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Abstract
The mathematical solution for drug concentration over time is a cornerstone of quan-
titative pharmacology, forming the foundation for optimizing drug use to ensure both
efficacy and safety. In this study, we investigated the explicit expression of drug con-
centration over time in a one-compartment pharmacokinetic model with simultaneous
first-order andMichaelis-Menten elimination under first-order oral absorption-an open
problem in the literature. To address this,we introduce a novelmodel-to-model approx-
imate approach that enables the analytical expression of drug concentration over time
with any desired precision. The developed approximation consists of a sequence of
pharmacokinetic sub-models, each possessing a known analytical solution. Notably,
these sub-models retain key pharmacokinetic properties, such as distribution, elim-
ination, and total administered dosage. The proposed method is validated through
rigorous mathematical proofs and numerical simulations. Compared to existing meth-
ods, our approach is more direct and efficient, specifically preserving the mechanistic
pharmacology of drug fate while requiring only a small sample size to achieve control-
lable precision. These findings pave the way for novel advancements in the analysis
of pharmacokinetic models, with significant implications for optimizing drug therapy.

Keywords Mathematical pharmacology · Simultaneous first-order and
Michaelis-Menten elimination · First-order absorption · Mechanistic
model-to-model approximation · Explicit solution

Mathematics Subject Classification 92C45 · 34A45 · 65H99

Communicated by Rosihan M. Ali.

B Jun Li
jun.li.2@umontreal.ca

1 School of Science, Shanghai Maritime University, Shanghai 201306, People’s Republic of China

2 Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70503, USA

3 Faculté de pharmacie, Université de Montréal, Montréal, Québec H3C 3J7, Canada

4 Centre de recherches mathématiques, Université de Montréal, Montréal, Québec H3C 3J7, Canada

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-025-01827-3&domain=pdf


   53 Page 2 of 21 X.Wu et al.

1 Introduction

Pharmacokinetic (PK)modelling is a crucial aspect of quantitative pharmacology. The
ability to analytically express the solution of a PK model, namely, drug concentration
as a function of time (C(t)), is essential to understand drug properties and provid the
theoretical foundation for optimizing drug use in terms of efficacy and safety [1–7].
However, with significant evidence of nonlinearity found in drug mechanisms, non-
linear features have become a major concern in current PKmodelling. This introduces
substantial challenges, making it difficult or even impossible to find analytical solu-
tions using conventional elementary functions. As a result, the use of transcendental
functions has been proposed and increasingly applied. A well-known example is the
one-compartment PK model with the nonlinear Michaelis-Menten elimination under
intravenous (IV) bolus or constant infusion, where the transcendental Lambert W
function is repeatedly discovered to express the solution of C(t) [8]. Another exam-
ple involves the fractional PK models, where the Mittag-Leffler function is found the
application in the expression of their analytical solutions [7, 9]. Additionally, there are
specific analyses of saturable absorption models, where analytical solutions using ele-
mentary, Lambert W and Wright functions have been established for drug absorption
process of the Hill kinetic type [10].

In the current paper, we are interested in the simultaneous linear and Michaelis-
Menten elimination. This type of nonlinear elimination has been widely reported for
biologics, such as hormones, growth factors, monoclonal antibodies [11, 12]. In this
scenario, the drug substance is eliminated from the body, represented by the drug
concentration, at the rate:

dC(t)

dt
= −kelC(t) − Vmax C(t)

Km + C(t)
, (1)

where the first term on the right side represents a linear elimination pathwaywith a rate
constant kel , and the second term on the right side is a nonlinear saturate elimination
pathway characterized by Michaelis-Menten kinetics with a maximum elimination
rate Vmax and Michaelis constant Km . The nonlinearity induced by the nonlinear
elimination described in Model (1) makes it mathematically challenging to find the
analytical solution for C(t). Although numerical solutions can be applied in PK prac-
tices, an accurate symbolic mathematical relationship is always preferred for better
understanding and delineation of the mechanism underlying the model. Following
this logic, we have studied PK as described by Model (1) and established analytical
solutions for C(t) in the cases of IV bolus and constant infusion by introducing new
transcendental X and Y functions, respectively [13, 14].

A convenient way of drug administration facilitates better control of drug disposi-
tion, the route of administration is the crucial factor in shaping the absorption aspect
of a drug. Various pharmaceutical formulations exist (e.g., liquids, capsules, tablets,
or chewable tablets), with oral or other controlled-release medications being the most
popular due to their convenience, safety, and cost-effectiveness [15, 16]. Typically, the
first-order kinetics, proportional to the drug amount at the absorption site, is assumed
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for oral drugs to describe their systemic absorption into plasma circulation.Mathemat-
ically, a one-compartment PK model with simultaneous linear and Michaelis-Menten
elimination for the first-order absorption after a single dose D can be described as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d Aa(t)

dt
= −ka Aa(t), t > 0,

dC(t)

dt
= Fka Aa(t)

Vd
− kelC(t) − Vmax C(t)

Km + C(t)
, t > 0,

Aa(0+) = D, C(0) = 0,

(2)

where Aa(t) is the amount of drug available for absorption into the systemic circulation
at time t , ka is the absorption rate constant, and F is the bioavailability, representing
the fraction of the dose absorbed into the systemic circulation.

In fact, we have Aa(t) = Aa(0+)e−kat = De−ka t , and we can simplify Model (2)
into the following one-compartment PK model with the first-order absorption:

⎧
⎨

⎩

dC(t)

dt
= F D

Vd
kae−ka t − kelC(t) − Vmax C(t)

Km + C(t)
, t > 0,

C(0) = 0.
(3)

As we can see in Model (3), the time-varying absorption and parallel elimination
processes are nonlinearly intertwined and not separable, and the nonlinear differential
equation is non-autonomous, making it impossible to transform into an algebraic
equation. Instead, an alternative analytical expression to approximate the exact solution
is desirable for problem-solving. Thus, we propose to develop a mechanistic model-
to-model approach that provides analytical solutions capable of approximating and
converging to the exact C(t) while preserving the drug’s partial PK properties. Since
we have already established the analytical solutions of PK Model (1) for the drug
administration routes of IV bolus and constant infusion using transcendental X and Y
functions, we will apply these results to approximate the exact solution of Model (3).
Therefore, these mathematical results will have a direct impact on applications in the
drug-controlled release, whether for new formulation design or precise clinical drug
use [17]. However, as we will observe below, the obtained mathematical results are
neither straightforward nor simple, which poses challenges for readers seeking a deep
understanding of both mathematics and pharmacology.

This paper is organized as follows. In Sect. 2, we review the current knowledge
on analytical solutions of Model (1) for the cases of IV bolus and constant infusion
administrations. In Sect. 3, we present how to obtain analytical solutions that converge
to and approximate the exact solution of Model (3) using previously studied PK mod-
els. In Sect. 4, we provide a theoretical proof of the relationship between the proposed
analytical solutions of the involved PK models and the exact solution of Model (3).
In Sect. 5, simulations are performed to demonstrate the robustness of the proposed
approach. The paper concludes with a brief discussion and conclusion.
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2 Current Knowledge for the Intravenous Bolus and Constant
Infusion Administrations

In this section, we will review the results of Model (1) for both IV bolus and constant
infusion administrations. These solutions will serve as the basis for developing the
explicit expressions of Model (3).

2.1 Intravenous Bolus

If a single dose D is administered by IV bolus at time t0, then the PK model with
simultaneous first-order and Michaelis-Menten elimination is

⎧
⎨

⎩

dC(t)

dt
= −kelC(t) − Vmax C(t)

Km + C(t)
, t > t0

C(t+0 ) = D
Vd

� C0, t = t0,
(4)

where C0 is the initial concentration immediately after the IV bolus administration. In
order to have its solution C(t), we introduce the following transcendental X function.

Definition 1 [13] For s ∈ R, X(s, p1, p2) is defined as the multi-valued solution of
the following equation

(

X(s, p1, p2)

)p1(

1 + X(s, p1, p2)

)p2
= s, (5)

where p1 and p2 are given positive real constants.

Based on the above definition of X function, the solution of Model (4) is

C(t) = Cβ × X0

((
C0

Cβ

)p1 (

1 + C0

Cβ

)p2
e−kel (t−t0), p1, p2

)

,

where

p1 = kel

kel + kem
, p2 = kem

kel + kem
and Cβ = Km

kel + kem

kel
. (6)

Here kem = Vmax/Km and p1 + p2 = 1, and X0 is the principal real branch of X
function that has been previously investigated in [18].

2.2 Constant Infusion

In the case of constant infusion, the PK model with the simultaneous fist-order and
Michaelis-Menten elimination is

⎧
⎨

⎩

dC(t)

dt
= r − kelC(t) − Vmax C(t)

Km + C(t)
, t > t0,

C(t0) � C0 ≥ 0, t = t0,
(7)
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where r is the infusion rate and C0 is the drug concentration at the infusion starting
time t0. Model (7) admits a unique positive equilibrium

C∞ = 1

2

[
√

(

Cβ − r

kel

)2

+ 4
r

kel
Km −

(

Cβ − r

kel

)]

(8)

with the notation Cβ introduced in Eq. (6). It is noteworthy that C∞ is r -dependent
and globally asymptotically stable for any initial concentration C0 ≥ 0 [14].

In order to obtain the expression of C(t) of Model (2), the following parameters
derived from model parameters are required

q1 = C∞ + Km

C∞ + C∞
β

> 0, q2 = C∞
β − Km

C∞ + C∞
β

> 0,

C∞
β = 1

2

[
√

(

Cβ − r

kel

)2

+ 4
r

kel
Km +

(

Cβ − r

kel

)]

> 0, (9)

with q1 + q2 = 1. Then, we introduce the following transcendental Y function [14].

Definition 2 [14] For s ∈ R, Y (s, q1, q2) is defined as the multi-valued solution of the
following equation

(

Y (s, q1, q2)

)q1(

1 − Y (s, q1, q2)

)q2
= s, (10)

where q1 and q2 are given positive real constants.

With the transcendental Y function, the analytical solution of Model (7) is possible,
which depends on the relationship between C0 and C∞. We summarize the results
below.

Theorem 1 [14] For Model (7), the solution of drug concentration C(t) can be one of
the following situations:

1. If C0 < C∞, C(t) displays the upward trend and converges to the equilibrium
concentration C∞ as t → ∞. Moreover, C(t) can be explicitly expressed as

C(t)=C∞ − (C∞+C∞
β ) × Y0

((
C∞−C0

C∞+C∞
β

)q1( C0 + C∞
β

C∞ + C∞
β

)q2
e−kel (t−t0), q1, q2

)

,

(11)

where Y0 is the principal real branch of Y function.
2. If C0 = C∞, C(t) = C0 for all t ≥ t0;
3. If C0 > C∞, C(t) displays the downward trend and converges to the equilibrium

concentration C∞ as t → ∞. Moreover, C(t) can be explicitly expressed as
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C(t)=C∞ + (C∞+C∞
β ) × X0

((
C0 − C∞
C∞+C∞

β

)q1( C0+C∞
β

C∞+C∞
β

)q2
e−kel (t−t0), q1, q2

)

,

(12)

where X0 is the principal real branch of X function.

3 Design of Mechanistic PK Sub-Models with Constant Infusion

For Model (3), it can be observed that

r1,i � F D

Vd
kae−kati+1 ≤ F D

Vd
kae−ka t ≤ F D

Vd
kae−kati � r2,i (13)

for any t ∈ [ti , ti+1]. By inputting the constant infusion rates r1,i and r2,i into Model
(7) restricted to the subinterval [ti , ti+1], we can derive the local and global upper and
lower bounds of drug concentration over time by using the comparison theorem of
differential equations, thus forming an approximate solution to Model (3) within the
specified bounds. However, this approximation lacks pharmacological utility in clini-
cal practice because selecting the appropriate infusion rates r1,i and r2,i is challenging.
Furthermore, achieving a satisfactory approximation requires dividing the time inter-
val with a large number of points, which is impractical in clinical applications. To
address these limitations and enable a more efficient and clinically applicable solu-
tion, we will develop a novel methodology for solving Model (3). This approach will
not only be mathematically tractable but also preserve pharmacological relevance.

Suppose we have sampled drug concentrations, C0s, C1s, C2s, · · · , Cns , as
raised by the PK oral Model (3), on their corresponding sampling time points,
T0 < T1 < T2 < · · · < Tn , which are chosen in an increasing manner. Furthermore,
in a deterministic fashion, we assume there is no residual error, i.e., Cis = C(Ti ) for
i = 0, 1, · · · , n, and, in particular, C0s = 0 at T0 = 0.

On each [Ti , Ti+1], we suggest to replace the time-varying drug input of Model (3)
with a constant infusion process while not altering the dose amount absorbed therein,
hence the dose amount absorbed is

Di =
∫ Ti+1

Ti

F Dkae−kat dt = F D
(

e−ka Ti − e−ka Ti+1
)

.

This leads to a constant infusion rate in [Ti , Ti+1] as

ri = Di

Ti+1 − Ti

/
Vd = F D

Vd

e−ka Ti − e−ka Ti+1

Ti+1 − Ti
= F D

Vd
kae−kaξi , (14)

for some ξi ∈ (Ti , Ti+1) by the Lagrangemean value theorem. Accordingly, we obtain
a sequence of new PKmodels by substituting the time-varying input rate of Model (3)
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with the time-invariant constant input rate F D
Vd

kae−kaξi , i.e.,

⎧
⎨

⎩

dC̃i (t)

dt
= F D

Vd
kae−kaξi − kel C̃i (t) − Vmax C̃i (t)

Km + C̃i (t)
, t ∈ (Ti , Ti+1],

C̃i (Ti ) = C(Ti ) = Cis,

(15)

for i = 0, 1, 2, · · · . Note that the analytical solution of C̃i (t) of above model can be
given as shown in Theorem 1.

Furthermore, for the sake of mathematical rigour, we assume C̃i (t) = 0 for t /∈
[Ti , Ti+1]. Adding all solutions of PK sub-models (15) yields a solution consisting of
piecewise analytical expressions:

C̃(t) =
∑

i∈{1,2,··· ,n}
C̃i (t), (16)

which approximates the exact solution of the oral PKModel (3)with the same absorbed
dose.

In the following, we will demonstrate that C̃(t) in Eq. (16) can effectively
approximate C(t) in Model (3), both theoretically and numerically.

4 Theoretical Results

First, for PK Model (3), we have the following mathematical properties.

Lemma 1 Denote f (t) = F D
Vd

kae−ka t for t > 0 and g(x) = kel x + Vmax x
Km+x for x > 0,

we have:

f (t) > 0, f ′(t) < 0, f ′′(t) > 0, f (t) f ′′(t) = [ f ′(t)]2, (17)

g(x) > 0, g′(x) > 0, g′′(x) < 0, g′′′(x) > 0. (18)

Proof The proof of the above properties is direct. �	
Toensure that C̃(t) can effectively approximateC(t), the error of this approximation

should to be analyzed. To do this, we first clarify the shape behaviours of C ′(t) and
C̃i

′
(t) with the aim to analyze the intersection point of C ′(t) and C̃i

′
(t).

Lemma 2 For the oral Model (3) and proposed PK sub-models (15), we have

(i) There exists tmax and t∗ with t∗ > tmax such that

C ′(tmax ) = 0, C ′(t) > 0 for t ∈ [0, tmax ), C ′(t) < 0 for t ∈ (tmax , ∞), lim
t→∞ C ′(t) = 0;

(19)

C ′′(t∗) = 0, C ′′(t) < 0 for t ∈ [0, t∗), C ′′(t) > 0 for t ∈ (t∗, ∞); (20)
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(ii) If C̃i
′
(Ti ) > 0, then C̃i

′
(t) > 0, C̃i

′′
(t) < 0 and C̃i

′′′
(t) > 0 for t ∈ (Ti , Ti+1). If

C̃i
′
(Ti ) < 0, then C̃i

′
(t) < 0 and C̃i

′′
(t) > 0 for t ∈ (Ti , Ti+1).

Proof The proof is standard. �	
Lemma 3 Consider Ei (t) = C̃i (t)−C(t), which is the piecewise approximation error
of Model (15) to Model (3) during each subinterval (Ti , Ti+1), there exists a unique
time point S∗

i ∈ (Ti , ξi ) such that Ei (S∗
i ) is a local minimum and E ′

i (S∗
i ) = 0.

Proof (a) First, we show there exists a time point S∗
i ∈ (Ti , ξi ) such that Ei (S∗

i ) is a
local minimum.

Using the Comparison Theorem for Model (3) and Model (15), we have C(t) >

C̃i (t) for t ∈ (Ti , ξi ], and particularly, it is noteworthy that C(ξi ) > C̃i (ξi ). On the
one hand, we have E ′

i (Ti ) = f (ξi ) − f (Ti ) < 0 since f ′(t) < 0 and ξi > Ti , but
on the other hand, we have E ′

i (ξi ) = g(C(ξi )) − g(C̃i (ξi )) > 0 since g′(x) > 0 and
C(ξi ) > C̃i (ξi ). By Intermediate Zero Theorem, there exists at least a S∗

i ∈ (Ti , ξi )

such that E ′
i (S∗

i ) = 0 and Ei (S∗
i ) is a local minimum.

(b) Second, we show the uniqueness of S∗
i in terms of three scenarios: C̃i

′
(Ti ) = 0,

C̃i
′
(Ti ) < 0 and C̃i

′
(Ti ) > 0.

(i) If C̃i
′
(Ti ) = 0, we have C̃i

′
(t) = 0 for all t ∈ (Ti , ξi ], which is directly resulted

from the dynamics of Model (15). Meanwhile, as C ′(Ti ) = f (Ti ) − g(C(Ti )) >

f (ξi )−g(C̃i (Ti )) = 0,which implies there is a unique t1 ∈ (Ti , ξi ) such that C̃i
′
(t1) =

C ′(t1) by Lemma 2. In fact, t1 = S∗
i by (a).

(ii) If C̃i
′
(Ti ) < 0, then C̃i

′
(t) < 0 for all t ∈ [Ti , ξi ] by Lemma 2. The uniqueness

of zero of E ′
i (t) for t ∈ (Ti , ξi ) can be shown using proof by contradiction. Assume

t1 < t2 are two consecutive zero points of E ′
i (t) in (Ti , ξi ). Then, we have C ′(tk) =

C̃i
′
(tk), C̃i

′
(tk) < 0 as well as C(tk) > C̃i (tk), k = 1, 2. By Lemma 1, we have

f ′(t) < 0, g′′(x) < 0, thus

E ′′
i (tk) = − f ′(tk) − [g′(C̃i (tk)) − g′(C(tk))]C̃i

′
(tk) > 0,

which contradicts to the assumption that t1 and t2 are two consecutive zero points of
E ′(t).

(iii) If C̃i
′
(Ti ) > 0, then C̃i

′
(t) > 0 for all t ∈ [Ti , ξi ] by Lemma 2. As well,

C ′(Ti ) > 0 considering that E ′
i (Ti ) < 0 as shown in (a), which further implies

C ′(t) > 0 for all t ≥ Ti by Lemma 2.
Assume there are more than one time points in [Ti , ξi ] at which Ei (t) reach local

minimum. Among these time points, we suppose t1 is the smallest and t2 is the largest.
It is clear that E ′

i (t1) = 0, E ′′
i (t1) > 0, E ′

i (t2) = 0, E ′′
i (t2) > 0.

Now, we claim t2 = t1. If not, there must exist t3 ∈ (t1, t2) such that E ′
i (t) > 0

for t ∈ (t1, t3), E ′
i (t3) = 0 and E ′′

i (t3) < 0.ss Thus, by developing the expression of
E ′′

i (t) at t3, we have

E ′′
i (t3) = − f ′(t3) − [g′(C̃i (t3)) − g′(C(t3))][ f (t3) − g(C(t3))] < 0. (21)
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We can observe that g′(C̃i (t3)) − g′(C(t3)) > 0 since g′′(x) < 0 and C(t3) > C̃i (t3).
So, Eq. (21) leads to

f (t3) + f ′(t3)
g′(C̃i (t3)) − g′(C(t3))

> g(C(t3)). (22)

At t1, we have E ′
i (t1) = 0 and E ′′

i (t1) > 0, the similar argument leads to

f (t1) + f ′(t1)
g′(C̃i (t1)) − g′(C(t1))

< g(C(t1)). (23)

Moreover, since g(C(t3)) > g(C(t1)) given C ′(t) > 0 for t ∈ (t1, t3) and g′(x) > 0,
we have

f (t3) + f ′(t3)
g′(C̃i (t3)) − g′(C(t3))

> f (t1) + f ′(t1)
g′(C̃i (t1)) − g′(C(t1))

. (24)

Further, we have

g′(C̃i (t1)) − g′(C(t1)) > g′(C̃i (t3)) − g′(C(t3)) > 0. (25)

This can be seen from the convexity of g′(x) w.r.t. x as indicated by g′′′(x) > 0. In
fact, the convexity allows us to have

g′(C(t1)) − g′(C̃i (t1))

C(t1) − C̃i (t1)
<

g′(C(t3)) − g′(C̃i (t3))

C(t3) − C̃i (t3)
,

or

g′(C̃i (t1)) − g′(C(t1))

C(t1) − C̃i (t1)
>

g′(C̃i (t3)) − g′(C(t3))

C(t3) − C̃i (t3)
,

since C̃i (t1) < C̃i (t3) and C(t1) < C(t3). As E ′
i (t) > 0 for t ∈ (t1, t3), we have

C̃i (t1) − C(t1) < C̃i (t3) − C(t3) < 0 that is equivalent to C(t1) − C̃i (t1) > C(t3) −
C̃i (t3) > 0, which is used to affirm the inequality (Eq. (25)).

Using the fact f ′(t) < 0 by Lemma 1, we have

f (t1) + f ′(t1)
g′(C̃i (t1)) − g′(C(t1))

> f (t1) + f ′(t1)
g′(C̃i (t3)) − g′(C(t3))

. (26)

Now, let us consider the function h(t) = f (t) + c f ′(t) by denoting c =
1/[g′(C̃i (t3)) − g′(C(t3))]. We have two important facts: 1. h(t3) > h(t1); 2.
h′(t3) < 0. Fact 1 is the direct result of the two inequalities (Eq. (24), Eq. (26)).
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As for Fact 2, we have

h′(t3) = f ′(t3) + c f ′′(t3) = f ′(t3) + c[ f ′(t3)]2
f (t3)

= f ′(t3)[ f (t3) + c f ′(t3)]
f (t3)

= f ′(t3)h(t3)

f (t3)
< 0, (27)

using f (t) f ′′(t) = [ f ′(t)]2 and f ′(t) < 0 by Lemma 1 and h(t3) > 0 by Eq. (22).
These two facts indicate there is a sign change of h′(t) in the interval (t1, t3). Let t4

be the largest time point in [t1, t3) such that h′(t4) = 0 and h′(t) < 0 for all t ∈ (t4, t3].
Especially, we have h(t4) > h(t3) > 0. However, if we repeat the similar argument as
presented in the above inequality (Eq. (27)), we will have h′(t4) < 0, which is clearly
a contradiction. Therefore, the only possibility is t2 = t1, and we denote S∗

i by this
unique local minimum time point. �	

We now establish the key result on the global approximation error of Model (15)
to Model (3).

Theorem 2 For the solutions of the exact oral PK Model (3) and approximate PK
Models (15), we denote by Ei,max the piecewise global maximum of |Ei (t)| for t ∈
[Ti , Ti+1], then

Ei,max = max{−Ei (S∗
i ), Ei (Ti+1)},

where S∗
i is shown in Lemma 3. Moreover, Ei (S∗

i ) is determined by the negative root
of the following quadratic equation

aE2
i (S∗

i ) + bEi (S∗
i ) + c = 0, (28)

where

a = kel (Km + C̃i (S∗
i )) > 0, b = −ĝ(S∗

i )(Km + C̃i (S∗
i )) − kel (Km + C̃i (S∗

i ))2 − Vmax Km ,

c = −ĝ(S∗
i )(Km + C̃i (S∗

i ))2 < 0, ĝ(S∗
i ) = F D

Vd
ka

(
e−ka S∗

i − e−kaξi
)

> 0. (29)

Proof It directly follows from Lemma 3 that there exists a unique S∗
i ∈ (Ti , ξi ) such

that Ei (t) attains a global minimum for t ∈ [Ti , ξi ]. It remains to investigate Ei (t) for
t ∈ (ξi , Ti+1], where Ei (t) obeys the following system

{
E ′

i (t) = ( f (ξi ) − f (t)) − [g(C̃i (t)) − g(C(t))], t ∈ (ξi , Ti+1],
Ei (ξi ) = C̃i (ξi ) − C(ξi ) < 0.

(30)

In fact, starting from ξi , Ei (t) continues to increase as E ′
i (t) > 0 from whence

Ei (t) ≤ 0, which can be justified by f ′(t) < 0 and g′(x) > 0. Now let us consider
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the possibility that Ei (t) arrives at zero at a certain time point ηi < Ti+1. For this
circumstance, we will use the following inequality

g(C̃i (t)) − g(C(t)) = g′(C̄(t))Ei (t) =
(

kel + Vmax Km

(Km + C̄(t))2

)

Ei (t)

<

(

kel + Vmax

Km

)

Ei (t),

where C̄(t) is a value between C̃i (t) and C(t) by Mean-Value Theorem. Accordingly,
the dynamics of Ei (t) satisfies

{
E ′

i (t) > ( f (ξi ) − f (ηi )) −
(

kel + Vmax
Km

)
Ei (t), t ∈ (ηi , Ti+1],

Ei (ηi ) = 0,
(31)

which indicates that Ei (t) is monotonically increasing for all t ∈ [ηi , Ti+1].
In the remaining part, wewill show ηi ∈ (ξi , Ti+1) really exists. Otherwise, Ei (t) <

0, or we say C̃i (t) < C(t) for all t ∈ [Ti , Ti+1]. Taking integration from Ti to Ti+1 of
E ′

i (t) from Model (15) and Model (3), we can obtain

0 =
∫ Ti+1

Ti

F D

Vd
ka

(
e−kat − e−kaξi

)
dt

= C(Ti+1) − C̃i (Ti+1) +
∫ Ti+1

Ti

((

kelC(t) + Vmax C(t)

Km + C(t)

)

−
(

kel C̃i (t) + Vmax C̃i (t)

Km + C̃i (t)

))

dt > 0,

which leads to a contradiction.
Thus, the maximal absolute error Ei,max of Ei (t) on the closed time interval

[Ti , Ti+1] is determined by the maximum value of −Ei (S∗
i ) and Ei (Ti+1).

For the convenience of calculation, the explicit formula of Ei (S∗
i ) can be given.

E ′
i (S∗

i ) = 0 gives

F D

Vd
ka

(
e−ka S∗

i − e−kaξi
)

=
(

kelC(S∗
i ) + Vmax C(S∗

i )

Km + C(S∗
i )

)

−
(

kel C̃i (S∗
i ) + Vmax C̃i (S∗

i )

Km + C̃i (S∗
i )

)

.(32)

Replacing C(S∗
i ) by C̃i (S∗

i ) − Ei (S∗
i ) and rearranging Eq. (32) leads to a quadratic

equation w.r.t. Ei (S∗
i ) as:

aE2
i (S∗

i ) + bEi (S∗
i ) + c = 0, (33)

where a, b, c are defined in Eq. (29). Solving for Ei (S∗
i ), we have

Ei (S∗
i ) = −b − √

b2 − 4ac

2a
, (34)
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Fig. 1 (Color online) Illustration of the error function Ei (t) of the proposed PKModel (15) to the exact oral
Model (3), where F = 1; ka = 0.05 h−1; D = 350mg; Vd = 50 L; Vmax = 0.30mg/L/h; Km =
5.3mg/L; kel = 0.1 h−1

where only the negative root of Ei (S∗
i ) is kept since Ei (S∗

i ) < 0 is previously proved.
This completes the proof. �	

In Figure 1, we display two sets of concentration curves generated by the analytical
solutions from Model (15) and their corresponding errors to the exact Model (3).
It is noted, in each sampling-based time interval [Ti , Ti+1], there exists a unique
S∗

i ∈ (Ti , Ti+1) such that E ′
i (S∗

i ) = 0. Moreover Ei (t) starts from zero, decreases to a
negative localminimum, then back increases to a positive value at Ti+1. The illustration
confirms our theoretical results proved in Theorem 2, and Ei,max can occur at either
S∗

i or Ti+1.
If we consider the time range from 0 to infinity, we can base on well-chosen con-

centration samples from Model (3) to build a sequence of Model (15) with constant
infusions, to uniformly approximate the exact solution of the former model.

Definition 3 For a given set of increasing time points 0 = T0 < T1 < T2 < . . . < Tn ,
we define T = {Ti }n

i=0 by a sampling time scheme.

Theorem 3 For any ε > 0, we can find a sampling time scheme Tk consisting of a set
of increasing times Tik , ik = 0, 1k, · · · , nk such that sup

t>0
|C̃k(t) − C(t)| < ε. This

also means that there exists a sequence of sampling time schemes {Tk}∞k=1 such that
C̃k(t) uniformly converges to C(t) for t > 0, i.e.,

lim
k→∞ sup

t>0
|C̃k(t) − C(t)| = 0.
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Proof Given ε > 0, we can find T1k > 0 such that sup
0<t<T1k

|C̃k(t) − C(t)| < ε.

Then from T1k , and we can find T2k > 0 such that sup
T1k <t<T2k

|C̃k(t) − C(t)| < ε, etc.

Since lim
t→∞ C(t) = 0, we can proceed to find a sufficiently large Tnk > 0 such that

sup
t>Tnk

|C̃k(t) − C(t)| < ε which ensures, for all t > 0, we have |C̃k(t) − C(t)| < ε. �	

5 Numerical Simulations

Upon the theoretical basis provided by Theorems 2-3, we are able to obtain the ana-
lytical solution C̃(t) from a sequence of PK sub-models (Model (15)) to approximate
the exact solution C(t) of Model (3).

5.1 Numerical Example

In all simulations, the following parameter values of Model (3) are fixed as

F = 1, D = 350mg, Vd = 50 L, Vmax = 0.30mg/L/h, Km = 5.3mg/L.

Since our aim is to test the impact of different rates of absorption and elimina-
tion, as well as errors on the approximation between C̃(t) and C(t), we choose
ka = 0.5, 0.1 h−1, kel = 0.0434, 0.2 h−1, and the allowable control error ε =
0.05, 0.1, 0.2, 0.5, respectively.

The simulation is performed over a time range of 0 to 120 hours, with T0 = 0
and C̃0(0) = C(0) = 0. The parameter ε is given a priori. First, we calculate the
optimal sampling time scheme T = {Ti }n

i=0 through iteration. Then, we determine the
associated constant infusion rates ri of the PK sub-models (Eq. (14)). For convenience,
a workflow illustrating how we can iteratively determine the optimal sampling time
points, {Ti }∞i=0, and the corresponding piecewise approximate of drug concentration
time course, C̃i (t), is provided in Fig. 2. For each triplet ε, ka and kel , the calculated
sampling time points Ti and constant infusion rates ri are reported in Table 1. As we
can observe, the larger the admissible error is, the fewer optimal sampling time points
are needed.

Once the optimal sampling time points Ti and constant infusion rates ri are
determined, we are able to calculate the associated parameters C∞, C∞

β , q1 and

q2, following Eqs. (8-9). For a specific example of ε = 0.2, ka = 0.5 h−1 and
kel = 0.0434 h−1, the values of these parameters are reported in Table 2, which
can be used to determine the required transcendental functions X0 and Y0.
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Fig. 2 The workflow for optimal sampling and deriving the closed-form approximate solution of Model
(3)

Table 2 The computed parameter values which are required to express the analytical solution of Model
(15) during each sampling time interval, where ε = 0.2, ka = 0.5 h−1, kel = 0.0434 h−1, Vmax =
0.3mg/L/h, Km = 5.3mg/L, Vd = 50 L, F = 1, D = 350mg

t ∈ [Ti , Ti+1] ri C̃i (Ti ) C̃∞ C̃∞
β q1 q2 X0/Y0

[0,1.2] 2.6320 0.0000 54.3469 5.9142 0.9898 0.0102 Y0
[1.2,2.8] 1.3220 2.9892 24.7669 6.5185 0.9611 0.0389 Y0
[2.8,5.5] 0.4740 4.6254 6.9901 8.2809 0.8048 0.1952 Y0
[5.5,16.5] 0.0400 4.9382 0.4172 11.7080 0.4715 0.5285 X0

[16.5,120] 0.0002 2.3312 0.0020 12.2098 0.4342 0.5658 X0
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Fig. 3 (Color online) Illustration of C̃(t) from a sequence of PK sub-models (15) to approximate the
exact C(t) from Model (3) with the allowable error ε = 0.05, 0.1, 0.2, 0.5. Blue solid line: ka > ke,tot =
kel +Vmax /Km where ka = 0.5 h−1, kel = 0.0434 h−1; Green solid line: ka > ke,tot where ka = 0.1 h−1,
kel = 0.0434 h−1; Red solid line: ka < ke,tot where ka = 0.1 h−1, kel = 0.2 h−1; Black dotted line:
exact solution C(t) of Model (3). Other parameter values are F = 1; D = 350mg; Vd = 50 L; Vmax =
0.30mg/L/h; Km = 5.3mg/L.

Finally, we have

C̃(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

54.3469 − 60.2611 × Y0(0.8817e−0.0434t , 0.9898, 0.0102), t ∈ [0, 1.2],
24.7669 − 31.2854 × Y0(0.6740e−0.0434(t−1.2), 0.9611, 0.0389), t ∈ [1.2, 2.8],
6.9901 − 15.2711 × Y0(0.2157e−0.0434(t−2.8), 0.8048, 0.1952), t ∈ [2.8, 5.5],
0.4172 + 12.1252 × X0(0.7425e−0.0434(t−5.5), 0.4715, 0.5285), t ∈ [5.5, 16.5],
0.0020 + 12.2118 × X0(0.5377e−0.0434(t−16.5), 0.4342, 0.5658), t ∈ [16.5, 120].

(35)

For all triplets ε, ka and kel listed in Table 1, the corresponding curves of C̃(t) and
C(t) are shown for comparison in Figure 3.

5.2 Local Adjustment

Sometimes, the approximation of peak concentration is especially deemed in practice,
whereas it is not enough and impressive to use a single precision ε. An example is
given in Fig. 3(d), where the approximation for ε = 0.5 could not virtually represent
the peak concentration. In this case, we need to retouch the approximation by locally
increasing the precision. That is to say, we can apply the same algorithm but reduce
the ε value in a neighbourhood of the peak concentration. An example is illustrated in
Figure 4, where we obtain a better local approximation by reducing ε from 0.5 to 0.1
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Fig. 4 (Color online) Illustration of a dense local approximation near the peak concentration by reducing
ε from 0.5 to 0.1, where F = 1, D = 350mg, Vd = 50 L, ka = 0.1 h−1, Vmax = 0.3mg/L/h, Km =
5.3mg/L

in a time interval around the peak time. Other special requirements can be similarly
implemented.

5.3 Robustness in Presence of Variability

Up till now, we have not taken into account the presence of uncertainty in Model
(3). For this, we can simulate more realistic situations by adding randomness to
the simulated concentrations of Model (3) and check the robustness of our pro-
posed sampling-based approximation algorithm. First, we assume to use 14 drug
plasma sampling points 0.1, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 18, 24, 36, 48h, we obtain
the corresponding concentrations: 0.33, 1.48, 2.58, 3.38, 3.96, 4.62, 4.88, 4.76, 4.30,
3.26, 2.01, 1.19, 0.39, 0.12mg/L fromModel (3) using the model parameters shown
in Fig. 4 and ODE45 solver in MATLAB. Suppose the real concentrations are log-
normally distributed around the deterministic concentration of Model (3) at anytime,
i.e., ln(Creal(t)) ∼ N (lnC(t), σ 2), we thus simulate N = 100 PK profiles with each
consisting of 14 ‘real’ concentration data. In the next step, we refit each set of 14
‘real’ concentration data with the least square method to obtain the corresponding
model parameters for N numerical oral models. Accordingly, we obtain N piecewise
approximate analytical drug concentrations C̃ j (t) ( j = 1, 2, · · · , N ) by applying the
proposed algorithm. Finally, the robustness of our proposed approximation algorithm
regarding variability in concentration is evaluated using the following Mean Error
index

ME = 1

14N

N∑

j=1

14∑

k=1

∣
∣C(tk) − C̃ j (tk)

∣
∣, (36)

where tk (k = 1, 2, · · · , 14) are the above time points.
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Fig. 5 (Color online) Robustness test in the presence of variability by displaying mean errors with respect
to σ after 100 simulations

The result is shown in Figure 5.Aswe can observe, the approximation is quite robust
despite the gradual increase of Mean Error as the standard deviation σ increases.

6 Discussion and Conclusion

In this paper, we have studied, in the case of the first-order absorption, the solution of
one-compartment PK model with the simultaneous first-order and Michaelis-Menten
elimination. Different to the cases of bolus or constant infusion that we previously
studied [13, 14], the time-varying absorption intertwineswith the nonlinear elimination
in such a way as to separate them is impossible. For this reason, we cannot expect
an exact analytical solution to Model (3). However the popularity and importance of
oral drugs bearing the first-order absorption and the nonlinear elimination properties
draw our attention to the mathematical expression of their pharmacokinetics, and the
analytical solution to approximate Model (3) within a controlled precision seems a
reasonable strategy that is worthy to further mathematical studies.

Different to other non-mechanistic approximations such as the polynomial or spline
functions, this study clearly brings the advantage of maintaining meaningful phar-
macokinetic characteristics in the approximation process. That is, the proposed PK
sub-models have the same distribution/elimination kinetics, and absorbed dose amount
in the associated time scheme remains the same as the original Model (3), whereas
the drug administration route is altered to the constant infusion since its analytical
solution is mathematically available.

Indeed,we have developed and demonstrated a unified scheme capable of efficiently
determining the explicit expressionof drug concentrationover time forModel (3) under
a global unified measurement constraint (see Theorem 3). Furthermore, numerical
simulations were conducted to validate the feasibility of deriving explicit curves of
drug concentration over time from the explicit expressions of PK sub-models (15),
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considering various rates of absorption (ka) and elimination (kel ), as well as differing
approximation accuracies (ε).

As shown in Fig. 3, smaller precision values (ε) lead to more accurate approxima-
tions. Additionally, achieving the desired precision requires only a small number of
samplings. For example, when ka = 0.1 and kel = 0.2, reducing ε from 0.5 to 0.2,
0.1, and 0.05 results in the least number of samplings changing from 1 to 2, 4, and 6,
respectively, which is highly practical in clinical settings.

It is important to emphasize that, in order to touch the peak concentration,Cmax , our
algorithm can be further improved for the decision on Ti by incorporating additional
practical considerations, as illustrated in Fig. 4. Such refinements are fully compatible
with our approach.

Moreover, the proposed method for deriving approximate analytical solutions is
both more efficient and more direct compared to existing pharmacokinetic studies,
such as [19], which only established upper and lower bounds for drug concentration
and required a large number of samples to achieve satisfactory global convergence.

The challenge of the current work is to demonstrate the theoretical feasibility for
the approximate error between the solution of the sequence of constant infusion mod-
els and the exact one of the oral model (see Theorem 2). This is the cornerstone for
a reliable algorithm that guarantees the computability of the approximation and the
subsequent simulations. To resume, the key step is to prove the uniqueness of the
intersection point of C ′(t) and C̃ ′(t) on each time interval. However, since two con-
vex/concave functions may intersect on more than one point, the problem becomes
complicated for the case when both C ′(t) and C̃i (t) are strictly decreasing and strictly
concave up. Though lack of mathematical theory that is readily available, we have
developed several techniques directly on the specified properties of the absorption and
elimination of the studied model, which finally help to confirm the uniqueness of the
local minimum E(S∗

i ) on the open interval (Ti , Ti+1). However, we still believe that
the current condition can be relaxed for more general models in the future.

As we mentioned in the introduction, the nonlinearity discussed in the paper is
largely present in biologics. The precision of the characterization of their pharmacoki-
netics has become amajor issue concerning their efficacy and safety, whereas this is the
facility of the analytical solution in terms of mechanistic description and explanation.
Our proposed mechanistic ‘model-to-model’ approach provides a novel mathematical
solution to difficult issueswhenmore complicated components are involved in a drug’s
administration, disposition, metabolism and excretion (ADME), such as the first-oral
administration discussed in this paper. However, our work is limited to the strategy
of using a sequence of constant infusion models to approximate the exact oral model.
Since it is based on equal dose administration on each time interval, the approxi-
mation is not continuous but disjointed on several time points. This problem maybe
solved by introducing mixed administration of both intravenous bolus and infusion
administrations, or even changing the condition of equal dose to equal exposure, or
including other specific pharmacological concerns. Moreover, since it is the analytical
approximation strategy that we adopted here for solution, the methodology can extend
to more complex cases such as more than one-compartment pharmacokinetic models.
We leave all these in our future investigation.
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