrieve d if

$$d \bullet X^T + c > 0$$

 similar mathematical derivation can be obtained for other distributions like Poisson and Normal distributions.

Estimating Term Relevance Weights

TABLE 1.

	t_1	t_2	t_3	t_4	
d_1	0	1	1	0	R
d_2	1	0	0	1	
d_5	1	1	0	0	R
d_{10}	1	0	0	1	
d_{11}	1	1	1	0	R

TABLE 1 is used as training data.

t_1			
		REL	NREL
***	1	2	2
$\mathbf{w}_1 =$	0	1	0

ι_2			
		REL	NREL
***	1	3	0
$\mathbf{w}_2 =$	0	0	2

<u>l</u> 3			
		REL	NREL
XX7 —	1	2	0
$\mathbf{w}_3 =$	0	1	2

ι4			
		REL	NREL
***	1	0	2
$W_4=$	0	3	0

Jeffrey's prior

4	
ι	1
•	J

<u>• </u>			
		REL	NREL
***	1	2.5	2 .5
$\mathbf{w}_1 =$	0	1.5	.5

$$x_1 = \log 1/3$$

4	
П	
	$^{\circ}$
·	, ,
	_

		REL	NREL
***	1	3.5	.5
$\mathbf{w}_2 =$	0	.5	2.5

$$x_2 = \log 35$$

<u>t</u>₃

		REL	NREL
***	1	2.5	.5
$\mathbf{w}_3 =$	0	1.5	2.5

$$x_3 = \log 25/3$$

$$\underline{t_4}$$

		REL	NREL
***	1	.5	2.5
$W_4=$	0	3.5	.5

$$x_4 = \log 1/35$$