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Abstract
In this paper, we propose a general viral infection model to incorporate two infection
modes (virus-to-cell mode and cell-to-cell mode), the CTL immune response, and the
distributed intracellular delays during the processes of viral infection, viral production,
and CTLs recruitment. We investigate the existence, the uniqueness, and the global
stability of three equilibria: infection-free equilibrium E0, immune-inactivated equi-
librium E1 and immune-activated equilibrium E2, respectively.We prove that the viral
dynamics are determined by two threshold parameters: the basic reproduction number
for infection R0 and the basic reproduction number for immune response RI M . We
also numerically explore the viral dynamics beyond stability. We use bifurcation dia-
grams to show that increasing the delay in CTL immune cell recruitment can induce
a switch in viral load from a stable constant level to sustained oscillations, and then
back to a stable equilibrium. We also compare the contributions of the two infection
modes to the total infection level and identify the key parameters that would affect
the percentages of virus-to-cell infection and cell-to-cell infection. Finally, we explore
how Filippov control can be applied in antiretroviral therapy to reduce the viral loads.
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1 Introduction

Mathematical models have been used to understand the in vivo infection dynamics
of many viruses (Bonhoeffer et al. 1997; Perelson et al. 1993; Perelson and Nelson
1999; Perelson et al. 1996). These in-host models were applied: (i) to describe the viral
infection process (Perelson et al. 1993; Perelson and Nelson 1999); (ii) to estimate
key parameters such as the virion clearance rate and the life span of infected cells
(Perelson et al. 1996); and (iii) to guide the development of antiviral drug therapies
(Bonhoeffer et al. 1997). The viral dynamics can be described by the differential
equations of three compartments: the uninfected target cells, the infected cells, and
the free virus; sometimes there is a fourth compartment corresponding to the immune
response (Chen et al. 2016;Nowak andBangham1996;Wang et al. 2013). The immune
cells such as the cytotoxic T-lymphocyte cells (CTLs) play a crucial role in the defense
of viral infections. A mathematical model with CTL immune response was proposed
in (Nowak and Bangham 1996) to explore the dynamics of kinetic interaction between
CTLs and infected cells. TwoHIVmodelswere further developed in (Wang et al. 2013)
to incorporate a logistic growth term for the uninfected target cells.

Many of the existing mathematical models focused only on the virus-to-cell infec-
tion mode; see for example, (Leenheer and Smith 2003; Perelson and Nelson 1999)
for human immunodeficiency virus (HIV), (Ribeiro et al. 2002; Tsiang et al. 1999)
for hepatitis B virus (HBV), and (Dahari et al. 2007; Neumann et al. 1998) for hep-
atitis C virus (HCV). However, another mode called the cell-to-cell infection mode
has also been recognized in clinics (Sato et al. 1992; Sourisseau et al. 2007). It is the
process when the viral particles are transferred directly from an infected cell to an
uninfected target cell through the formation of virological synapses (Galloway et al.
2015; Hübner et al. 2009). For some viruses, the cell-to-cell infection mode seems to
be more potent and efficient than the virus-to-cell infection mode (Komarova et al.
2013a, b), and may contribute to more than half of the viral infections (Iwami et al.
2015). Even with antiretroviral therapy, the cell-to-cell spread of HIV can still permit
ongoing replication (Sigal et al. 2011). It is thus important to consider both virus-to-
cell and cell-to-cell infection modes in viral infection models (Martin and Sattentau
2009). Some earlier studies of the cell-to-cell infection can be found in (Gummuluru
et al. 2000; Dixit and Perelson 2004).

Denote by T (t), I (t), V (t) and Z(t) the concentrations of uninfected target cells,
infected cells, viruses, and virus-specific CTLs at time t , respectively. A general viral
infection model with two infection modes and the CTL immune response is given as
below.

T ′(t) = b(T (t)) − g(T (t), I (t)) − h(T (t), V (t)),

I ′(t) = g(T (t), I (t)) + h(T (t), V (t)) − μ1 I (t) − pI (t)Z(t),

V ′(t) = k I (t) − μ2V (t),

Z ′(t) = q I (t)Z(t) − μ3Z(t),

where b(T ) denotes the intrinsic growth rate of the uninfected target cells, which
includes both production and natural mortality. The nonlinear functions g(T , I ) and
h(T , V ) are the incidence rates of new infections through cell-to-cell and virus-to-cell
transmissions, respectively. The infected cells produce virions at a rate k I , die at a per
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capita rate μ1, and are cleared by CTLs at a rate of pI Z . The virions are cleared at
a per capita rate μ2. The CTLs are recruited at a rate q I Z , and decay at a per capita
rate μ3.

Time delays in the processes of viral infection and replication have been shown to
play a significant role in understanding the viral dynamics (Herz et al. 1996; Huang
et al. 2010; Li andShu 2010). The infected cellswould go through a latent period before
they burst virions. The released virions may need a maturation phase outside the cell
before becoming infectious. Moreover, there is a complex chain of events between the
CTL attack and the subsequent recruitment (Canabarro et al. 2004; Wang et al. 2007).
Thus, it is important to introduce time delays in each of the aforementioned steps.
The delay during the production of an actively infected target cell through either cell-
to-cell or virus-to-cell transmission is modeled by the density function f1(τ ), which
describes the probability that an infected cell survives and becomes actively infectious
τ time units past the infection. Following the modeling ideas in (Nakata 2010; Shu
et al. 2018), we assume the production rate of new actively infected cells at time t to be

∫ ∞

0
f1(τ )(g(T (t − τ), I (t − τ)) + h(T (t − τ), V (t − τ)))dτ.

Weuse another density function f2(τ ) to describe the survival andmaturation probabil-
ity of free viral particles τ time units after being released. The rate of virionmaturation
at time t is k

∫ ∞
0 f2(τ )I (t −τ)dτ . Finally, we use f3(τ ) to describe the distribution of

delays between cell encounters and subsequent recruitment. The rate of CTLs prolifer-
ation at time t is then given by q

∫ ∞
0 f3(τ )I (t −τ)Z(t −τ)dτ . The general viral infec-

tion model incorporating two infection modes, CTL immune response and distributed
delays can be described by the following system of differential-integral equations:

T ′(t) = b(T (t)) − g(T (t), I (t)) − h(T (t), V (t)),

I ′(t) =
∫ ∞

0
f1(τ )(g(T (t − τ), I (t − τ)) + h(T (t − τ), V (t − τ)))dτ

− μ1 I (t) − pI (t)Z(t),

V ′(t) = k
∫ ∞

0
f2(τ )I (t − τ)dτ − μ2V (t),

Z ′(t) = q
∫ ∞

0
f3(τ )I (t − τ)Z(t − τ)dτ − μ3Z(t),

(1.1)

where as before T (t), I (t), V (t) and Z(t) are the concentrations of uninfected target
cells, actively infected target cells, mature viruses, and virus-specific CTLs at time t ,
respectively. All parameters in (1.1) are positive. The density functions fi (τ ) (with
i = 1, 2, 3) satisfy the conditions

fi (τ ) ≥ 0 for all τ ≥ 0,
∫ ∞

0
fi (τ )dτ > 0,

and
∫ ∞

0
fi (τ )esτ dτ < ∞ for some positive s.
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Throughout this paper,we assume that the intrinsic growth functionof uninfected target
cells b, and two incidence rates of infections g and h satisfy the following conditions.

(H1) b(T ) ∈ C1(R+), there exists T > 0 such that b(T ) = 0, and b(T )(T − T ) < 0
for T �= T and T > 0.

(H2) g(u, v), h(u, v) ∈ C1,2(R+ × R+) are strictly increasing with respect to both
variables, concave down with respect to the second variable v, and vanish if and
only if uv = 0.

Here, the constant T is biologically interpreted as the natural level of target cells in the
absence of viral infections. Some typical examples of b(T ) satisfying (H1) are α−dT ,
α − dT + rT (1− T /Tm) and α + rT (1− T /Tm)(T + a), where α, d, r , Tm, a > 0.
The examples of g(u, v) and h(u, v) satisfying (H2) include βuv, βulv, βulv2 and
βuv/[(u + a1)(v + a2)], where β, l > 0 and a1, a2 ≥ 0. Our general model (1.1)
includes many existing models as special cases (Lai and Zou 2014; Nakata 2010;
Wang et al. 2016).

The rest of this paper is organized as follows. In Sect. 2, we derive the basic repro-
duction number for infection and the basic reproduction number for immune response.
In Sect. 3,we prove that these twobasic reproduction numbers are threshold parameters
in determining the global dynamics of our model. In Sect. 4, we numerically explore
how the infection modes, the delay in immune cell recruitment, and the antiretroviral
therapy with a Filippov control affect the viral dynamics. A summary and a discussion
are presented in Sect. 5.

2 Preliminary results and the basic reproduction numbers

First, we show that system (1.1) is well-posed on the phase space C4, where C is the
Banach space of fading memory type (Hale and Kato 1978)

C =
{
φ ∈ C ((−∞, 0],R)

∣∣φ(θ)esθ is uniformly continuous for

θ ∈ (−∞, 0] and ‖φ‖ < ∞
}
,

equipped with the norm ‖φ‖ = sup
θ≤0

|φ(θ)|esθ for a fixed constant s > 0. If φ is

defined on the whole real line, then for each t ≥ 0, we use the standard notation φt

to denote a function defined by φt (θ) = φ(t + θ) for θ ∈ (−∞, 0]. For biological
applications, we assume that the initial condition of (1.1) is given in C4+, where C+ =
C ∩ C((−∞, 0],R+) is the nonnegative cone of C. The existence and uniqueness
of the solution of system (1.1) then follow from the theory of functional differential
equations with infinitely distributed delays (Hale and Kato 1978). Now, we denote

βi =
∫ ∞

0
fi (τ )dτ, i = 1, 2, 3, Ī = β1(b̄ + μ1T )

μ1
, V = kβ2 Ī

μ2
,

Z̄ = qβ1β3(g(T , Ī ) + h(T , V ))

pμ̃
, (2.1)
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where T is given in (H1), b̄ = sup
[0,T ]

b(T ) and μ̃ = min{μ1, μ3}. Let

� =
{
(φ1, φ2, φ3, φ4) ∈ C4+ : φ1(θ) ≤ T , φ2(θ) ≤ Ī , φ3(θ) ≤ V ,

φ4(θ) ≤ Z̄ for all θ ∈ (−∞, 0]} . (2.2)

Using the same arguments as in the proof of (Li and Shu 2010, Proposition 2.1) or
(Shu et al. 2013, Lemma 2.1), we can prove that system (1.1) with initial conditions
in C4+ is well-posed and point dissipative.

Lemma 2.1 Assume that (H1)–(H2) are satisfied. Then the region � is positively
invariant and absorbing in C4+ for system (1.1); namely, all solutions with initial
conditions in C4+ ultimately enter �.

It is easily seen that the system (1.1) possesses an infection-free equilibrium (IFE)
E0 = (T , 0, 0, 0). Following the procedure of calculating the basic reproduction
number for structured models in (Thieme 2009), we linearize the system (1.1) at the
IFE E0 and derive the basic reproduction number for infection R0 of (1.1) as

R0 = Rv
0 + Rc

0, where Rv
0 = kβ1β2

μ1μ2

∂h(T , 0)

∂V
and

Rc
0 = β1

μ1

∂g(T , 0)

∂ I
. (2.3)

Here, Rv
0 denotes the number of secondly infected cells through the virus-to-cell

infection andwe refer it to as the basic reproduction number for virus-to-cell infection.
Also, Rc

0 represents the number of secondly infected cells through the cell-to-cell
infection and we refer it to as the basic reproduction number for cell-to-cell infection.
To investigate the existence, the uniqueness, and the stability of the equilibria, we
define

R(T , I , V ) = kβ1β2

μ1μ2

h(T , V )

V
+ β1

μ1

g(T , I )

I
for I , V > 0;

R(T , 0, 0) = lim
(I ,V )→(0,0)

R(T , I , V ). (2.4)

Note that (H2) implies that R(T , 0, 0) = R0. An immune-inactivated equilibrium
(IIE) E1 = (T1, I1, V1, 0) exists if T1, I1, V1 > 0 satisfy

b(T1) = g(T1, I1) + h(T1, V1) = μ1 I1/β1 = μ1μ2V1/(kβ1β2). (2.5)

A simple calculation gives I1 = β1
μ1

b(T1) and V1 = kβ1β2
μ1μ2

b(T1). Now, we introduce
the function

G(T ) = b(T ) − h(T ,
kβ1β2

μ1μ2
b(T )) − g(T ,

β1

μ1
b(T )).
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Clearly, G(0) = b(0) > 0, G(T ) = 0 and

G ′(T ) = b′(T )

(
1 − kβ1β2

μ1μ2

∂h(T , 0)

∂V
− β1

μ1

∂g(T , 0)

∂ I

)
= b′(T )(1 − R0).

Note from (H1) that b′(T ) < 0. If R0 > 1, we have G ′(T ) > 0, and hence, there
exists T1 ∈ (0, T ) such that G(T1) = 0. This proves the existence of an IIE E1 when
R0 > 1. We claim that R0 > 1 is also a necessary condition for the existence of
E1. Suppose, to the contrary, there exists an IIE E1 = (T1, I1, V1, 0) while R0 ≤ 1.
Clearly, T1 ∈ (0, T ). This, together with (H2), (2.3), (2.4) and (2.5), leads to

1 ≥ R0 = R(T , 0, 0) ≥ R(T , I1, V1) > R(T1, I1, V1) = 1,

a contradiction. Therefore, an IIE E1 exists if and only if R0 > 1. To guarantee the
uniqueness of IIE, we require an additional condition. Define

Gb = {
ξ ∈ [0, T ] | (b(T ) − b(ξ))(T − ξ) < 0 for T �= ξ, T ∈ [0, T ]} . (2.6)

Clearly, T ∈ Gb and Gb �= ∅. We shall prove by contradiction that if there exists
an IIE E1 = (T1, I1, V1, 0) with T1 ∈ Gb, then E1 is the unique IIE. Suppose there
exists another IIE E∗

1 = (T ∗
1 , I ∗

1 , V ∗
1 , 0). We assume without loss of generality that

T ∗
1 < T1. Then we have b(T1) < b(T ∗

1 ). By (2.5), we further have I1 < I ∗
1 and

V1 < V ∗
1 . On account of (H2) and (2.4), we obtain

1 = R(T ∗
1 , I ∗

1 , V ∗
1 ) < R(T1, I ∗

1 , V ∗
1 ) ≤ R(T1, I1, V1) = 1,

a contradiction. Hence, E1 is the unique IIE of (1.1).
An immune-activated equilibrium (IAE) E2 = (T2, I2, V2, Z2) exists if T2, I2, V2,

Z2 > 0 satisfy the following equilibrium equations:

b(T2) = g(T2, I2) + h(T2, V2) = μ1 I2 + pI2Z2

β1
, I2 = μ3

qβ3
, V2 = kβ2μ3

qβ3μ2
. (2.7)

Define N (T ) = b(T )−g(T , I2)−h(T , V2). Clearly, N (0) = b(0) > 0 and N (T ) < 0.
Thus there exists T2 ∈ (0, T ) such that N (T2) = 0. It then follows from (2.4) and
(2.7) that

Z2 = μ1

p

[
β1(g(T2, I2) + h(T2, V2))

μ1 I2
− 1

]
= μ1

p
[R(T2, I2, V2) − 1] > 0 (2.8)

if and only if R(T2, I2, V2) > 1. Hence, an IAE E2 exists if and only if R1 > 1, where

R1 := R(T2, I2, V2) = kβ1β2

μ1μ2

h(T2, V2)

V2
+ β1

μ1

g(T2, I2)

I2
< R(T , 0, 0) = R0. (2.9)
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Next, we show that E2 = (T2, I2, V2, Z2) is the unique IAE if T2 ∈ Gb. Suppose, to
the contrary, there exists another IAE E∗

2 = (T ∗
2 , I ∗

2 , V ∗
2 , Z∗

2) with T ∗
2 < T2, I2 = I ∗

2
and V2 = V ∗

2 . Then we have b(T2) < b(T ∗
2 ). It follows from (2.7) that Z2 < Z∗

2 . On
the other hand, since T ∗

2 < T2, I2 = I ∗
2 and V2 = V ∗

2 , we have R(T ∗
2 , I ∗

2 , V ∗
2 ) <

R(T2, I2, V2). This, together with (2.8), yields Z∗
2 < Z2, a contradiction. Therefore,

E2 is the unique IAE of (1.1) if T2 ∈ Gb.
To summarize, we have the following results on the existence and uniqueness of

equilibria for system (1.1).

Theorem 2.1 Assume that (H1)–(H2) are satisfied. Let R0, R1 and Gb be defined in
(2.3), (2.9) and (2.6), respectively.

(i) If R0 ≤ 1, then the infection-free equilibrium (IFE) E0 = (T , 0, 0, 0) is the
unique equilibrium for (1.1).

(ii) If R1 ≤ 1 < R0, then, besides E0, there exists at least one immune-inactivated
equilibrium (IIE) E1 = (T1, I1, V1, 0) for (1.1), and there are no immune-
activated equilibria (IAE); if further T1 ∈ Gb, then E1 is the unique IIE.

(iii) If R1 > 1, then, besides E0 and at least one IIE E1, there is at least one IAE
E2 = (T2, I2, V2, Z2) for (1.1); if further T2 ∈ Gb, then E2 is the unique IAE.

Based on the linearized equations of (1.1) at the IIE E1, we obtain the basic repro-
duction number for immune response

RI M = qβ3 I1
μ3

, (2.10)

which is defined only when R0 > 1. This is because the equation (2.5) has a positive
root I1 > 0 if and only if R0 > 1.

Lemma 2.2 Assume that (H1)–(H2) are satisfied, R0 > 1 and T1 ∈ Gb, where Gb

is defined in (2.6). Then there exist positive T1, I1, V1 satisfying (2.5) and positive
T2, I2, V2 satisfying (2.7). Moreover, we have

Sign(T2 − T1) = Sign(I1 − I2) = Sign(V1 − V2) = Sign(R1 − 1) = Sign(RI M − 1).

Proof From (2.5) and (2.7), we have V1 − V2 = kβ2(I1 − I2)/μ2. Since T1 ∈ Gb, we
obtain (b(T2) − b(T1))(T2 − T1) < 0. This, together with the strictly monotonicity
of g(T , I ) and h(T , V ), and b(Ti ) = g(Ti , Ii ) + h(Ti , Vi ) with i = 1, 2, yields
Sign(T2 − T1) = Sign(I1 − I2) = Sign(V1 − V2). By (H2) the function R(T , I , V )

is strictly increasing in T and nonincreasing in I and V . This, together with R1 − 1 =
R(T2, I2, V2) − R(T1, I1, V1) from (2.5) and (2.9), indicates that Sign(R1 − 1) =
Sign(T2 − T1).

By the equilibrium equations (2.5) and (2.7), we can rewrite R1 and RI M as

R1 = qβ1β3

μ1μ3
b(T2) and RI M = qβ1β3

μ1μ3
b(T1).
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This, together with (b(T2)−b(T1))(T2 − T1) < 0 and Sign(R1 −1) = Sign(T2 − T1),
implies that Sign(T2 − T1) = Sign(RI M − R1) = Sign(R1 − 1) = Sign(RI M − 1).
This ends the proof. �
Remark 2.1 In view of Lemma 2.2, the two threshold parameters R1 and RI M are
equivalent. Since RI M is more biologically relevant, we will always use RI M as the
threshold parameter. In particular, the last two conditions in the statement of Theorem
2.1, namely, R1 ≤ 1 < R0 and R1 > 1, can be restated as RI M ≤ 1 < R0 and
RI M > 1, respectively.

3 Global stability analysis

In this section, we establish the global stability of equilibria of (1.1) by analyzing the
distribution of the characteristic roots, constructing suitable Lyapunov functionals,
and applying uniform persistence theory (Hale and Waltman 1989).

3.1 Global stability of the IFE E0

Before proving the global stability of E0, we first analyze its local stability. The
characteristic equation associated with the linearization of (1.1) at E0 = (T , 0, 0, 0)
is

(λ + μ3)(λ − b′(T ))F0(λ) = 0, (3.1)

where

F0(λ) = (λ + μ2)

(
λ + μ1 − ∂g(T , 0)

∂ I

∫ ∞

0
f1(τ )e−λτ dτ

)

−k
∂h(T , 0)

∂V

∫ ∞

0
f1(τ )e−λτ dτ

∫ ∞

0
f2(τ )e−λτ dτ.

Two eigenvalues are λ1 = −μ3, λ2 = b′(T ) < 0, and all other eigenvalues are
determined by F0(λ) = 0, which can be rewritten as

1 + λ

μ1
= ∂g(T , 0)

∂ I

∫ ∞
0 f1(τ )e−λτ dτ

μ1

+ ∂h(T , 0)

∂V

k
∫ ∞
0 f1(τ )e−λτ dτ

∫ ∞
0 f2(τ )e−λτ dτ

μ1(λ + μ2)
. (3.2)

If R0 < 1, then F0(0) = μ1μ2(1 − R0) > 0, and thus 0 is not an eigenvalue. Let
λ = a + bi be an eigenvalue of (3.2). We claim that a < 0 if R0 < 1. Assume to the
contrary that a ≥ 0. Then it follows from (3.2) that

1 <

∣∣∣∣1 + λ

μ1

∣∣∣∣ ≤ Rv
0

∣∣∣∣ μ2

λ + μ2

∣∣∣∣ + Rc
0 < Rv

0 + Rc
0 = R0 < 1,
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a contradiction. Thus, we conclude that the IFE E0 is locally asymptotically stable if
R0 < 1.

If R0 > 1, then F0(0) = μ1μ2(1 − R0) < 0 and lim
λ→∞ F0(λ) = ∞. Thus, there

exists at least one positive eigenvalue, which implies that E0 is unstable. We now have
the following result.

Lemma 3.1 Assume that (H1)–(H2) hold. The IFE E0 of (1.1) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

For the critical case R0 = 1, we have F0(0) = 0 and 0 is a simple eigenvalue. Using
a similar argument as above we can show that all other eigenvalues have negative real
parts. Now, we examine the local stability of E0 by using the center manifold theory
and the normal forms.

Lemma 3.2 Assume that (H1)–(H2) hold. Denote

χ := ∂2g(T , 0)

∂T ∂ I
+

(
kβ2

μ2

)
∂2h(T , 0)

∂T ∂V
− β1b′(T )

2μ1

[
∂2g(T , 0)

∂ I 2
+

(
kβ2

μ2

)2
∂2h(T , 0)

∂V 2

]
.

(3.3)

If R0 = 1, then the IFE E0 of (1.1) is locally asymptotically stable when χ > 0 and
unstable when χ < 0.

Proof Let � = {λ ∈ C, λ is an eigenvalue of (3.1) with Reλ = 0}. Then � = {0}
if R0 = 1, and (1.1) satisfies the nonresonance condition relative to �. Let u(t) =
(u1(t), u2(t), u3(t), u4(t))T = (T − T (t), I (t), V (t), Z(t))T . By using the standard
notation in delay differential equations ut (θ) = u(t +θ), system (1.1) can be rewritten
as an abstract ODE

u̇(t) = Aut + R(ut ) (3.4)

on C4, where A is a linear operator defined as (Aφ)(θ) = φ′(θ) for θ ∈ [−∞, 0) and

(Aφ)(0) =

⎛
⎜⎜⎜⎝

−b′(T )φ1(0) + ∂g(T ,0)
∂ I φ2(0) + ∂h(T ,0)

∂V φ3(0)

−μ1φ2(0) + ∂g(T ,0)
∂ I

∫ ∞
0 f1(τ )φ2(−τ)dτ + ∂h(T ,0)

∂V

∫ ∞
0 f1(τ )φ3(−τ)dτ

−μ2φ3(0) + k
∫ ∞
0 f2(τ )φ2(−τ)dτ

−μ3φ4(0)

⎞
⎟⎟⎟⎠ ,

and R is a nonlinear operator defined as (R(φ))(θ) = 0 for θ ∈ [−∞, 0) and

(R(φ))(0)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b(T − φ1(0)) + b′(T )φ1(0) + g(T − φ1(0), φ2(0)) − ∂g(T ,0)
∂ I φ2(0)

+h(T − φ1(0), φ3(0)) − ∂h(T ,0)
∂V φ3(0)∫ ∞

0 f1(τ )g(T − φ1(−τ), φ2(−τ))dτ − ∂g(T ,0)
∂ I

∫ ∞
0 f1(τ )φ2(−τ)dτ

+ ∫ ∞
0 f1(τ )h(T − φ1(−τ), φ3(−τ))dτ − ∂h(T ,0)

∂V

∫ ∞
0 f1(τ )φ3(−τ)dτ − pφ2(0)φ4(0)

0
q

∫ ∞
0 f3(τ )φ2(−τ)φ4(−τ)dτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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for φ = (φ1, φ2, φ3, φ4)
T ∈ C4. For ψ = (ψ1, ψ2, ψ3, ψ4) ∈ (C([0,∞),R))4 and

φ ∈ C4, we introduce a bilinear form

〈ψ, φ〉 = ψ(0)φ(0) +
∫ ∞

0
k f2(τ )

∫ 0

−τ

ψ3(θ + τ)φ2(θ)dθdτ

+
∫ ∞

0
f1(τ )

∫ 0

−τ

ψ2(θ + τ)

(
∂g(T , 0)

∂ I
φ2(θ) + ∂h(T , 0)

∂V
φ3(θ)

)
dθdτ.

We then choose ϕ = (1, ϕ2, ϕ3, 0)T and ψ = (0, 1, ψ3, 0), respectively, to be the
right and left eigenvectors of the linear operator A corresponding to the eigenvalue 0,
where

ϕ2 = β1b′(T )

μ1
< 0, ϕ3 = kβ2

μ2
ϕ2<0, ψ3 = β1

μ2

∂h(T , 0)

∂V
> 0 and â = 〈ψ, ϕ〉 <0.

(3.5)
We make the decomposition ut = zϕ + y such that 〈ψ, y〉 = 0. It is readily seen that

〈ψ, u̇t 〉 = ż〈ψ, ϕ〉 + 〈ψ, ẏ〉 = ż〈ψ, ϕ〉.

Since Aϕ = 0 and 〈ψ, Ay〉 = 0, we have

〈ψ, u̇t 〉 = 〈ψ, Aut 〉 + 〈ψ, R(ut )〉 = 〈ψ, R(ut )〉 = 〈ψ, R(zϕ + y)〉.

Coupling the above two equations gives

ż〈ψ, ϕ〉 = 〈ψ, R(zϕ + y)〉 = ψ(R(zϕ + y))(0) = (R(zϕ + y))2(0).

If the initial value is a small perturbation of E0, then z is also small with a positive
initial value z(0) and y = O(z2). By Taylor expansion, we derive the following normal
form of (3.4) at origin

âż =
∫ ∞

0
f1(τ )

(
1

2

∂2g(T , 0)

∂ I 2
(zϕ2 + y2(−τ))2 − ∂2g(T , 0)

∂T ∂ I
(z + y1(−τ))(zϕ2 + y2(−τ))

+ 1

2

∂2h(T , 0)

∂V 2 (zϕ3 + y3(−τ))2 − ∂2h(T , 0)

∂T ∂V
(z + y1(−τ))(zϕ3 + y3(−τ))

)
dτ + O(z3)

= β1

(
ϕ2
2

2

∂2g(T , 0)

∂ I 2
− ϕ2

∂2g(T , 0)

∂T ∂ I
+ ϕ2

3

2

∂2h(T , 0)

∂V 2 − ϕ3
∂2h(T , 0)

∂T ∂V

)
z2 + O(z3)

= −β1ϕ2χ z2 + O(z3),

where χ is defined in (3.3). Note from (3.5) that â < 0 and ϕ2 < 0. Thus, the zero
solutionof the normal formequationwith positive initial value is locally asymptotically
stable if χ > 0 and unstable if χ < 0. This proves the lemma. �
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Remark 3.1 If we choose the bilinear (mass-action) incidence rates g(T , I ) = c1T I
and h(T , V ) = c2T V in model (1.1), then χ = c1 + c2kβ2/μ2 > 0 and the IFE E0
is locally asymptotically stable when R0 = 1. If we choose the standard incidence
rates g(T , I ) = c1T I/(T + I ) and h(T , V ) = c2T V /(T + V ) in model (1.1), then
χ = β1b′(T )[c1+c2(kβ2/μ2)

2]/(μ1T ) < 0 and the IFE E0 is unstable when R0 = 1.

For simplicity, we denote

h1(T ) = lim
V →0+

h(T , V )

V
= ∂h(T , 0)

∂V
> 0 and g1(T ) = lim

I→0+
g(T , I )

I
= ∂g(T , 0)

∂ I
> 0

(3.6)
for any T > 0, where h1(T ) and g1(T ) are the virus-to-cell and cell-to-cell infection
rates, respectively.

Theorem 3.1 Assume that (H1)-(H2) are satisfied. If R0 < 1, then the IFE E0 =
(T , 0, 0, 0) of (1.1) is globally asymptotically stable in C4+.

Proof In view of Lemmas 2.1 and 3.1, we only need to show that E0 is globally
attractive in �. Define a Lyapunov functional L0 : � → R by

L0(φ1, φ2, φ3, φ4) = φ2(0) + β1

μ2
h1(T )φ3(0) + kβ1

μ2
h1(T )

∫ ∞

0
f2(τ )

∫ 0

−τ

φ2(θ)dθdτ

+
∫ ∞

0
f1(τ )

∫ 0

−τ

(
h(φ1(θ), φ3(θ)) + g(φ1(θ), φ2(θ))

)
dθdτ,

where βi (i = 1, 2) and h1(T ) are defined in (2.1) and (3.6), respectively. Calculating
the time derivative of L0 along the solution of (1.1), we obtain

L ′
0 = β1

(
h(T (t), V (t)) − h1(T )V (t)

) − pI (t)Z(t)

+μ1 I (t)
(kβ1β2

μ1μ2
h1(T ) + β1g(T (t), I (t))

μ1 I (t)
− 1

)
.

The definitions of h1(T ) and g1(T ) in (3.6) and (H2) imply that h(T (t), V (t)) ≤
h1(T )V (t) and g(T (t), I (t)) ≤ g1(T )I (t) for 0 ≤ T ≤ T and I , V ≥ 0. This,
together with the definition of R0 in (2.3), yields

L ′
0 ≤ β1

(
h(T (t), V (t)) − h1(T )V (t)

) − pI (t)Z(t) + μ1 I (t)(R0 − 1) ≤ 0.

Furthermore, L ′
0 = 0 if and only if (T (t), I (t), V (t), Z(t)) ≡ (T , 0, 0, 0). Thus, the

maximal compact invariant set in {L ′
0 = 0} is the singleton {E0}. By the LaSalle

invariance principle (Hale and Verduyn Lunel 1993, Theorem 5.3.1), E0 is globally
attractive in�. Since� is absorbing in C4+, we conclude that E0 is globally attractive in
C4+. It then follows from Lemma 3.1 that the IFE E0 is globally asymptotically stable
in C4+. �
Corollary 3.1 Assume that (H1)–(H2) hold and that R0 = 1. Then the IFE E0 is
globally asymptotically stable in C4+ provided that χ > 0.
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3.2 Global stability of the IIE E1

In this subsection, we investigate the stability of the IIE E1, which exists only when
R0 > 1 and is unique if T1 ∈ Gb. Denote c0 = ∂h(T1, V1)/∂T + ∂g(T1, I1)/∂T ,
c1 = ∂g(T1, I1)/∂ I and c2 = ∂h(T1, V1)/∂V . The characteristic equation of the
linearized system of (1.1) at E1 = (T1, I1, V1, 0) is

F1(λ)F2(λ) = 0, (3.7)

where F1(λ) = λ + μ3 − q I1
∫ ∞
0 f3(τ )e−λτ dτ and

F2(λ) = (λ − b′(T1) + c0)(λ + μ1)(λ + μ2)

− (λ − b′(T1))(c1(λ + μ2) + kc2

∫ ∞

0
f2(τ )e−λτ dτ)

∫ ∞

0
f1(τ )e−λτ dτ.

From the proof of (Shu et al. 2013, Theorem 3.2), we have the following three results:
(1) all roots of F1(λ) = 0 have negative real parts if and only if RI M < 1, i.e.,
0 < qβ3 I1 < μ3 = qβ3 I2; (2) there exists at least one positive root if RI M > 1; and
(3) 0 is a simple roots and all other roots have negative real parts if RI M = 1.

We now claim that all roots of F2(λ) = 0 have negative real parts. Otherwise,
suppose that λ = a + bi is a zero of F2(λ) satisfying a ≥ 0. Note that F2(λ) = 0 can
be rewritten as PL(λ) = PR(λ), where

PL(λ) = λ − b′(T1) + c0
λ − b′(T1)

(
λ

μ1
+ 1),

PR(λ) =
(

c1
μ1

+ kc2
μ1(λ + μ2)

∫ ∞

0
f2(τ )e−λτ dτ

) ∫ ∞

0
f1(τ )e−λτ dτ.

Clearly, |PL | > 1. On the other hand, since (H2) implies that 0 < c1 ≤ g(T1, I1)/I1
and 0 < c2 ≤ h(T1, V1)/V1, we have

|PR | ≤ β1

μ1

g(T1, I1)

I1
+ kβ1β2

μ1μ2

h(T1, V1)

V1
= R(T1, I1, V1) = 1.

This leads to a contradiction. Hence, we obtain the following three results: (1) all
eigenvalues of (3.7) have negative real parts if and only if RI M < 1; (2) there exists
at least one positive eigenvalue if RI M > 1; and (3) 0 is a simple eigenvalue and all
other eigenvalues have negative real parts if RI M = 1. We use a similar argument as
in the proof of Lemma 3.2 to calculate the normal form of (1.1) at E1 when RI M = 1.
The resulting equation is given by

ż = qβ3ã

1 + q I1
∫ ∞
0 τ f3(τ )dτ

z2 + O(z3), where

ã = b′(T1) − ∂g(T1, I1)/∂T − ∂h(T1, V1)/∂T

∂g(T1, I1)/∂ I + kβ2
μ2

∂h(T1, V1)/∂V
< 0.
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Therefore, E1 of (1.1) is locally asymptotically stable if RI M = 1. To summarize, we
have the following conclusion.

Lemma 3.3 Assume that (H1)–(H2) hold. Let T1 ∈ Gb, where Gb is defined in (2.6).
Then the IIE E1 = (T1, I1, V1, 0) of (1.1) is locally asymptotically stable if RI M ≤
1 < R0 and unstable if RI M > 1.

If R0 > 1, then the infection is persistent in the sense that the virus cannot be
cleared. Denote

X1 = {
(φ1, φ2, φ3, φ4) ∈ C4+ : either I0(θ) > 0 or V0(θ) > 0 for some θ ∈ (−∞, 0]} .

(3.8)

By using (Hale and Waltman 1989, Theorem 4.1) and (Shu et al. 2018, Lemma 4.2),
we obtain the following persistence result for system (1.1).

Theorem 3.2 Assume that (H1)–(H2) hold. If R0 > 1, then there exists an η0 > 0
such that lim inf

t→∞ T (t) ≥ η0, lim inf
t→∞ I (t) ≥ η0 and lim inf

t→∞ V (t) ≥ η0 for any solution

of (1.1) with initial condition in X1.

In many models, h(T , V ) and g(T , I ) are assumed to take the following forms.

(H3)There exist p ∈ C1(R+), h0, g0 ∈ C2(R+) such that h(T , V ) = p(T )h0(V )

and g(T , I ) = p(T )g0(I ).

Theorem 3.3 Assume that (H1)–(H3) hold and T1 ∈ Gb. Let Gb and X1 be as defined
in (2.6) and (3.8), respectively. If RI M ≤ 1 < R0, then the IIE E1 = (T1, I1, V1, 0)
of (1.1) is globally asymptotically stable in X1.

Proof Theorem 2.1(ii) and Lemma 3.3 imply that the IIE E1 exists uniquely and is
locally asymptotically stable.We only need to show that E1 is globally attractive in the
positively invariant set X1. Denote u(θ) = θ −1− ln θ . It is obvious that u(θ) ≥ 0 for
θ > 0 and u(θ) = 0 if and only if θ = 1. Define a Lyapunov functional L1 : X1 → R

as

L1(φ) = β1

∫ φ1(0)

T1

(
1 − h(T1, V1)

h(s, V1)

)
ds + I1u

(
φ2(0)

I1

)
+ β1h(T1, V1)

μ2
u

(
φ3(0)

V1

)

+ p

qβ3
φ4(0) + h(T1, V1)W1

+ g(T1, I1)W2 + β1h(T1, V1)

β2

∫ ∞

0
f2(τ )

∫ 0

−τ

u

(
φ2(θ)

I1

)
dθdτ

+ p

β3

∫ ∞

0
f3(τ )

∫ 0

−τ

φ2(θ)φ4(θ)dθdτ,

where φ = (φ1, φ2, φ3, φ4) ∈ X1 and

W1 =
∫ ∞

0
f1(τ )

∫ 0

−τ

u

(
h(φ1(θ), φ3(θ))

h(T1, V1)

)
dθdτ,
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W2 =
∫ ∞

0
f1(τ )

∫ 0

−τ

u

(
g(φ1(θ), φ2(θ))

g(T1, I1)

)
dθdτ.

Lemma 2.1 and Theorem 3.2 imply that L1 is well-defined in X1. By using (H3), (2.5)
and (2.7), we calculate and simplify the time derivative of L1 along solutions of (1.1)
as

L ′
1 = β1(b(T (t)) − b(T1))

(
1 − p(T1)

p(T (t))

)
− β1h(T1, V1)

[
u

(
p(T1)

p(T (t))

)
+ u

(
h0(V1)V (t)

h0(V (t))V1

)]

+ p(I1 − I2)Z(t) − β1g(T1, I1)

[
u

(
p(T1)

p(T (t))

)
+ u

(
g0(I1)I (t)

g0(I (t))I1

)]

− g(T1, I1)
∫ ∞

0
f1(τ )u

(
g(T (t − τ), I (t − τ))I1

g(T1, I1)I (t)

)
dτ − β1h(T1, V1)

β2∫ ∞

0
f2(τ )u

(
I (t − τ)V1

I1V (t)

)
dτ

− h(T1, V1)

∫ ∞

0
f1(τ )u

(
h(T (t − τ), V (t − τ))I1

h(T1, V1)I (t)

)
dτ

+ β1h(T1, V1)W3 + β1g(T1, I1)W4,

where the functions p, h0 and g0 are defined in (H3), and

W3 =
(

h0(V (t))

h0(V1)
− 1

) (
1 − h0(V1)/V1

h0(V (t))/V (t)

)
,

W4 =
(

g0(I (t))

g0(I1)
− 1

) (
1 − g0(I1)/I1

g0(I (t))/I (t)

)
.

Assumptions (H2)–(H3) imply that p(s), h0(s) and g0(s) are strictly increasing, while
h0(s)/s and g0(s)/s are nonincreasing for s ≥ 0. Thus, we have W3 ≤ 0 and W4 ≤ 0
for any I , V > 0. Since T1 ∈ Gb, we obtain (b(T ) − b(T1))(1 − p(T1)/p(T )) ≤ 0
for any T > 0. Furthermore, by Lemma 2.2 we have I1 − I2 ≤ 0. It then follows from
the positive definiteness of u(θ) that L ′

1 ≤ 0 in X1. Note that L ′
1 = 0 if and only if

(T (t), I (t), V (t), Z(t)) ≡ (T1, I1, V1, 0). Thus, the largest compact invariant set of
{(Tt , It , Vt , Zt ) ∈ X1 : L ′

1 = 0} is the singleton {E1}. Finally, by using the LaSalle
invariance principle (Hale and Verduyn Lunel 1993) and Lemma 3.3, we obtain that
E1 is globally asymptotically stable in X1. �

3.3 Impact of the distributed delay in immune response and global stability of the
IAE E2

If RI M > 1, we obtain from Remark 2.1, Lemmas 3.1 and 3.3 that both E0 and E1
are unstable and the IAE E2 exists. Moreover, T2 ∈ Gb ensures the uniqueness of
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the positive equilibrium E2. It has been shown in (Shu et al. 2013; Wang et al. 2007;
Yang et al. 2017) that the discrete time lag in immune response may induce sustained
oscillations through Hopf bifurcation. To investigate the impact of the distributed
delays in immune response on viral infections, we set f3(τ ) = e−s3τ f̃3(τ ) and choose
f̃3(τ ) from the following three different types of kernels:

δ(τ − τ3) (delta kernel); γ e−γ τ (weak kernel); γ 2τe−γ τ (strong kernel). (3.9)

Here, s3 > 0, τ3 > 0, and γ > 0. The factor e−s3τ denotes the survival prob-
ability of the immune cell before being active. The average delay is defined as
τ3 = ∫ ∞

0 τ f̃3(τ )dτ . A simple calculation gives τ3 = 1/γ for the weak kernel and
τ3 = 2/γ for the strong kernel. We choose

b(T ) = α − dT + rT

(
1 − T

Tm

)
, g(T , I ) = k1T I , h(T , V ) = k2T V ,

f1(τ ) = f2(τ ) = δ(τ ), (3.10)

where α, d, r , Tm , k1 and k2 are positive constants. It is easy to verify that (H1)–(H3)

are satisfied. For each i = 1, 2, we can further show that Ti ∈ Gb if and only if
0 ≤ r < d

1−Ti /Tm
. Note that the intrinsic growth function of target cells b(T ) is a

monotone function for T > 0 if and only if r ∈ [0, d]. Now, we fix r ∈ [0, d
1−T2/Tm

).
If RI M > 1, then the model (1.1) admits a unique IFE E0, a unique IIE E1 and
a unique IAE E2. When the kernel function f̃3(τ ) is chosen to be the delta kernel,
the weak kernel, or the strong kernel, our simulation shows that a stable periodic
solution exists; see Fig. 1. This indicates that the immune recruitment delay may lead
to sustained oscillations.

Next, we assume f3(τ ) = δ(τ ) and rewrite the model (1.1) as

T ′(t) = b(T (t)) − g(T (t), I (t)) − h(T (t), V (t)),

I ′(t) =
∫ ∞

0
f1(τ )(g(T (t − τ), I (t − τ)) + h(T (t − τ), V (t − τ)))dτ

− μ1 I (t) − pI (t)Z(t),

V ′(t) = k
∫ ∞

0
f2(τ )I (t − τ)dτ − μ2V (t),

Z ′(t) = q I (t)Z(t) − μ3Z(t). (3.11)

It is easy to verify that the IAE E2 = (T2, I2, V2, Z2) of system (3.11) satisfies (2.7)
with β3 = 1.

Theorem 3.4 Assume that (H1)–(H2) hold. Assume further that T2 ∈ Gb, where Gb

is defined in (2.6). If RI M > 1, then the unique IAE E2 = (T2, I2, V2, Z2) of (3.11) is
locally asymptotically stable.
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Fig. 1 Stable periodic solutions of system (1.1) with the kernel function f̃3(τ ) being δ(τ − 1) (red), e−τ

(blue) and 4τe−2τ (magenta), respectively. Here, the parameter values are chosen as α = 10, d = 0.1,
r = 0.2, Tm = 1500, k1 = 0.0005, k2 = 0.0007, μ1 = 0.5, p = 0.42, k = 60, μ2 = 2.6, q = 0.2,
s3 = 0.3, and μ3 = 0.1 (color figure online)

Proof From Theorem 2.1 and T2 ∈ Gb we obtain the uniqueness of the positive
equilibrium. Denote

a0 = ∂h(T2, V2)/∂T + ∂g(T2, I2)/∂T > 0, a1 = ∂g(T2, I2)/∂ I > 0,

a2 = ∂h(T2, V2)/∂V > 0.

The characteristic equation of the linearized system of (3.11) at the IAE E2 is

F3(λ) = (λ − b′(T2) + a0)(λ + μ2) [λ(λ + μ1) + pZ2(λ + μ3)]

− λ(λ−b′(T2))
[

a1(λ+μ2)+a2k
∫ ∞

0
f2(τ )e−λτ dτ

] ∫ ∞

0
f1(τ )e−λτ dτ=0,

which can be rewritten as QL(λ) = Q R(λ), where

QL(λ) = λ − b′(T2) + a0
λ − b′(T2)

[
λ

μ1
+ 1 + pZ2

μ1
(1 + μ3

λ
)

]
,

Q R(λ) =
[

a1
μ1

+ a2k

μ1(λ + μ2)

∫ ∞

0
f2(τ )e−λτ dτ

] ∫ ∞

0
f1(τ )e−λτ dτ. (3.12)

Since T2 ∈ Gb, we obtain b′(T2) < 0. Consequently, F3(0) = pμ2μ3Z2(a0 −
b′(T2)) > 0, which implies that 0 is not an eigenvalue. We now claim that all roots of
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F3(λ) = 0 have negative real parts. Otherwise, suppose that λ = a + bi is a zero of
F3(λ) satisfying a ≥ 0. From the equilibrium equations (2.7) and (3.12), we have

|QL | > 1 + pZ2

μ1
= β1(g(T2, I2) + h(T2, V2))

μ1 I2
.

It then follows from (H2) that a1 = ∂g(T2, I2)/∂ I ≤ g(T2, I2)/I2 and a2 =
∂h(T2, V2)/∂V ≤ h(T2, V2)/V2. This, together with (3.12) and kβ2 I2 = μ2V2,
implies

|Q R | ≤ β1

μ1

g(T2, I2)

I2
+ kβ1β2

μ1μ2

h(T2, V2)

V2
= β1(g(T2, I2) + h(T2, V2))

μ1 I2
,

a contradiction. Therefore, the unique IAE E2 is locally asymptotically stable. �
To establish the persistence result for system (3.11), we define

X2 =
{
(φ1, φ2, φ3, φ4) ∈ C3+ × (0,∞) :

either I0(θ) > 0 or V0(θ) > 0 for some θ ∈ (−∞, 0]
}
. (3.13)

Theorem 3.5 Assume that (H1)–(H2) hold. If RI M > 1, then there exists a con-
stant η > 0 such that lim inf

t→∞ T (t) ≥ η, lim inf
t→∞ I (t) ≥ η, lim inf

t→∞ V (t) ≥ η and

lim inf
t→∞ Z(t) ≥ η for any solution of (3.11) with initial condition in X2.

Proof From Lemma 2.2 and RI M > 1, we have R0 > R1 > 1. It follows from
Theorem 3.2 and X2 ⊂ X1 that T (t), I (t) and V (t) are uniformly persistent. We
only need to prove that lim inf

t→∞ Z(t) ≥ η for some η > 0. According to (Hale

and Waltman 1989, Theorem 4.1), it suffices to show that W s(E1) ∩ X2 = ∅,
where W s(E1) is the stable manifold of E1. Suppose, to the contrary, there exists
a solution (T (t), I (t), V (t), Z(t)) ∈ X2 such that lim

t→∞(T (t), I (t), V (t), Z(t)) =
(T1, I1, V1, 0). Since RI M= q I1/μ3 > 1, there exist ε1 > 0 and t1 > 0 such that
q I (t) − μ3 ≥ ε1 for all t ≥ t1. Then we have

Z ′(t) = q I (t)Z(t) − μ3Z(t) ≥ ε1Z(t) for all t ≥ t1,

which contradicts to the assumption that lim
t→∞ Z(t) = 0. Hence, W s(E1) ∩ X2 = ∅.

This ends the proof. �
Theorem 3.6 Assume that (H1)–(H3) hold and T2 ∈ Gb, where Gb is defined in (2.6).
If RI M > 1, then there exists a unique IAE E2 = (T2, I2, V2, Z2) of (3.11) which is
globally asymptotically stable in X2.

Proof The existence, uniqueness and locally asymptotic stability of the IAE E2 of
system (3.11) follow from Theorem 2.1(iii) and Theorem 3.4. To prove the global
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attractivity of E2 in X2, we define a Lyapunov functional L2 : X2 → R as

L2(φ) = β1

∫ φ1(0)

T2

(
1 − h(T2, V2)

h(s, V2)

)
ds + I2u

(
φ2(0)

I2

)
+ β1h(T2, V2)

μ2
u

(
φ3(0)

V2

)

+ pZ2

q
u

(
Z(t)

Z2

)
+ h(T2, V2)

∫ ∞

0
f1(τ )

∫ 0

−τ

u

(
h(φ1(θ), φ3(θ))

h(T2, V2)

)
dθdτ

+ g(T2, I2)
∫ ∞

0
f1(τ )

∫ 0

−τ

u

(
g(φ1(θ), φ2(θ))

g(T2, I2)

)
dθdτ

+ β1h(T2, V2)

β2

∫ ∞

0
f2(τ )

∫ 0

−τ

u

(
φ2(θ)

I2

)
dθdτ,

where φ = (φ1, φ2, φ3, φ4) ∈ X2 and u(θ) = θ − 1 − ln θ . By Theorem 3.5, L2
is well-defined in X2. On account of (H3) and the equilibrium equations (2.7), we
calculate and simplify the time derivative of L2 along solutions of (3.11) as

L ′
2 = β1(b(T (t)) − b(T2))

(
1 − p(T2)

p(T (t))

)

− β1h(T2, V2)

[
u

(
p(T2)

p(T (t))

)
+ u

(
h0(V2)V (t)

h0(V (t))V2

)]

− β1g(T2, I2)

[
u

(
p(T2)

p(T (t))

)
+ u

(
g0(I2)I (t)

g0(I (t))I2

)]

− β1h(T2, V2)

β2

∫ ∞

0
f2(τ )u

(
I (t − τ)V2

I2V (t)

)
dτ

− g(T2, I2)
∫ ∞

0
f1(τ )u

(
g(T (t − τ), I (t − τ))I2

g(T2, I2)I (t)

)
dτ

− h(T2, V2)

∫ ∞

0
f1(τ )u

(
h(T (t − τ), V (t − τ))I2

h(T2, V2)I (t)

)
dτ

+ β1h(T2, V2)W5 + β1g(T2, I2)W6,

where p, h0, g0 are given in (H3), and

W5 =
(

h0(V (t))

h0(V2)
− 1

) (
1 − h0(V2)/V2

h0(V (t))/V (t)

)
,

W6 =
(

g0(I (t))

g0(I2)
− 1

) (
1 − g0(I2)/I2

g0(I (t))/I (t)

)
.

Similar as in the proof of Theorem 3.3, we obtain from (H3) and T2 ∈ Gb that L ′
2 ≤ 0.

Moreover, the largest compact invariant set of {(Tt , It , Vt , Z(t)) ∈ X2 : L ′
2 = 0} is

the singleton {E2}. Therefore, the global stability of the IAE E2 in X2 follows from
the LaSalle invariance principle (Hale and Verduyn Lunel 1993). �
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4 Viral dynamics beyond stability: Numerical explorations

In this section, we conduct numerical simulations to explore the viral dynamics beyond
stability. As an illustrative example, we choose bilinear incidence rates and quadratic
growth rate in (1.1) and consider the following system.

T ′(t) = λ − dT (t) + rT (t)

(
1 − T (t)

Tm

)
− α1T (t)V (t) − α2T (t)I (t),

I ′(t) = α1

∫ ∞

0
e−s1τ f̃1(τ )T (t − τ)V (t − τ)dτ

+ α2

∫ ∞

0
e−s1τ f̃1(τ )T (t − τ)I (t − τ)dτ − μ1 I (t) − pI (t)Z(t),

V ′(t) = k
∫ ∞

0
e−s2τ f̃2(τ )I (t − τ)dτ − μ2V (t),

Z ′(t) = q
∫ ∞

0
e−s3τ f̃3(τ )I (t − τ)Z(t − τ)dτ − μ3Z(t). (4.1)

For each i = 1, 2, 3, we choose the density function f̃i (τ ) from the following three
types of kernels:

δ(τ − τi ) (delta kernel); γi e
−γi τ (weak kernel); γ 2

i τe−γi τ (strong kernel).

Theparameter values are taken asλ = 10, d = 0.1, r = 0.2, Tm = 1500,α1 = 0.0005,
α2 = 0.0007, s1 = 0.4, μ1 = 0.5, p = 0.42, k = 60, s2 = 0.28, μ2 = 2.6, q = 0.2,
s3 = 0.3, μ3 = 0.1 unless otherwise specified.

4.1 Effects of delay in CTL immune cell recruitment on viral dynamics

If there is no delay in the recruitment of CTL immune cell, i.e., f̃3(τ ) = δ(τ ) in (4.1),
then we obtain from Theorem 3.6 that the IAE E2 is globally asymptotically stable.
If f̃3(τ ) is a discrete delta kernel with a positive time delay or a gamma distributed
kernel, then we have observed from Fig. 1 that there may exist a sustained periodic
solution.Now,we further explore the rich viral dynamics by choosing the average delay
τ3 = ∫ ∞

0 τ f̃3(τ )dτ as the bifurcation parameter. We plot the bifurcation diagrams in
Fig. 2, where the three kernels f̃i (τ ) with i = 1, 2, 3 are chosen as the delta kernels
in Fig. 2(a), the weak kernels in Fig. 2(b), and the strong kernels in Fig. 2(c). For the
weak and strong kernel cases, we observe stability switch of the IAE E2 and a stable
periodic solution exists when E2 is unstable. Similar patterns of onset and termination
of Hopf bifurcations were observed for other biological models in the literature (Liu
et al. 2015; Shu et al. 2020). For the delta kernel case, chaotic behavior is observed
before the IAE E2 regains its stability. In the simulations, we have chosen a large
logistic growth rate r = 3. If r = 0.2, then the bifurcation diagrams for all three
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Fig. 2 Bifurcation diagrams of (4.1) with τ3 as the bifurcation parameter. Three types of kernels are chosen:
a delta kernels: f̃i (τ ) = δ(τ − τi ) with i = 1, 2, 3, where τ1 = 1, τ2 = 2, and τ3 varies; b weak kernels:
f̃i (τ ) = γi e−γi τ with i = 1, 2, 3, where γ1 = 1 and γ2 = 0.5, and τ3 = 1/γ3 varies; c strong kernels:
f̃i (τ ) = γ 2

i τe−γi τ with i = 1, 2, 3, where γ1 = 2 and γ2 = 1, and τ3 = 2/γ3 varies

cases are similar and we observe no chaotic behavior for the delta kernel case. Our
simulation implies that the weak or strong kernel may not induce chaos but the delta
kernel (with a discrete delay) may induce chaos if the logistic growth rate r is large.
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4.2 Contributions of virus-to-cell and cell-to-cell modes to the production of
infected cells

In this subsection, we examine contributions from both virus-to-cell and cell-to-cell
modes to the production of newly infected cells. For each i = 1, 2, 3, the kernel f̃i (τ )

has three choices. So, there are a total of 27 combinations. As an illustration, we choose
onlyweakkernels: f̃i (τ ) = γi e−γi τ for i = 1, 2, 3.We further fixγ1 = 1 andγ3 = 0.2,
and choose four different values of γ2: 1/20, 1/40, 1/60, and 1/80, respectively. The
contributions of virus-to-cell and cell-to-cell infections are calculated by the two ratios

I1(t)
I1(t)+I2(t)

and I2(t)
I1(t)+I2(t)

, respectively, where I1(t) and I2(t) are determined by

I ′
1(t) = α1

∫ ∞

0
e−(s1+1)τ T (t − τ)V (t − τ)dτ,

I ′
2(t) = α2

∫ ∞

0
e−(s1+1)τ T (t − τ)I (t − τ)dτ,

(4.2)

where α1 = 0.0005, α2 = 0.0007, and s1 = 0.4 are fixed. The dynamics of the
percentages of infections from two modes are plotted in Fig. 3, where four different
values of γ2 are chosen. The average delay of virion maturation τ2 = 1/γ2 takes the
values 20, 40, 60, and 80, respectively. We observe from Fig. 3 that the percentage
of infection from cell-to-cell mode is increasing as τ2 increases. This is biologically
reasonable because a larger virion maturation delay reduces the survival probability
of the virus and hence decreases the percentage of infection from virus-to-cell mode.
One can also derive from (2.1) and (2.3) that both the survival probability during virion
maturation β2 = γ2/(s2 + γ2) = 1/(1+ s2τ2) and the basic reproduction number for
virus-to-cell infection Rv

0 are decreasing in τ2.
We also used different types of kernels for the cell-to-cell and virus-to-cell modes to

address the differences in the mechanisms of these two modes. We observed a similar
phenomenon that the percentage of infection from cell-to-cell mode will increase and
the percentage of infection from virus-to-cell mode will decrease if we increase the
average delay of virion maturation (figures not shown here).

Two other key parameters that affect the contributions of the two modes are α1
and α2. As indicated in Fig. 4, α1 has a positive effect on the contribution from the
virus-to-cellmode,whileα2 positively affects the contribution of the cell-to-cellmode.

4.3 Sensitive analysis

In this subsection, we employ the partial rank correlation coefficients (PRCCs)method
to perform a sensitivity analysis of the basic reproduction numbers R0 and RI M for
(4.1). The sign of PRCCs indicates the positive or negative correlation between the
basic reproduction numbers and model parameters (Guo et al. 2020). The value of
PRCCs measures the strength of the correlation; namely, a strong correlation occurs
if |PRCC| >0.4, a moderate correlation happens if 0.2< |PRCC| <0.4, and the
correlation is weak if 0< |PRCC| <0.2. We observe that the parameters Tm , α1, and
k have strong and positive impact on the basic reproduction number of infection R0;
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Fig. 3 Contributions of the virus-to-cell and cell-to-cell transmission modes to the total newly produced
infected cells with different values of the average delay of virion maturation τ2

Fig. 4 Contribution of the virus-to-cell transmission mode to the total newly produced infected cells with
varying α1 and α2. The weak kernels with γ1 = 1, γ2 = 0.5 and γ3 = 0.2 are used
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Fig. 5 Sensitivity analysis for the infection reproduction number R0 and the basic reproduction number for
immune response RI M of system (4.1). a, b The PRCCs for R0, RI M with weak kernels f̃i (τ ) = γi e−γi τ

for i = 1, 2, 3. c, d The PRCCs for R0, RI M with strong kernels f̃i (τ ) = γ 2
i τe−γi τ for i = 1, 2, 3

see Fig. 5(a)–(c), while the parameters λ and q have strong and positive impact on
the basic reproduction number for immune response RI M ; see Fig. 5(b)–(d). We also
note that R0 is positively correlated with α2 and RI M is negatively correlated with α2,
which suggest that ignoring the cell-to-cell transmission mode may underestimate the
viral infection level and overestimate the effectiveness of immune response.

4.4 Effects of antiretroviral therapy by a Filippov control

Piecewise smooth differential systems have widely used to construct mathematical
models in ecology andmedicine (Tang et al. 2012;Wang andXiao 2013). For example,
Wang and Xiao (2013) proposed an epidemic Filippov model, where the treatment
strategies were implemented once the susceptible population exceeds a critical value.
In our model with antiretroviral therapy, we will consider the treatments of HIV-1
with two major antiretroviral drugs, the reverse transcriptase inhibitors (RTIs) and the
protease inhibitors (PIs) (Perelson et al. 1997; Rong and Perelson 2009). RTIs can
block the reverse transcription and suppress the process of viral DNA to HIV RNA.
PIs can interfere with the replication of HIV protease and induce infected cells to
generate noninfectious viral particles. To include the reverse transcriptase inhibitors
in our model, we replace αi (i = 1, 2) in system (4.1) with αi (1 − ρRT ), where
ρRT ∈ (0, 1) denotes the efficacy of RTIs. Similarly, the viral production rate k is
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changed to k(1 − ρP I ) to incorporate the effects of protease inhibitors, where ρP I
is the efficacy of PIs with 0 < ρP I < 1. Following the ideas in (Kuznetsov et al.
2003), we implement the antiretroviral treatment when the viral load V exceeds a
threshold value Vc. We also choose weak kernels in (4.1); namely, f̃i (τ ) = γi e−γi τ

for i = 1, 2, 3. Hence, we reach at the following Filippov system

T ′(t) = λ − dT (t) + rT (t)

(
1 − T (t)

Tm

)
− α1(1 − σρRT )T (t)V (t)

− α2(1 − σρRT )T (t)I (t),

I ′(t) = α1(1 − σρRT )γ1

∫ ∞

0
e−(s1+γ1)τ T (t − τ)V (t − τ)dτ

+ α2(1 − σρRT )γ1

∫ ∞

0
e−(s1+γ1)τ T (t − τ)I (t − τ)dτ − μ1 I (t) − pI (t)Z(t),

V ′(t) = k(1 − σρP I )γ2

∫ ∞

0
e−(s2+γ2)τ I (t − τ)dτ − μ2V (t),

Z ′(t) = qγ3

∫ ∞

0
e−(s3+γ3)τ I (t − τ)Z(t − τ)dτ − μ3Z(t), (4.3)

where

σ =
{
0, if V (t) < Vc,

1, if V (t) > Vc.
(4.4)

We present the results of numerical simulations for the Filippov system (4.3) in Figs. 6,
7, and 8. We observe that enhancing the drug efficacy is effective in lowering the viral
loads; see Fig. 6(a). The fluctuating viral loads (with sustained oscillations) can be
reduced to a relatively low level with no fluctuations; see Fig. 6(b). In Fig. 7, we
observe that the amplitude and the average of the viral load under the uninterrupted
therapy (i.e., Vc = 0) could be larger than those under the Filippov control with a
small but positive Vc. This implies that the therapy strategy with a Filippov control is
more efficient than the uninterrupted therapy strategy in reducing the viral loads.

Now, we choose Vc as the bifurcation parameter to investigate the effects of this
threshold value on the dynamics of (4.3). It is observed fromFig. 8 that, as Vc increases,
the viral load changes from sustained oscillations to a steady state and then back to
sustained oscillations. This indicates that the choice of the control threshold Vc is
critical to maintain a low level viral load with small fluctuations.

5 Conclusion and discussion

In this paper, we proposed a general delayed viral infection model with both virus-to-
cell and cell-to-cell transmissionmodes. TheCTL immune response is also considered.
Our model incorporates three distributed time delays for viral infection, viral produc-
tion and CTLs recruitment, respectively. We have shown that the model admits three
possible equilibria: the infection-free equilibrium E0, the immune-inactivated equilib-
rium E1 and the immune-activated equilibrium E2. Based on the biologically relevant
assumptions (H1)–(H3), we proved that the existence and uniqueness, as well as the
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Fig. 6 Effects of drug efficacy on viral loads under a Filippov control. The parameter values are chosen
as Vc = 40, γ1 = 1, γ2 = 0.5, and ρRT = ρP I = ρ̄ varies from 0 to 0.5. The difference between two
subfigures lies in the choice of γ3. In a we set γ3 = 0.1 while in b we choose γ3 = 0.0125

global stability of such three equilibria, are determined by two threshold values: the
basic reproduction number for infection R0 and the basic reproduction number for
immune response RI M . We have demonstrated that: (1) the viral particles can be
cleared out (i.e., E0 is globally asymptotically stable) if R0 ≤ 1; (2) the infection
persists and the immune response is absent (i.e., E1 is globally asymptotically stable)
if RI M ≤ 1 < R0; and (3) both the viral particles and the immune cells persist (i.e., E2
is globally asymptotically stable) if RI M > 1. Since the basic reproduction number
R0 couples the contributions from both virus-to-cell and cell-to-cell transmissions, it
is indispensable to weigh both infection modes in vivo to explore the viral dynamics
and provide effective containment measures.

The works in (Chen et al. 2016; Shu et al. 2018) have revealed that the intracellular
delay and the viral production delay do not generate sustained oscillations under
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Fig. 7 Comparisons of viral loads under an uninterrupted therapy (i.e., Vc = 0) and the Filippov control
therapieswith different positive threshold values Vc . The parameter values are chosen asρRT = ρP I = 0.5,
γ1 = 1, and γ2 = 0.5. In awe set γ3 = 1 and there is no oscillation, while in bwe choose γ3 = 0.1 and there
are sustained oscillations. In (b), the red, blue, magenta and green colors correspond to Vc = 0, 10, 25, 50,
respectively, and the dashed curves denote the corresponding average values of the viral loads (color figure
online)

Fig. 8 Bifurcation diagram of (4.3). Parameter values are: ρRT = ρP I = 0.5, γ1 = 1, γ2 = 0.5, and
γ3 = 0.1

certain conditions. Similar results for the proposed model were obtained in Theorems
3.1 and 3.3. We have shown that the value of R0 decreases as the intracellular delay
or the viral production delay increases, which indicates that prolonging the time lags
during the processes of viral infection and viral production is beneficial to viral load
reduction and viral eradication. For illustration, we selected the kernel functions f̃i (τ )

(i = 1, 2, 3) as the delta function or the gamma distributions, and observed that the
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CTLs recruitment delay may induce a bubble bifurcation diagram; namely, as the
delay increases, there is a switch from a stable steady state to sustained oscillations,
and another switch back to a stable steady state; see Fig. 2.

We also compared the contributions of the virus-to-cell and the cell-to-cell infection
modes by calculating the percentages of cumulative infections caused by these two
modes. We found that the growth rate of target cells, the average intracellular delay,
and the average CTLs recruitment delay have limited impacts on the percentages of
infections, but the average viral production delay has a big impact on the relative
contributions. In particular, when the average viral production delay is large, the con-
tribution from the cell-to-cell mode may even outweigh that from the virus-to-cell
mode. This indicates that the cell-to-cell transmission route may play a significant
role in the viral dynamics and hence, we may need to find a new direction for antiviral
treatment that blocks the cell-to-cell infections. We also showed that antiretroviral
treatment strategies with a Filippov control can be used to maintain the viral load at a
low level by choosing a suitable control threshold value.
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