
1The Shape of the Web and Its Impli
ations forSear
hing the WebKemal Efe, Vijay Raghavan, C. Henry Chu, Adrienne L. Broadwater, Levent Bolelli, Seyda ErtekinAbstra
t| With the rapid growth of the number of webpages, designing a sear
h engine that 
an retrieve high qual-ity information in response to a user query is a 
halleng-ing task. Automated sear
h engines that rely on keywordmat
hing usually return too many low quality mat
hes andthey take a long time to run. It is argued in the literaturethat link-following sear
h methods 
an substantially in
reasethe sear
h quality, provided that these methods use an a
-
urate assumption about useful patterns in the hyperlinktopology of the web. Re
ent work in the �eld has fo
used ondete
ting identi�able patterns in the web graph and exploit-ing this information to improve the performan
e of sear
halgorithms. We survey relevant work in this area and 
om-ment on the impli
ations of these patterns for other areassu
h as advertisement and marketing.Keywords| Sear
h engines, link analysis, information ex-ploration, related pages, World Wide Web.I. Introdu
tionUse of the link stru
ture has re
ently emerged as apromising approa
h for sear
hing the web. Link-based ap-proa
hes have been inspired by an analogy with 
itation ofrelated works in s
ienti�
 literature. A 
itation providesa link between two arti
les, and often is the only way forreaders to learn about other arti
les related to the topi
of a given arti
le. A link on a web page serves a similarpurpose as it leads the way from one page to another, butthere are important di�eren
es between a s
ienti�
 
itationand a web link:� Human judgement applied to a web 
itation is gener-ally more subje
tive and noisy than in s
ienti�
 literature.Most link 
reators may not even have a 
laim of relevan
e,obje
tivity, or information quality.� While some links on a web page may lead to related (orunrelated) pages, others may be there merely for naviga-tional purposes (e.g. \
li
k here to return to the homepage").� A 
itation in the s
ienti�
 literature is a stati
 and uni-dire
tional pointer; on
e an arti
le is published, there isno way to add new referen
es to it. For this reason, it isex
eptionally rare for two arti
les to 
ite one another. In
ontrast, web pages may (and often do) link to other do
-uments 
reated afterwards. The fa
t that the average dis-tan
e between two web pages is relatively small (19 
li
ks[3℄, [2℄) is a dire
t 
onsequen
e of this freedom to add linksto existing pages.The �rst two points above weaken the assertion that linkson web pages 
ould serve a useful purpose in an automatedK. Efe is with Bilkent University and the University of Louisiana{Lafayette.V. Raghavan, C.H. Chu, A. L. Broadwater, L. Bolelli and S. Ertekinare with the University of Louisiana{Lafayette

method for sear
hing the web, but the last point is a sig-ni�
ant help. New links added to existing pages makes iteasier to form 
ertain patterns in the web graph that wouldbe harder to �nd in a 
itation graph of s
ienti�
 literature,and even harder to �nd in a random graph. An intuitiveimpli
ation of the 19 
li
ks theory is that the web graphmust 
ontain densely 
onne
ted regions that are in turn afew 
li
ks away to one-another. These densely 
onne
tedregions must form 
ertain re
ognizable patterns as a sig-nature of 
olle
tive intelligen
e even though di�erent pagesmay have been 
reated and maintained independently fromone another. Indeed, resear
h that we review here hasshown that although an individual link is weak eviden
e ofrelevan
e, an aggregate of links forming a spe
ial patternis a robust indi
ator of relevan
e. When the link informa-tion is augmented with text-based information on the pageand/or around the an
hor text, even better sear
h resultshave been obtained. In this paper we review a numberof su
h te
hniques applied to information retrieval on theweb, and identify possible resear
h dire
tions.II. Basi
 Graph PatternsThe most basi
 element of a graph is a dire
ted link. Alink on a web page 
onne
ts one do
ument to another, andrepresents an impli
it endorsement of the target page.When we 
onsider two links, we obtain a number of pos-sible basi
 patterns as shown in Figure 1. Two pages point-ing to ea
h other reinfor
e our intuition about their mutualrelevan
e. Co-
itation o

urs when a page points to twodistin
t pages. In bibliometri
 studies [30℄, it is assertedthat relevant papers are often 
ited together, and here weassume that a similar assertion holds. For example, a pagethat 
ites the home page of the New York Times is verylikely to 
ite the home page of the Washington Post also.So
ial 
hoi
e (or so
ial �ltering) is the situation where twodo
uments link to a third page. From this pattern, we inferthat the two pages are related to ea
h other sin
e they bothlink to the same do
ument. Finally, transitive endorsemento

urs when page p1 links to p2, whi
h in turn links to p3.Transitively, p1 is 
onsidered to endorse p3, though this isa weaker form of endorsement.These basi
 stru
tures 
an blend together to form more
omplex patterns that further strengthen the relationshipsamong a set of web pages. See Figure 2 for some exam-ples. One of these is the 
omplete bipartite graph. In [23℄,Kumar et al. used a spe
ial form of a dire
ted 
ompletebipartite graph as the signature of an emerging web 
om-munity1. In this graph, the nodes are divided into two1A web 
ommunity is a set of page 
reators with similar interests.
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Endorsement

Co-citation Social choice

Mutual
reinforcement

Transitive endorsementFig. 1. Basi
 patterns formed by two dire
ted edges.subsets F and A su
h that ea
h node in F links to everynode in A. The set of nodes in F are 
alled the fans, andthe set of nodes in A are 
alled the authorities. Anotheruseful stru
ture is the 
lan graph. An NK-
lan is a set ofK nodes in whi
h there is a path of length N or less (ig-noring the edge dire
tions) between every pair of nodes.This stru
ture has been used for dete
ting and visualisinginter-site 
lan graphs in [28℄.A generalization of so
ial 
hoi
e is an in-tree. Conversely,a generalization of 
o-
itation yields an out-tree. Of par-ti
ular interest are the trees with large in/out degrees atthe root. The interest in in-trees is due to an assertionthat if many di�erent pages link (dire
tly or transitively)to a do
ument, it is likely that the heavily linked page isan authoritative sour
e on some topi
 of interest shared byother pages in its graph neighborhood. This is analogousto measuring the impa
t of s
ienti�
 papers by the numberof 
itations they re
eive. The interest in out-trees is dueto an analogy with survey papers. If a web page links tomany authoritative pages on some topi
, then we 
onsiderit to be a good sour
e for sear
hing relevant information.III. Stru
tural AnalysisAs we noted above, NK-
lan graphs and dire
ted 
om-plete bipartite graphs have been used as the basi
 patternsto be sear
hed for in the web graph. In a related work, treestru
tures have been used as a guideline to design betterhyperlinked stru
tures [7℄. The reverse pro
ess of extra
t-ing tree stru
tures to dis
over and visualize topi
al hier-ar
hies in hyperlinked text has also been studied [7℄, [24℄,[25℄. In 
ase of a topi
 sear
h on the web, we don't needto extra
t tree stru
tures from the web graph. Often, theuser is only interested in �nding a small number of author-itative pages on the sear
h topi
. These are the pages thatwould play a prominent role in a tree (su
h as the root),had we extra
ted the tree itself. An alternative to extra
t-ing trees in a web sear
h is to apply a ranking method tothe nodes of the web graph that has an analogous out
omein dete
ting prominent nodes. In this se
tion, we reviewsu
h methods proposed in the literature. To provide a uni-�ed view of the di�erent models in the literature, we �rstdevelop a few basi
 
on
epts.

A. Basi
 Con
eptsWe �rst 
onsider a dire
ted graph G and its adja
en
ymatrix X as shown in Figure 3. An entry xp;q = 1 if andonly if there is an edge from p to q. Otherwise xp;q = 0:Now 
onsider two linear transformations de�ned on unitve
tors a and h as follows:a = XTh (1)h = Xa (2)This is equivalent to a = XTXa (3)h = XXTh (4)It is interesting to examine these matrix produ
ts. Firstof all, both produ
t matri
es are diagonally symmetri
.This property is of no immediate interest to us, ex
ept thatit is useful if one is interested in analyzing the 
onvergen
eproperties of related sear
h algorithms. Of immediate in-terest to us are the following observations:� An entry (p,q) in the produ
t XXT is equal to the num-ber of other pages to whi
h both pages p and q point. Thisvalue 
ould be used as a measure of how mu
h p and qhave in 
ommon. Two pages that have a large overlap intheir 
itations are likely to be very similar to ea
h other.For pages with small outdegrees, a relatively large overlapplays an important role in the formation of the dire
ted
omplete bipartite graphs whi
h happen to be robust indi-
ators of web 
ommunities2.� An entry (p,q) in the produ
t XTX represents the num-ber of other pages that link to both p and q. This informa-tion 
an be used as a measure of how many other's 
onsiderthese two pages as being related. This measure is 
alled thedegree of 
o-
itation between p and q in [17℄, and used fordete
ting related pages in the web graph.� A diagonal entry (p,p) inXXT represents the out-degreeof the node p in G.2For pages with large out-degrees too mu
h overlap in their linksoften turned out to be a sign of plagiarism between web pages. Kumaret al. [23℄ found that several pages of Yahoo! were plagiarised morethan 50 times ea
h. While plagiarised pages are strongly similar aspredi
ted from the overlap of their outgoing links, several resear
herspreferred to delete su
h dupli
ates from the web graph before applyingtheir algorithms [17℄, [23℄
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In-Tree Out-Tree
Complete bipartite graph NK-clan with N=2, K=10Fig. 2. Complex patterns that are indi
ative of web 
ommunities.
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4� A diagonal entry (p,p) in XTX represents the in-degreeof the node p.Pages with large in/out degrees often play a 
entral rolein the web graph. The two algorithms we present next
apitalise on this notion.B. A Basi
 Method for Page RankingAn example te
hnique that is reminis
ent of �nding theroots of in-trees is the ranking method developed in Google[8℄. Page ranking is done by using an algorithm that is
alled (none other than) PageRank. Google's web 
rawlers
ontinuously sear
h the web to 
olle
t new pages and up-date the old ones. These pages are stored in a data reposi-tory. The link stru
ture of these pages are stored separatelyfrom other information and represented as the web graph.This graph is then used for 
omputing page ranks. Therank of a page determines its lo
ation in the output list,if it is sele
ted in response to a user query. Let rp be therank of a page p and xp be the number of outgoing linkson a page. Re
ursively, the rank of a page p is 
omputedas: rp = (1� d) + d X8q;q!p rq=xqwhere d is a damping fa
tor sele
ted between 0 and 1. As
an be seen, the rank of a page depends on the numberof pages and the individual ranks of pages pointing to it.This equation 
an be seen as modeling the behavior of a\random surfer" (term 
oined by Brin and Page) who keeps
li
king on the links, but gets bored eventually and startsfrom another random page. The summation term in theabove equation is just the probability that a page is sele
tedfrom one of the neighboring pages that link to it. As thereaders will noti
e, the equation awards higher ranks topages with high in-degrees, or pages that are linked to byhighly ranked pages.As a di�erent way to view this 
omputation, 
onsider theadja
en
y matrix X of the web graph. In this graph, rowsrepresent the outgoing links su
h that the entry a(p; q) = 0if there is no link from page p to page q. Otherwise,a(p; q) = 1=xp, where xp is the number of outgoing linkson page p. The summation term in the above 
omputa-tion is just the matrix-ve
tor multipli
ation XT r whereXT is the transpose of X , and r is the rank ve
tor. Inthis 
omputation r 
an be initialized to the unit ve
tor,and the 
omputation 
an be repeated until 
ertain nodesdistinguish themselves by a relatively higher rank than theothers. This should normally happen after a few tens ofiterations sin
e the 
omputation 
onverges to the prin
ipaleigenve
tor of the matrix XT [9℄.C. Extra
ting Hubs and AuthoritiesKleinberg developed an experimental sear
h te
hnique[21℄, 
alled the HITS (Hyperlink-Indu
ed Topi
 Sear
h),that is parti
ularly e�e
tive for �nding the pages with asimilarly 
entral role in the web graph. This algorithm�nds both authorities and hubs. Authorities are thosepages prominent in their neighborhood of the web graph

due to many other pages pointing toward them. Hubs areprominent in their neighborhood for pointing toward manygood authorities. Authorities and hubs in the web graphhave a mutually reinfor
ing relationships; good authorita-tive pages on a sear
h topi
 are likely to be found near goodhubs that in turn link to many good sour
es of information.The HITS algorithm has two major steps: sampling andweight-propagation. The sampling step uses a keyword-based sear
h to sele
t around 200 pages by using one of the
ommer
ially available sear
h engines. This set of pages is
alled the root set. This root-set is then expanded into abase set by adding any page on the web that has a linkto/from a page in the root set. The base set typi
ally
ontains a few thousand pages. The pages in the base setmay or may not 
onstitute a 
onne
ted graph, but at leastit has a large 
onne
ted 
omponent [22℄.The purpose of the weight-propagation step is to 
om-pute a weight for ea
h page in the base set that 
an beused to rank their relevan
e to the query. Two forms ofrelevan
e are 
onsidered: authority and hub. This is a re-
ursive pro
ess, where ea
h page p is assigned an authorityweight ap and a hub weight hp, whi
h are equal for all pagesinitially. Re
ursively, the algorithm updates these valuesas follows: ap = X8q;q!p hqhp = X8p;p!q apwhere q ! p means that q has a link to p. Hen
e we seethat the authority weight of a page will be higher if it ispointed to by many pages, or pointed to by pages that havehigher hub weights. Conversely, the hub weight of a pagewill be higher if it points to many pages, or points to pageswith higher authority weights.This 
omputation is very similar to the matrix 
ompu-tations in equations 1 and 2, and 
arries all the proper-ties we outlined in Se
tion III.A. The important di�eren
e,however, is a normalization applied to the weight ve
torsbetween iterations. Before ea
h iteration, the weights arenormalized so that their squares sum to 1. The matrix en-tries are binary values, rather than fra
tional values usedin the PageRank algorithm. When re
ursive updates areapplied, the weight ve
tors a and h 
onverge to the prin-
ipal eigenve
tors of XTX and XXT , respe
tively[21℄. Inpra
ti
e, the iterative 
omputation is repeated for only asmall number of steps. The output of the algorithm is ashort list of pages with the largest hub weights and a sep-arate list of pages with the largest authority weights. Theimplementation typi
ally outputs 10 from ea
h group asthe �nal list.IV. Implementations of Stru
tural AnalysisTe
hniquesThe page ranking te
hniques reviewed so far have beenused in a number of resear
h proje
ts, but almost all imple-mentations had to modify the basi
 ideas dis
ussed above.



5Some of these modi�
ations tried to 
ounter 
ertain pe
u-liarities of the algorithms that be
ame apparent on
e im-plemented. Others try to 
ounter diÆ
ulties that arise dueto the large amount of noise in the web stru
ture.A. Links-Only Te
hniques and Related DiÆ
ultiesThe original purpose of the HITS algorithm was to rankthe pages found by a text-based sear
h engine. It wasmeant for broad sear
h topi
s with some amount of pres-en
e on the web. Bharat and Henzinger [6℄ reported animplementation of the HITS algorithm for the purpose oftopi
 distillation. Given a broad topi
, topi
 distillation isthe pro
ess of extra
ting a small number of high-qualitypages most representative of the topi
. While the HITSalgorithm worked well for some 
ases, it performed poorlyin general. The authors implemented a visualization tool[5℄ that helped dis
over three problems with the links-onlyapproa
h:� A mutually reinfor
ing relationship o

urs between hostswhen several pages on one host point to a single page onanother host. This situation in
ates the authority weightof the single do
ument, whi
h in turn drives up the hubweights of other do
uments pointing to it. This typi
allyhappens when designers of individual pages 
opy the pagetemplate from a master 
opy (e.g. one that is designed bythe site programmer), and the new pages inherit the linkfrom the master 
opy.� The reverse problem o

urs if a single do
ument on ahost points to several do
uments on another host. Thelarge number of outgoing links gives the sour
e do
umentan unduly large hub weight, whi
h in turn magni�es theauthority weight of every do
ument it points to.� The problem of topi
 drift may o

ur if even one of thedo
uments in the root set is non-relevant to the sear
htopi
. This problem may not be very pronoun
ed if thenon-relevant do
ument is sparsely 
onne
ted. But if thatdo
ument has many in
oming links from outside the rootset, then all of those pages linking to it will be in
ludedin the extended base set. Consequently, it may be outputa high authority page on the sear
h topi
 even though itmay have no relevan
e to the sear
h topi
.The net e�e
t of these anomalies is that some pages areawarded higher ranks than warranted by their relevan
e tothe sear
h topi
. The �rst two problems are e�e
tively mit-igated by modifying the weights in the adja
en
y matrix sothat fra
tional weights may be used instead of binary. Toaddress the �rst item above, Bharat and Henzinger modi-�ed the edge weights in XT so that whenever k do
umentsat one site point to a single do
ument on another site, ea
hof these links get an authority weight of 1=k. The se
ondproblem is similarly solved: if a single do
ument on onesite links to l do
uments on another site, the 
orrespond-ing links in X get a hub weight of 1=l. The last item aboveis addressed by using textual information whi
h we willdis
uss in Se
tion IV.B.Similar modi�
ations were also used in Chakrabarti etal. [14℄. In addition to the above anomalies, Chakrabartiet al. observed:

� When the topi
s of dis
ussion vary on di�erent parts ofthe same page, the outgoing links also point to di�erenttopi
s depending on their lo
ation on the page. If thepage has a large out-degree, it will be awarded a large hubweight. It will in turn award high authority weights to ea
hpage it links to on the subje
t of the user query, whereasonly one or two of those linked pages may be related to theuser query.� Topi
 generalization o

urs if the sear
h topi
 is not suf-�
iently broad. On narrowly fo
used topi
s, HITS fre-quently returns good sour
es for a more general topi
. Anexample given was the Nebraska tourist information pagebeing returned in response to a query for skiing in Ne-braska. Gibson et al. observed that [19℄ topi
 generaliza-tion in the behavior of the HITS algorithm does not alwaysresult in a drift from more spe
i�
 pages toward more gen-eral pages; the reverse 
an happen too. For example, whensear
hing for authoritative pages on \linguisti
s," the re-turned list of pages was dominated by pages in the �eldof \
omputational linguisti
s." While this is a sub-topi
 ofthe initial query, HITS has 
onverged to it be
ause of the
onsiderably greater density of linkage in its neighborhoodof the web graph.To solve the �rst problem, Chakrabarti et al. [14℄ useda page splitting heuristi
. The basi
 intuition here is thatin a large hub with several outgoing links, the links 
losetogether are more likely to fo
us on a 
ommon topi
 thanlinks that are far apart. The se
ond problem is addressedby a text-based method as dis
ussed in Se
tion IV.B.So far we have seen examples where links-only algorithmshad reasonably good performan
e, but they eventually runinto problems that have no apparent solutions without 
on-sidering textual information. The work in [19℄ and [23℄showed that links-only approa
hes 
an be very e�e
tivewhen sear
hing for web 
ommunities. A web 
ommunity isa set of 
ontent 
reators sharing a 
ommon interest. News-groups and 
ommer
ial web dire
tories are examples of web
ommunities. At a minimum, the pages in a 
ommunitymust fall into the same taxonomy in a hierar
hi
al 
ate-gorization of topi
s. Automated methods for dis
overingweb 
ommunities 
an be used when, for example, populat-ing a 
ommer
ial web dire
tory. A

ording to Kumar etal., there were about 20,000 large 
ommunities with wellestablished existen
es on the web, and whi
h are expli
-itly de�ned in dire
tories su
h as Yahoo! and Infoseek.However, as argued in [10℄, 
onsidering the rapid growth ofthe web, manual methods used in these 
ommer
ial e�ortsare too slow to have any hope of 
at
hing up. Automatedmethods for �nding web 
ommunities 
an help expeditethe work of human experts in dis
overing new 
andidatesfor in
lusion in the existing taxonomies or for starting newtaxonomies. As argued in [23℄, the ability to dete
t web
ommunities also represents an opportunity for identifyingand distinguishing 
ommunities for target advertising at avery pre
ise level.The work of Gibson et al. [19℄ fo
used on 
ommunitiesthat are dis
overed by the HITS algorithm. After the �rstiteration, the top authorities in the base set are simply the



6pages with the largest number of in
oming links. However,these pages may not have any themati
 relationship amongthemselves. As the iterations are 
ontinued, di�erent 
om-munities within the same base set 
rystalize in the form oftightly-knit patterns, ea
h 
ontaining their own hubs andauthorities. The reinfor
ing nature of hubs and authoritiesfound in these 
ommunities bear relevan
e to index andreferen
e nodes that play similar roles in hypermedia [7℄.The reinfor
ing nature of hubs and authorities also under-s
ores the relian
e of the HITS algorithm on the 
olle
tiveintelligen
e of independent page designers. An interestingobservation made was that the iterative 
omputation 
anbe for
ed to 
onverge to di�erent eigenve
tors other thanthe prin
ipal eigenve
tors. In this way, one 
ould extra
tdi�erent 
ommunities from the same base set.Kumar et al. fo
used on dis
overing emerging 
ommuni-ties. There is an estimated number of more than 100,000emerging 
ommunities on the web. While few of theseemerging 
omunities eventually grow large enough to bein
luded in major dire
tories, most 
ommunities fo
us on alevel of detail that is too �nely grained to attra
t the inter-est of large portals. Example web 
ommunities dis
overedby their proposed algorithm unders
ores this point: the
ommunity of Turkish student organizations in the US, the
ommunity 
entered around oil spills o� the 
oast of Japan,or the 
ommunity of people interested in the Japanese popsinger, Hekiru Shiina. Su
h emerging 
ommunities often
ontain spe
i�
, up-to-date, and reliable information notfound elsewhere on the web. The authors assert that eventhough emerging 
ommunities may not have a large pres-en
e on the web, they should be dete
table by their 
om-munity signature.Thus, what is the signature of an emerging 
omunity? Inthe s
ienti�
 literature, it is 
onsidered to be good pra
ti
eto 
ite related work, but this tradition doesn't 
arry to weblinks often enough. For example, DELL and Gateway bothhave web sites that sell 
omputers, but there is no linkfrom one to the other. Besides 
on
i
t of interest, oftensites 
losely related to ea
h other do not link to ea
h other,be
ause they may not be aware of one another's existen
e,or they may 
ater to 
on
i
ting points of view on a topi
.On the other hand, if a page has multiple outgoing links,those linked pages are likely to be related to ea
h other.For example, a site that links to DELL is very likely tolink to Gateway also.This reasoning has led Kumar et al. to 
on
lude that a
ommunity of web pages on a 
ommon topi
 must 
ontaina densely 
onne
ted dire
ted bipartite subgraph. A graphis bipartite if its nodes 
an be partitioned into two subsetsF and A, su
h that every edge whose sour
e is in F hasits destination in A. If su
h a graph is densely 
onne
ted(whi
h is what we expe
t in a web 
ommunity), then awell known fa
t in graph theory states that, with very highprobablity it has a 
ore (a subgraph) that is a 
omplete bi-partite graph. The authors report that their experimentson the web generated over 100,000 C3;3 graphs (dire
ted
omplete bipartite graph with jF j = jAj = 3), and visualinspe
tion of a randomly sele
ted sample of about 400 of

these showed less than 5% to be 
oin
idental. This is asubstantial level of a

ura
y a
hieved by a links-only ap-proa
h.Another algorithm that works well with links-only infor-mation is the Co-
itation algorithm in [17℄. Here the al-gorithm starts with a sample URL (instead of a keyword)and �nds pages that are related to it. This is similar to the\What's Related" fa
ility in Nets
ape. The method usedin [17℄ is based on �nding the pages that link to the sampleURL and then determining \who else" they link to besidesthe sample URL. The algorithm outputs 10 of the pagesthat are most frequently 
o-
ited with the sample URL.The output of this simple-minded approa
h had mu
hbetter pre
ision than that of Nets
ape in experiments 
on-du
ted. It also generally outperformed another links-onlyapproa
h derived from the HITS algorithm that the au-thors implemented for 
omparison with the Co-
itation al-gorithm. In this implementation, the base set required bythe HITS algorithm is obtained from the sample URL byin
luding its parents (the pages that link to it), its 
hildren(the pages that it links to), 
hildren of its parents, and par-ents of its 
hildren. The 
orresponding adja
en
y matrix ismodi�ed as in the method of Bharat and Henzinger we re-viewed above [4℄. At the end of the iterative 
omputations,the algorithm outputs 10 of the highest ranked authoritypages.We think that a possible reason for the worse perfor-man
e of the HITS algorithm (although still better thanthat of Nets
ape) may be attributed to the method of
hoosing the base set. Re
all that a fundamental notion be-hind the HITS algorithm is the reinfor
ing nature of hubsand authorities. In HITS algorithm, hubs play an impor-tant role as 
onferrers of authority whi
h help 
rystalizethe role of authorities through iterative 
onvergen
e. Inthe absen
e of 
onferrers of authority, it would be harderto �nd pages that have the authority. In a graph, onewould expe
t that hubs would generally point toward au-thorities, but there is no reason for all the good hubs tobe adja
ent to the sample URL. Di�erent hubs are morelikely to be found among the \siblings" of parents and evengrandparents of the sample URL. Di�erent authorities aremore likely to be found among the siblings of the sampleURL. Ex
luding the grandparents of the initial URL maypossibly leave a number of potentially good hubs (that arenot ne
essarily adja
ent to the sample URL) out of thebase set. This may, in turn, a�e
t the 
reation of goodauthorities.B. Adding Text-Based Heuristi
sThe link-following methods reviewed above need a start-ing page or a set of pages from whi
h they 
an explorethe web. In a \What is Related" sear
h, the startingpage is a sample URL provided by the user. In a topi
sear
h, keyword-based te
hniques from the �eld of Infor-mation Retrieval are used to 
onstru
t the initial set ofpages. In Google, these pages are ordered a

ording to thepre-
omputed ranks. In HITS, weights are 
omputed on-the-
y from the neighborhood graph formed by the set of



7pages sele
ted by text-based sear
h methods (su
h as thosederived from information retrieval [20℄).Given a sear
h topi
, �nding relevant information on theweb is a diÆ
ult problem. The existing sear
h engines tryto index and 
lassify the pages on the web based on their
ontent and asso
iated metadata. Automating the 
lassi�-
ation of web pages with the help of link onformation hasbeen studied in [11℄, [12℄, [13℄, [16℄, [25℄, [27℄, [29℄. Re
entwork on the appli
ation of database te
hniques for model-ing and querying the web, for information extra
tion andintegration, and for web site 
onstru
tion has been sur-veyed in [18℄. Gudivada et al. [20℄ give a detailed reviewof automated indexing methods and their use in do
umentretrieval in sear
hing the web.Here we are mainly interested in di�erent te
hniques thatare e�e
tive in solving the problems en
ountered when us-ing the link-following algorithms. First, we de�ne a simi-larity measure between two do
uments, whi
h is a key 
on-
ept in information retrieval. Di�erent measures of simi-larity have been de�ned (see for example [26℄, page 318),and they are all based on 
omputing the inner produ
t ofterm-frequen
y ve
tors x; y derived from two do
uments.Similarity measures essentially di�er in the way they nor-malize the inner-produ
t 
omputation. A popular methodis the Cosine normalization given byS = Pti=1 xi � yi(Pti=1 x2i �Pti=1 y2i )1=2where t is the length of the ve
tors x and y.When dis
ussing appli
ation of the HITS algorithm, wementioned that two 
ases required text-based heuristi
s.These were the problems of topi
 drift and topi
 general-ization. In both 
ases, the HITS algorithm drifts towardmore heavily linked regions in the graph, and some auto-
ontrol me
hanism is needed to prevent this drip. A simpleidea used in the CLEVER proje
t [13℄, [15℄ is based on theobservation that text around the an
hor of a link generallygives a good idea about the page being pointed to (e.g.\
li
k here to post a message on our message board"). By
omparing the sear
h terms against the text around thelink, a relevan
e weight is 
omputed for ea
h link. Theweight w(p; q) is just the number of mat
hes found on pagep around the link q. This yields a modi�ed adja
en
y ma-trix where the entries are 
omputed as x(p; q) = 1+w(p; q).This method 
an solve the topi
 generalization problem ifthe links pointing to the broader topi
 page have smallweights. Small link weights should work as �lters that blo
ktransfer of authority weights from highly relevant pages to-ward broad topi
 pages. The same net e�e
t should ensuefor non-relevant pages that may happen to be in the rootset. This would indire
tly solve the topi
 drift problemalso. The authors report that the results of the CLEVERalgorithm improved substantially over the results of theHITS algorithm.Another approa
h presented in [4℄ fo
used on 
ontrollingthe in
uen
e of pages rather than the individual links inthem. For ea
h page, a weight is 
omputed based on its

similarity with the sear
h topi
 as measured by the 
osine-normalized similaritymeasure above. Sin
e users only typea few key words, it is diÆ
ult to 
ompute a meaningful sim-ilarity measure between the key words and lengthy do
u-ments. On the other hand, the broad topi
 is better repre-sented by the set of pages in the root set. Thus, the authors
onstru
ted a query do
ument by 
ombining together the�rst 1000 words from ea
h do
ument in the root set. Thenthey 
omputed the similarity of this referen
e page withall the pages in the base set. This 
omputation yieldedthe relevan
e weights of di�erent do
uments. These valuesare used to dampen the hub weights and authority weightsof pages before ea
h iteration is started; authority weightap of page p is 
omputed as ap = ap � rp, where rp isthe relevan
e weight of page p. Hub weights are 
omputedsimilarly.Intuitively, this modi�
ation solves the topi
 drift prob-lems asso
iated with having non-relevant pages in the baseset. Pages with low relevan
e weights should 
onverge tonear-zero hub and authority weights qui
kly. However, itshould also be e�e
tive in solving the topi
 generalizationproblem, if the broader topi
 page has a low relevan
eweight. It is a simpler algorithm to implement than theCLEVER algorithm. Sin
e it does not dire
tly address theproblem at the link level, it is a 
oarser method of tuningthe weights than the method used in the CLEVER algo-rithm. On the other hand, is not 
lear if the level of pre
i-sion provided in the CLEVER algorithm is really needed.V. Con
lusions and Future Dire
tionsIn this paper, we have reviewed graph theoreti
al 
on-
epts and algorithms that have been proposed in the liter-ature for sear
hing the web.Besides a�e
ting better sear
h methods, the results ofthese approa
hes 
an be useful for advertisement and mar-keting de
isions on the web. Currently, web advertisementhas mainly fo
used on �nding pages with highest numbersof visitors. This motivated the studies of visitation fre-quen
ies, su
h as [1℄. In [1℄, Adami
 suggested that ana-lyzing 
ommunity stru
tures on the web may be bene�
ialfor better targeting advertisements or politi
al 
ampaigns.If a 
ommunity is large and heavily 
onne
ted, pla
ing onead at a 
entral lo
ation may suÆ
e. If 
ommunity is rep-resented by many small groups, the advertiser would needto pla
e ads to many lo
ations.Kumar et al. suggested that extra
ting web 
ommuni-ties would allow target advertising at a very pre
ise level[23℄. We propose that algorithms like HITS 
an provideadditional insight about good advertisemen lo
ations. Ahub page may be visited frequently, but the average usertime spent on a hub page is likely to be mu
h less than av-erage user time spent on an authority page. This reasoningsuggests that authority pages may be better lo
ations foradvertisement than hub pages, even though some hub pagesmay have higher link density.We are at the start of a new revolution in edu
ation,
ommer
e, and 
ommuni
ation made possible by the ad-van
ement of the web. E�e
tive sear
h algorithms are at



8the 
ore of the enabling te
hnology in this new media. Fu-ture resear
h needs to fo
us on a deeper level of under-standing the link stru
ture of the web and exploiting thisinformation for more e�e
tive uses. The resear
h area is soyoung that even the known te
hniques have not yet beenstudied fully. For example, while relatively more work hasbeen done to understand the behavior of the HITS algo-rithm and its variants, other ideas based on sear
hing forbipartite graphs and NK-
lans have not been studied fully.How 
an we exploit these stru
tures for topi
 sear
h? How
an we use them for �nding pages related to a given URL?How 
an we use them for page ranking? These and manyrelated questions need to be investigated.Another area of resear
h 
ould fo
us on 
ombining thelink-based te
hniques with the user feedba
k. How 
an welet the user to guide the link-based sear
h? What parame-ters do we use to �ne-tune the sear
h performan
e? Whatproto
ol should be used for 
ommuni
ation between a userand the sear
h algorithm? These and other areas appearto be very fruitful for future resear
h.A
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