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Abstract
We incorporate the disease state and testing state into the formulation of a COVID-19
epidemic model. For this model, the basic reproduction number is identified and its
dependence on model parameters related to the testing process and isolation efficacy
is discussed. The relations between the basic reproduction number, the final epidemic
and peak sizes, and the model parameters are further explored numerically. We find
that fast test reporting does not always benefit the control of the COVID-19 epidemic
if good quarantine while awaiting test results is implemented. Moreover, the final
epidemic and peak sizes do not always increase along with the basic reproduction
number. Under some circumstances, lowering the basic reproduction number increases
the final epidemic and peak sizes. Our findings suggest that properly implementing
isolation for individuals who are waiting for their testing results would lower the basic
reproduction number as well as the final epidemic and peak sizes.
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1 Introduction

The Coronavirus Disease 2019 (COVID-19) was declared a global pandemic by the
World Health Organization (WHO) on March 11, 2020, and remains a global threat to
public health and economics worldwide (WHO 2022). Since early 2020, tremendous
efforts have been made to understand the spread patterns of COVID-19, and various
prevention and control strategies from mask-wearing and social distancing to massive
city lockdowns have been implemented in affected areas (Fanelli and Piazza 2020;
He et al. 2020; Jung et al. 2020; Li et al. 2020; Tang et al. 2020; Wang et al. 2020;
Wu et al. 2020). COVID-19 related data such as daily new cases, hospitalizations,
and deaths become crucial for policymakers and public health authorities to make
informed decisions on appropriate interventions and resource allocations (Farsalinos
et al. 2021).

Lab tests such as the polymerase chain reaction (PCR) test and at-home rapid tests
based either on molecular or on antigen technology have been used in many countries
to detect infection cases and assist clinical diagnosis (Web 2022). Testing processes
as well as prevention strategies and social behavior changes based on testing results
have greatly affected the dynamics of the COVID-19 epidemic (Lyng et al. 2021),
and hence, mathematical models of their effects and implications merit further study
(Akman et al. 2022; Gharouni et al. 2022).

In their recent work, Gharouni et al. proposed an SIR type model combining testing
and disease states to gain some insights into testing and isolation efficacy on the
effectiveness of controlling COVID-19 infection (Gharouni et al. 2022). Their model
used three disease states (susceptible, infectious, and recovered) and four testing states
(untested, waiting-for-positive, waiting-for-negative, and confirmed positive) to group
individuals. One assumption in this model is that the individuals who are waiting for
their test results do not change their disease states during the waiting period. This
assumption does not hold in reality because some individuals may change their disease
states; namely, an individualwhowas susceptible at the time of testingmay get infected
and become infectious during the waiting period. Since the infection happens after
the testing, this individual may end up with a negative test result. After receiving a
negative result, this individual will not self-isolate, even though is infectious. As a
result, this individual is more likely to infect other individuals.

Assigning compartment-specific relative testing weights, Gharouni et al. showed
that under some circumstances, both increased testing intensity and faster test reporting
can reduce the effectiveness of control in the sense that the basic reproduction number
would be increased (Gharouni et al. 2022). Note that the basic reproduction number
cannot fully characterize the disease dynamics (Cui et al. 2019, 2022; Shaw and
Kennedy 2021). For epidemicmodels, besides the basic reproduction number, the peak
size and the final epidemic size are also very important for controlling and assessing
the disease (Arino et al. 2007). The final epidemic size and the basic reproduction
number are in general positively related in the homogeneous models (Cui et al. 2022),
but may be negatively correlated in some heterogeneous models (Cui et al. 2022,
2019).

In what follows, we will extend the model of Gharouni et al. by assuming that
individuals may change their disease states during the waiting period and characterize
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the properties of the basic reproduction number. We will also study how parameters
related to disease states and testing states affect the final and peak sizes.

The rest of this paper is organized as follows. In Sect. 2, we formulate our model
which is governed by a system of fifteen differential equations.Model analysis, includ-
ing the well-posedness of the model and studies of the basic reproduction number and
the final epidemic size relation, is presented in Sect. 3. In Sect. 4, we carry out some
numerical simulations to explore the effects of parameters on the basic reproduction
number, the final epidemic size, and the peak size. We summarize our findings in
Sect. 5.

2 Model formulation

As in the model of Gharouni et al., we consider three disease states (Susceptible,
Infectious and Recovered). However we use a slightly different model of testing:
we set the testing states as untested, waiting for results, received negative results,
or received positive results. Let XT denote the population of each subcompartment
with X ∈ {S, I , R} indicating disease state and T ∈ {u, ws, wi , wr , n, p} indicating
testing state. Testing states are u, untested; wx , waiting with disease state x at time of
test and x ∈ {s, i, r}; n, recently received negative results; and p, recently received
positive results. Specifically, individuals waiting for test results are subdivided into
six compartments:

Sws , susceptible individuals who were tested and are waiting for testing results;
Iwi , infectious individuals who were tested and are waiting for testing results;
Iws , infectious individuals who were infected during their waiting period (the period

after the tests and before receiving testing results);
Rwr , individualswhowere recovered at their time of testing and arewaiting for testing

results;
Rwi , individuals who were infectious at their time of testing and recovered during

their waiting period;
Rws , individuals who were susceptible at their time of testing, became infectious and

recovered during their waiting period.

We further make the following assumptions:

(i) Infectivity is multiplied by factors ηw ∈ [0, 1], ηp ∈ [0, 1], respectively, in the
classes Iwi , Iws , Ip due to quarantine and isolation, that is, the force of infection
� is given by

� = β
[
Iu + ηw(Iwi + Iws ) + In + ηp Ip

]

N
, (2.1)

where ηw measures quarantine efficacy during the waiting period and ηp mea-
sures isolation efficacy for testing positive individuals, and N is the total
population;

(ii) Infection-induced death is negligible;
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Fig. 1 Flow diagram for the transmission and testing of COVID-19

(iii) Random testing (Web 2022) is conducted across the untested population, namely,
each untested individual is equally likely to get tested.

Note that ηw= 0 or ηp = 0 means the quarantine or isolation is perfect, ηw= 1 or
ηp = 1 means no quarantine or isolation at all; ρs= 1 or ρr = 1 means a susceptible
(recovered) individual receives a negative testing result; ρi = 1 means an infectious
individual receives a positive testing result (The test is 100% accurate).

Our model consists of the following system of differential equations. See Fig. 1 for
an illustration of the progression of individuals through testing and disease states.

dSu
dt

= −�Su − θ Su + ω1Sn + ω2Sp,

dSws

dt
= −ηw�Sws + θ Su − αSws ,

dSn
dt

= −�Sn + ρsαSws − ω1Sn,

dSp
dt

= −ηp�Sp + (1 − ρs)αSws − ω2Sp,

d Iu
dt

= �Su − θ Iu + ω1 In + ω2 Ip − γ Iu,
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d Iwi

dt
= θ Iu − α Iwi − γ Iwi ,

d Iws

dt
= ηw�Sws − α Iws − γ Iws ,

d In
dt

= �Sn + (1 − ρi )α Iwi + ρsα Iws − ω1 In − γ In,

d Ip
dt

= ηp�Sp + ρiα Iwi + (1 − ρs)α Iws − ω2 Ip − γ Ip,

dRu

dt
= γ Iu − θRu + ω1Rn + ω2Rp,

dRwr

dt
= θRu − αRwr ,

dRwi

dt
= γ Iwi − αRwi ,

dRws

dt
= γ Iws − αRws ,

dRn

dt
= γ In + ρrαRwr + (1 − ρi )αRwi + ρsαRws − ω1Rn,

dRp

dt
= γ Ip + (1 − ρr )αRwr + ρiαRwi + (1 − ρs)αRws − ω2Rp, (2.2)

with the nonnegative initial conditions

Su(0) = N − Iu0, Sws (0) = 0, Sn(0) = 0, Sp(0) = 0,

Iu(0) = Iu0, Iwi (0) = 0, Iws (0) = 0, In(0) = 0, Ip(0) = 0,

Ru(0) = 0, Rwr (0) = 0, Rwi (0) = 0, Rws (0) = 0, Rn(0) = 0, Rp(0) = 0.

Since the total population is conserved, we can assume without loss of generality
N = 1. The parameters appearing in System (2.2) are presented in Table 1.

3 Model analysis

For convenience, we set

Q1 = {u, ws, n, p}, Q2 = {u, wi , ws, n, p} and Q3 = {u, wr , wi , ws, n, p}.

First, we show that our model (2.2) is well posed and the disease eventually dies out.

Theorem 3.1 For any nonnegative initial condition, System (2.2) possesses a unique
solution, which remains nonnegative and is bounded for t ≥ 0. Moreover,
lim

t→+∞ I j (t) = 0, j ∈ Q2, lim
t→+∞ Rwi (t) = 0 and lim

t→+∞ Rws (t) = 0.

Proof Using the proof similar to (Ji et al. 2022, Theorem 3.1), one can show that
System (2.2) possesses a unique solution, which remains nonnegative for any given
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Table 1 Model parameters

Symbol Description Value/Source

β Transmission rate [0.5, 1.5] day−1 Eikenberry et al. (2020)

γ Recovery rate [0.071, 0.33] day−1 Eikenberry et al. (2020)

θ Testing rate [0.2, 0.5] day−1 [Assumed]

ω1 Rate back to untested group for 0.25 day−1 [Assumed]

individuals with negative results

ω2 Rate back to untested group for 0.071 day−1 WHO (2022)

individuals with positive results

α Rate of test return [0.33, 1] day−1 Web (2022)

ρi Testing accuracy for infectious individuals [0.7, 0.9] Homza et al. (2021)

ρs Testing accuracy for susceptible individuals [0.7, 0.9] Homza et al. (2021)

ρr Testing accuracy for recovered individuals [0.7, 0.9] Homza et al. (2021)

ηw Quarantine efficacy during the waiting period [ηp, 1] [Assumed]

ηp Isolation efficacy for testing positive individuals [0, ηw] [Assumed]

nonnegative initial condition. In addition, this solution is bounded since the total
population is conserved.Adding all S-component and I -component equations of (2.2),
we obtain

d
(∑

i∈Q1
Si (t) + ∑

j∈Q2
I j (t)

)

dt
= −γ (

∑

j∈Q2

I j (t)) ≤ 0. (3.1)

Therefore,
∑

i∈Q1
Si (t) + ∑

j∈Q2
I j (t) is decreasing. This, together with the non-

negativity, shows that the limit of
∑

i∈Q1
Si (t) + ∑

j∈Q2
I j (t) as t → +∞ exists.

According to the Fluctuations Lemma (Hirsch et al. 1985), we conclude that

lim
t→+∞

d(
∑

i∈Q1
Si (t) + ∑

j∈Q2
I j (t))

dt
= 0,

which implies lim
t→+∞ I j (t) = 0, for any j ∈ Q2 via (3.1). That is to say for any ε > 0,

there exists a T > 0 such that I j (t) < ε/γ holds for t > T . In addition, from the
equations of Rwi and Rws in System (2.2), we have

dRwi (t)

dt
< ε − αRwi (t), and

dRws (t)

dt
< ε − αRws (t)

for t > T . Consequently, the comparison principle gives lim supt→+∞ Rwi (t) ≤ ε/α

and lim supt→+∞ Rws (t) ≤ ε/α. Since ε > 0 can be arbitrarily small, we obtain
Rwi (t), Rws (t) → 0, as t → +∞. ��
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In the following theorem, we investigate the dependence of the basic reproduction
numberR0 on the model parameters. The calculation ofR0 and proof of this theorem
are given in the appendix.

Theorem 3.2 The partial derivatives of the basic reproduction number R0 given in
(A.1) with respect to model parameters have the following properties.

(1) DηwR0 ≥ 0 and DηpR0 ≥ 0;
(2) If ηw ≥ ηp, then DρiR0 ≤ 0 and DρsR0 ≥ 0;
(3) Assume ρi = ρs = 1 and ηp = 0. Then DθR0 ≤ 0, Dω1R0 ≤ 0 and Dω2R0 ≥ 0.

Further, if ηw = 0, then DαR0 ≥ 0 and if ηw = 1, then DαR0 ≤ 0.

Remark 3.3 Theorem 3.2 implies that improving isolation efficacy of individuals
receiving positive test results or quarantine efficacy of individuals awaiting for their
test results, by decreasing ηp and/or ηw, respectively, always decreases the basic
reproduction number. If individuals with positive test results have better isolation than
those in the waiting period (ηp ≤ ηw), then increasing accuracy of tests for infectious
individuals (increasing test sensitivity) or reducing accuracy of tests for susceptible
ones (reducing test specificity) lowers R0. If isolation of individuals with positive
test results is perfect and testing is 100% accurate, increasing the testing rate, θ , or
lengthening the isolation period (decreasingω2) decreasesR0. Meanwhile, increasing
ω1, the rate back to untested group for individuals with negative results, will also help
reducing the value of R0. Further, the relation between R0 and test turnaround time,
α, depends on the quarantine efficacy, ηw: if individuals are perfectly quarantined
while waiting for their test results (ηw = 0), then a slower test turnaround (a longer
wait for test results, or equivalently, a lower value for α) leads to a lower R0; while
if individuals do not self-quarantine at all while waiting for their test results, then a
faster return of test results leads to a lower R0.

Theorem 3.1 implies the disease dies out eventually. After the epidemic passes, it
is of great importance to find the number of individuals who were infected during the
epidemic period, that is, the final epidemic size, F , defined as

F =
∑

i∈Q1

Si (0) − lim
t→+∞

∑

i∈Q1

Si (t).

Let S(t) = ∑
i∈Q1

Si (t), I (t) = ∑
j∈Q2

I j (t), and R(t) = ∑
k∈Q3

Rk(t). From
System (2.2), the dynamics of S, I and R are then governed by

dS(t)

dt
= −�

(
Su(t) + ηwSws (t) + Sn(t) + ηpSp(t)

)
,

d I (t)

dt
= �

(
Su(t) + ηwSws (t) + Sn(t) + ηpSp(t)

) − γ I (t),

dR(t)

dt
= γ I (t),

(3.2)

together with the nonnegative initial conditions S(0) = Su(0), I (0) = Iu(0), R(0) =
0. Theorem 3.1 states that the solution of (2.2) is nonnegative, which implies that
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dS(t)/dt ≤ 0. This, together with 0 ≤ S(t) ≤ 1, shows that limt→+∞ S(t) := S(∞)

exists.

Theorem 3.4 Suppose ηw > 0 and ηp > 0 and set η = min{ηw, ηp}. Then the final
epidemic size F of System (2.2) satisfies

Su(0) − S2(∞) ≤ F ≤ Su(0) − S1(∞),

where S1(∞) and S2(∞) are, respectively, the roots of the two closely related final
epidemic size relations given below

ln
Su(0)

S1(∞)
= β

γ

[
η2(Su(0) − S1(∞)) + Iu(0)

]
,

ln
Su(0)

S2(∞)
= β

γ

[
Su(0) − S2(∞) + η2 Iu(0)

]
.

Proof Assume ηw 	= 0 and ηp 	= 0 and set η = min{ηw, ηp}. We next estimate
the lower and upper bounds of S(∞). Let (S1(t), I1(t), R1(t)) be the solution to the
following system

S′
1 = −βS1 I1,

I ′
1 = βη2S1 I1 − γ I1,

R′
1 = γ I1,

(3.3)

with the nonnegative initial conditions

S1(0) = Su(0), I1(0) = Iu(0), R1(0) = 0. (3.4)

By a similar approach as in the proof of Theorem 3.1, we obtain

lim
t→+∞ I1(t) = 0.

Adding the first two equations of (3.3) leads to

η2S′
1 + I ′

1 = −γ I1. (3.5)

It follows from (3.5) that

∞∫

0

(η2S′
1(t) + I ′

1(t))dt = −γ

∞∫

0

I1(t)dt .

By (3.4), we get

∞∫

0

I1(t)dt = η2S1(0) + I1(0) − η2S1(∞) − I1(∞)

γ
= η2Su(0) + Iu(0) − η2S1(∞)

γ
.
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Integrating the first equation of System (3.3) then yields

ln
Su(0)

S1(∞)
= β

∞∫

0

I1(t)dt = β

γ

[
η2(Su(0) − S1(∞)) + Iu(0)

]
. (3.6)

A comparison implies S(t), the solution of (3.2), satisfies S(t) ≥ S1(t) for t ≥ 0,
which yields limt→+∞ S(t) ≥ limt→+∞ S1(t) := S1(∞). In a similar manner, we
can prove S(t) ≤ S2(t), that is, S(∞) ≤ limt→+∞ S2(t) := S2(∞), where S2(t) is
the solution to the following system

S′
2 = −βη2S2 I2,

I ′
2 = βS2 I2 − γ I2,

R′
2 = γ I2,

with the nonnegative initial conditions

S2(0) = Su(0), I2(0) = Iu(0), R2(0) = 0;

and S2(∞) satisfies

ln
Su(0)

S2(∞)
= β

γ
[Su(0) − S2(∞) + η2 Iu(0)]. (3.7)

This completes the proof. ��

4 Numerical simulations

In this section, we numerically explore the dynamics of System (2.2). The parameter
values used for simulations are listed in Table 1, of which, four parameter values are
assumed for illustration purposes as no related references on these parameters are
available. In practice, the individuals with positive results will be isolated and the
individuals with negative results will not be isolated. Thus, we are more interested
in the effects of parameters related to the testing states of waiting, (α, ηw, θ), on the
dynamics of System (2.2).

We first take β = 0.5, ω1 = 0.25, ω2 = 0.071, γ = 0.3, ηp = 0.4 and examine
howR0 depends on ηw ∈ [0, 1] and α. Figure2a plotsR0 as a function of α and ηw in
three-dimensional space, where θ = 0.5, ρi = 0.8, ρs = 0.8 from Table 1 are used.
If we fix ηw = 0.75, then, as seen in Fig. 2b, R0 increases in α for α ∈ [0, 0.28] and
decreases in α for α ∈ [0.28, 1].

Set α = 0.5, ηw = 0.7.R0 is a decreasing function of θ under the following three
cases:

(i) For any ρs ∈ [0, 1], fix ρi = 0.8 and ηp = 0.4, see Fig. 3a;
(ii) For any ρi ∈ [0, 1], fix ρs = 0.8 and ηp = 0.4, see Fig. 3b;
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Fig. 2 The dependency of R0 on α. Parameter values are β = 0.5, ω1 = 0.25, ω2 = 0.071, γ = 0.3,
ηp = 0.4, ρi = 0.8, ρs = 0.8 and θ = 0.5

(iii) For any ηp ∈ [0, ηw], fix ρi = 0, 8 and ρs = 0.8, see Fig. 3c.

Fig. 3d depicts the values of R0 for different values of ρi , ρs, ηp selected from the
above three cases.

We denote the peak size by P = maxt≥0(
∑

j∈Q2
I j (t)) and numerically demon-

strate how α affects the final epidemic size, F , and the peak size, P . We choose the
initial condition Su(0) = 1 − 10−4, Sws (0) = Sn(0) = Sp(0) = 0, Iu(0) = 10−4,
Iwi (0) = Iws (0) = In(0) = Ip(0) = 0, Ru(0) = Rwr (0) = Rwi (0) = Rws (0) =
Rn(0) = Rp(0) = 0, and take θ = 0.2, β = 0.5, γ = 0.2, ω1 = 0.25, ω2 =
0.071, ρi = 0.8, ρs = 0.8, ρr = 0.8, ηp = 0.4. Figure 4a–d indicates that as α

increases in [0.33, 1],
(i) F , P and R0 decrease for ηw = 0.82; see Fig. 4a–b.
(ii) F , P and R0 increase for ηw = 0.6; see Fig. 4c–d.
(iii) F and P have a positive correlation with R0 for ηw = 0.82 or ηw = 0.6; see

Fig. 4a–d.

As shown in Fig. 4e–f, the final epidemic sizeF and the peak sizeP are non-monotonic
with respect to α for ηw = 0.75. For α ∈ [0.33, 1], we observe that
(i) F is increasing for α ∈ [0, 33, 0.464] and decreasing for α ∈ (0.464, 1]; F has

a positive correlation withR0 for α ∈ [0.33, 0.464]∪ [0.6047, 1] and a negative
correlation for α ∈ (0.464, 0.6047); see Fig. 4e.

(ii) P increases for α ∈ [0.33, 0.7923] and decreases for α ∈ (0.7923, 1]; P and
R0 are positively correlated for α ∈ [0.33, 0.6047] ∪ [0.7923, 1] and negatively
correlated for α ∈ (0.6047, 0.7923); see Fig. 4f.

This observation indicates that F and P are not always positively related to R0 and
the value of ηw plays an important role to determine the relation. Under some circum-
stances (better quarantine while awaiting test results), faster test reporting (shorter
waiting period) may reduce the effectiveness of control (See Fig. 4c–d). The basic
reproduction number,R0, alone does not completely characterize the disease dynam-
ics and lowering the basic reproduction number may increase the final epidemic size
and the peak size (see Fig. 4e–f).
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Fig. 3 The effect of θ on the basic reproduction number. The parameter values are β = 0.5, α = 0.5, ω1 =
0.25, ω2 = 0.071, γ = 0.3, ηw = 0.7; for a, ρi = 0.8, ηp = 0.4 and ρs ∈ [0, 1]; for b, ρs = 0.8,
ηp = 0.4 and ρi ∈ [0, 1] for c, ρi = ρs = 0.8 and ηp ∈ [0, ηw]

Finally, we explore how ηw, θ affect F , P and peak time T at which
∑

j∈Q2
I j (t)

achieves its peak value. We observe that

(i) F , P and R0 increase, but T decreases as ηw increases; see Fig. 5a–c;
(ii) F , P and R0 decrease, but T increases as θ increases; see Fig. 5d–f;
(iii) F andP are positively correlated withR0, and T has a negative correlation with

R0 (see Fig. 5a–f).

5 Summary and discussion

In this work, we incorporated testing processes into an SIR model to explore the
dynamics of the COVID-19 epidemic. Focusing on some parameters related to the
testing process, several results concerning the basic reproduction number, R0, the
final epidemic size, F , and the peak size, P , were obtained.

We find that if good quarantine while awaiting test results is implemented (small
ηw), then slower but more accurate test reporting increases the effectiveness of control
(lowers the basic reproduction number). One interesting finding is that under some
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Fig. 4 The effect of α on final epidemic size and peak size for different ηw . The parameter values are
α ∈ [0.33, 1], θ = 0.2, β = 0.5, γ = 0.2, ω1 = 0.25, ω2 = 0.071, ρi = 0.8, ρs = 0.8, ρr = 0.8 and
ηp = 0.4

circumstances, the faster test reporting is (higher α), the smaller the basic reproduction
number, R0, but the larger the final epidemic size, F (see Fig. 4e–f). This suggests
that lowering the basic reproduction number may increase the final epidemic size if
isolation and test reporting are not properly managed.

Our findings suggest that the effectiveness of control will be improved by increasing
the testing rate and increasing test sensitivity. This is not surprising as both lead to
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Fig. 5 Effect of ηw and θ on the final epidemic size, peak size, and peak time. Parameter values are
α = 0.5, β = 0.5, γ = 0.2, ω1 = 0.25, ω2 = 0.071, ρi = 0.8, ρr = 0.8, ρs = 0.8, ηp = 0.4; for a–c,
ηw ∈ [0.4, 1] and θ = 0.2; for d–f, θ ∈ [0.2, 0.5] and ηw = 0.7

faster and more reliable identification of infected individuals. On the other hand, it
is important that implement good self-quarantine by individuals who were tested but
haven’t received their testing results. Perhaps perversely, our model shows a benefit
of delaying tests returns and reduced test specificity if strict self-quarantine is adhered
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to while awaiting results. In practice, our expectation is that this would reduce public
confidence in testing and lead to reduced adherence to self-quarantine.

We point out that our model can speculate on effect of including more disease states
such as exposed, infectious but asymptomatic, and infectious with symptoms (Ge et al.
2020). Our analysis extends the results of Arino et al. (2007) to allow for transitions
between susceptible states, but does not incorporate their generality of disease states.
Our future work will close this gap.
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Appendix

A Calculation of basic reproduction number

We calculate the basic reproduction number by the next generation matrix method
(van den Driessche and Watmough 2002). It is readily seen that System (2.2) has a
unique disease-free equilibrium (DFE), which is the solution of

θ S∗
u = ω1S

∗
n + ω2S

∗
p,

θ S∗
u = αS∗

ws
,

ρsαS
∗
ws

= ω1S
∗
n ,

(1 − ρs)αS
∗
ws

= ω2S
∗
p,

with S∗
u + S∗

ws
+ S∗

n + S∗
p = 1. Specifically, the DFE is given by

E0 = (S∗
u , S

∗
ws

, S∗
n , S

∗
p, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

where

S∗
ws

= θ

α
S∗
u , S∗

n = ρsθ

ω1
S∗
u , S∗

p = (1 − ρs)θ

ω2
S∗
u , and S∗

u = 1

1 + θ
(
1
α

+ ρs
ω1

+ 1−ρs
ω2

) .

The Jacobian matrix associated with the infectious compartments at E0 is given by

J =

⎛

⎜
⎜⎜⎜
⎝

βS∗
u − θ − γ βηwS∗

u βηwS∗
u βS∗

u + ω1 βηp S∗
u + ω2

θ −α − γ 0 0 0
βηwS∗

ws
βη2wS∗

ws
βη2wS∗

ws
− α − γ βηwS∗

ws
βηwηp S∗

ws

βS∗
n βηwS∗

n + (1 − ρi )α βηwS∗
n + ρsα βS∗

n − ω1 − γ βηp S∗
n

βηp S∗
p βηpηwS∗

p + ρiα βηpηwS∗
p + (1 − ρs)α βηp S∗

p βη2p S
∗
p − ω2 − γ

⎞

⎟
⎟⎟⎟
⎠

.
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We decompose J = F − V , where

F = β

⎛

⎜⎜⎜⎜
⎝

S∗
u ηwS∗

u ηwS∗
u S∗

u ηpS∗
u

0 0 0 0 0
ηwS∗

ws
ηwηwS∗

ws
ηwηwS∗

ws
ηwS∗

ws
ηwηpS∗

ws

S∗
n ηwS∗

n ηwS∗
n S∗

n ηpS∗
n

ηpS∗
p ηpηwS∗

p ηpηwS∗
p ηpS∗

p ηpηpS∗
p

⎞

⎟⎟⎟⎟
⎠

,

and

V =

⎛

⎜⎜⎜⎜
⎝

θ + γ 0 0 −ω1 −ω2
−θ α + γ 0 0 0
0 0 α + γ 0 0
0 −(1 − ρi )α −ρsα ω1 + γ 0
0 −ρiα −(1 − ρs)α 0 ω2 + γ

⎞

⎟⎟⎟⎟
⎠

.

R0 is the spectral radius of FV−1 (van den Driessche and Watmough 2002), defined
by R0 = r(FV−1). Note that F = βFT

1 F2, where F1 = (S∗
u , 0, ηwS∗

ws
, S∗

n , ηpS∗
p)

and F2 = (1, ηw, ηw, 1, ηp) are two row vectors. It follows from (Osnaga 2005,
Proposition 1) that R0 = r(βFT

1 F2V−1) = βF2V−1FT
1 . Denote ᾱ = α/(α + γ ),

θ̄ = θ/(θ + γ ), ω̄1 = ω1/(ω1 + γ ), and ω̄2 = ω2/(ω2 + γ ). We also set D =
diag

(
(1 − θ̄ )−1, (1 − ᾱ)−1, (1 − ᾱ)−1, (1 − w̄1)

−1, (1 − w̄2)
−1

)
, Wi = ω̄1ᾱ(1 −

ρi ) + ω̄2ᾱρi , Ws = ω̄2ᾱ(1 − ρs) + ω̄1ᾱρs , W1 = ᾱ(1 − ρs) + ω̄1ᾱ
2θ̄ (ρi + ρs − 1),

W2 = ω̄2ā2θ̄ (1 − ρi − ρs) + ᾱρs , and

V̄ =

⎛

⎜
⎜⎜⎜
⎝

1 0 0 −ω̄1 −ω̄2

−θ̄ 1 0 0 0
0 0 1 0 0
0 −(1 − ρi )ā −ρs ā 1 0
0 −ρi ā −(1 − ρs)ā 0 1

⎞

⎟
⎟⎟⎟
⎠

.

We observe V = γ V̄ D and V−1 = (1/γ )D−1V̄−1, where

V̄−1 = 1

1 − Wi θ̄
×

⎛

⎜⎜
⎜⎜
⎝

1 Wi Ws ω̄1 ω̄2

θ̄ 1 Ws θ̄ ω̄1θ̄ ω̄2θ̄

0 0 1 − Wi θ̄ 0 0
ᾱθ̄ (1 − ρi ) ā(1 − ρi ) W2 1 − ω̄2ᾱθ̄ρi ω̄2ᾱθ̄ (1 − ρi )

ᾱθ̄ρi ρi ā W1 ω̄1ᾱθ̄ρi 1 − ω̄1ᾱθ̄ (1 − ρi )

⎞

⎟⎟
⎟⎟
⎠

.

Consequently,

R0 = β

γ
F2D

−1V̄−1FT
1 . (A.1)
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B Proof of Theorem 3.2 (1)

We observe that in (A.1), D−1V̄−1 is nonnegative and independent of the ηw and ηp.
Then R0 is a quadratic polynomial in ηw or ηp. Hence, the derivative of R0 with
respect to ηw or ηp is nonnegative.

C Proof of Theorem 3.2 (2)

By simple calculations, we obtain

DρiR0 = −ω1ω2α
2βθcρi

3 cρi
4

γ (α + γ )(cρi
1 )2cρi

2

, (C.1)

where

cρi
1 = (ω2 + γ )

[
(α + γ )(θ + γ + ω1) + θω1

] + αρiθ(ω1 − ω2),

cρi
2 = ω1 [ω2(α + θ) + αθ(1 − ρs) + ω2αθρs] ,

cρi
3 = (1 − ηp)(α + γ )(ω1 + θ + γ ) + ω2θ(1 − ηw) + ω1θ(ηw − ηp),

and

cρi
4 = ω1

[
ω2(α + γ + ηwθ) + cρi

41

] + ω2c
ρi
42 + cρi

40;

see expressions of cρi
4 j , j = 0, 1, 2 in Table 2. It is readily seen that for j = 0, 1, 2,

cρi
4 j ≥ 0 since ρs ∈ [0, 1], which implies cρi

4 ≥ 0. If further ηw ≥ ηp and ρi , ηp, ηw ∈
[0, 1], then cρi

k ≥ 0, k = 1, 2, 3 holds. Hence, by (C.1), we derive DρiR0 ≤ 0 if
ρi , ρs, ηw, ηp ∈ [0, 1] and ηw ≥ ηp.

We next take the derivative ofR0 with respect to ρs , and get

DρsR0 = ω1ω2αβθ

γ (α + γ )cρi
1 (cρi

2 )2

{
ω2
1

[
ω2c

ρs
1 + cρs

2

] + ω1

[
ω2
2c

ρs
3 + ω2c

ρs
4 + cρs

5

]

+θ
[
αγ (α + γ )2(1 − η2p)(θ + γ ) + ω2

2c
ρs
6 + ω2c

ρs
7

]}
, (C.2)

where

cρs
1 = α3(1 − ηp) + α2cρs

12 + αcρs
11 + cρs

10,

cρs
2 = γ 2(η2w − η2p)θ(θ + γ ) + α3(1 − ηp)(γ + γ ηp + ηpθρi ) + α2cρs

22 + αcρs
21,

cρs
3 = θ(1 − ηw)

{
α2 + α

[
2γ (1 + ηw) + ηwθ

] + γ (γ + γ ηw + 2ηwθ)
}

,

cρs
4 = α3(1 − ηp)

[
γ + θ(2 − ρi )

] + α2
[
cρs
40 + θcρs

41 + θ2cρs
42

]
+ αcρs

43 + cρs
44,

cρs
5 = (α + γ )

{
γ 2(η2w − η2p)θ(θ + γ ) + αcρs

51 + α2cρs
52

}
,
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Table 2 The expressions of bθ
i j and c

ρi
4 j

Notation Expression

bθ
10 γ 2(1 + ηw) + 2γ (1 + ηw)θ + 2ηwθ2

bθ
11 γ (3 + ηw) + 2(1 + ηw)θ

bθ
20 2γ 2(1 − ηw)

[
γ 2(1 + ηw) + 2γ θ(1 + ηw) + 2ηwθ2

]

bθ
21 2γ (1 − ηw)

[
2γ 2(2 + ηw) + 5γ θ(1 + ηw) + 3ηwθ2

]

bθ
22 γ 2(11 − 8ηw − 2η2w) + 2γ (4 − 3η2w)θ + (2 − ηw)ηwθ2

bθ
30 γ (1 − ηw)

[
γ 2(1 + ηw) + 2γ θ(1 + ηw) + 2ηwθ2

]

bθ
31 (1 − ηw)

[
γ 2(3 + ηw) + 4γ θ(1 + ηw) + 2ηwθ2

]

bθ
41 γ (1 − ηw)

[
2γ 2(2 + ηw) + 2γ θ(3 + ηw) + (2 + ηw)θ2

]

bθ
42 (1 − ηw)

[
γ 2(5 + ηw) + 6γ θ + θ2(1 + ηw)

]

bθ
51 γ (1 − ηw)

[
2γ 2(3 + ηw) + 2γ θ(5 + ηw) + θ2(3 + 2ηw)

]

bθ
52 γ 2(5 − 4ηw) + γ θ(8 − 6ηw) + θ2(1 + ηw)

bθ
61 γ (1 − ηw)

[
γ 2(3 + ηw) + 2γ θ(3 + ηw) + 2θ2(1 + ηw)

]

bθ
62 γ 2(3 − 2ηw) + γ θ(6 − 4ηw) + θ2

c
ρi
40 γ (α + γ )

[
γ + θ(ηp + ρs − ηpρs )

]

c
ρi
41 α

[
γ + ηpθ(1 − ρs )

] + γ
[
γ + θ(ηp − ηpρs + ηwρs )

]

c
ρi
42 α(γ + θρs ) + γ

[
γ + θ(ηw + ρs − ηwρs )

]

cρs
6 = (1 − ηw)

[
α2(2γ + θ − θρi ) + αcρs

61 + γ 2(1 + ηw)(θ + γ )
]
,

and

cρs
7 = (α + γ )

[
α2cρs

72 + αcρs
71 + γ 2(1 − η2w)(θ + γ )

]
;

see the expressions of cρs
i j in Table 3.We claim in cρs

43, d1 = ηp(2ρi−1−4ηw)+ηw(4+
ηw − 2ηwρi ) ≥ 0. If (2ρi − 1− 4ηw) ≥ 0, it obviously holds; if 2ρi − 1− 4ηw < 0,
then ηw ≥ ηp and ηw ∈ [0, 1] yield ηp ≤ ηw ≤ ηw(4+ηw −2ηwρi )/(1+4ηw −2ρi ),
which is equivalent to d1 > 0. Note that ηw, ηp, ρi ∈ [0, 1] and ηw ≥ ηp. Therefore,
cρs
i j ≥ 0, cρs

i ≥ 0 for 1 ≤ i ≤ 7, 1 ≤ j ≤ 3. It follows from (C.2) that DρsR0 ≥ 0.

D Proof of Theorem 3.2 (3)

We first calculate DθR0, Dω1R0 and Dω2R0 when ρi = ρs = 1 and ηp = 0. Then,
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Table 3 The expressions of cρsi j

Notation Expression

cρs10 γ θ(ηw − ηp)(γ + γ ηw + 2ηwθ)

cρs11 γ (1 − ηp)[γ + ηw(θ + γ )] + (ηw − ηp)θ
[
2γ (1 + ηw) + ηwθ

]

cρs12 γ (1 − ηp)(2 + ηw) + θ
(
ηw − ηp + ηw(1 − ηp)

)

cρs21 γ
{
γ 2(1 − η2p) + γ θ(η2w − η2p + 2ηw − 2η2p) + θ2(1 + ρi )(η

2
w − η2p)

}

cρs22 2γ 2(1 − η2p) + ηp(ηw − ηp)θ
2ρi + γ θ

[
2(ηw − η2p) + ηpρi (1 − ηp)

]

cρs40 γ 2(1 − ηp)(2 + ηw)

cρs41 γ (1 − ηp)(4 + 3ηw − ρi )

cρs42 (ηw − ηp)(1 − ρi ) + ηw(1 − ηp) + ηpρi (1 − ηw)

cρs43 γ
{
γ (1 − ηp)

[
γ (1 + ηw) + (3 + 4ηw)θ

] + θ2[ηp(2ρi − 1 − 4ηw) + ηw(4 + ηw − 2ηwρi )]
}

cρs44 γ 2(1 − ηp)θ(γ + γ ηw + 2ηwθ)

cρs51 γ (θ + γ )
[
γ (1 − η2p) + 2θ(ηw − η2p)

]

cρs52 (1 − ηp)
[
γ 2(1 + ηp) + γ θ(2 + 2ηp − ρi ) + ηpθ

2ρi

]

cρs61 γ
[
γ (3 + ηw) + (1 + ηw)θ(2 − ρi )

]

cρs72 (1 − ηp)(θ + γ + γρi − θρi )

cρs71 γ
[
γ (3 − ηp − ηw − ηpηw) + 2θ(1 − ηpηw)

]

DθR0 = −ω1αβ
{
bθ
0 + ω2

1

[
ω2
2b

θ
1 + ω2bθ

2 + bθ
3

] + ω1
[
ω2
2b

θ
4 + ω2bθ

5 + bθ
6

]}

γ (ω1 + γ )(α + γ ) [αθ + ω1(α + θ)]2
[
(α + γ )(θ + γ ) + ω2(α + γ + θ)

]2 ,

(D.1)

where

bθ
0 = ω2α

2(α + γ )θ2
[
(ω2 + γ )(1 − ηw) + α

]
,

bθ
1 = (α + γ )(1 − ηw)(2α2 + bθ

10 + αbθ
11),

bθ
2 = α4 + α3 [

γ (6 − 4ηw) + 2θ
] + α2bθ

22 + αbθ
21 + bθ

20,

bθ
3 = γ (α + γ )

{
α3 + α2 [

γ (3 − 2ηw) + 2θ
] + αbθ

31 + bθ
30

}
,

bθ
4 = 2α3(1 − ηw)(θ + γ ) + α2bθ

42 + αbθ
41 + γ 2(1 − η2w)(θ + γ )2,

bθ
5 = (α + γ )

[
α3(γ + 2θ) + α2bθ

52 + αbθ
51 + 2γ 2(1 − η2w)(θ + γ )2

]
,

and

bθ
6 = γ (α + γ )

[
γ 2(1 − η2w)(θ + γ )2 + α3(γ + 2θ) + α2bθ

62 + αbθ
61

]
;
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see the expressions of bθ
i j in Table 2. It follows from ηw ∈ [0, 1] that for 1 ≤ i ≤ 6

and 0 ≤ j ≤ 2 all the above bθ
i j ≥ 0, which implies bθ

i ≥ 0. Then, DθR0 ≤ 0 if
ρi = ρs = 1, ηp = 0. A simple calculation yields

Dω2R0 = ω1α
2βθ(α + γ + ηwθ)

[
(α + γ )(θ + γ ) + ω1(α + γ + ηwθ)

]

γ (ω1 + γ )(α + γ ) [αθ + ω(α + θ)]
[
(α + γ )(θ + γ ) + ω2(α + γ + θ)

]2 .

We obtain from the above equation that Dω2R0 ≥ 0. Moreover, we have

Dω1R0 = −αβθ2
{
γ

[
ω2b

ω1
0 + bω1

1

] + ω2
1

[
ω2b

ω1
2 + bω1

3

] + 2ω1γ
[
ω2b

ω1
4 + bω1

5

]}

γ (ω1 + γ )2(α + γ ) [αθ + ω1(α + θ)]2
[
(α + γ )(θ + γ ) + ω2(α + γ + θ)

] ,

(D.2)

where

bω1
0 = (1 − ηw)

{
γ 2(1 + ηw)(θ + γ ) + α2(2γ + θ) + αγ

[
γ (3 + ηw) + 2θ

]}
,

bω1
1 = (α + γ )(θ + γ )

[
α2 + 2αγ (1 − ηw) + γ 2(1 − η2w)

]
,

bω1
2 = (1 − ηw)

{
α2 + α

[
2γ (1 + ηw) + ηwθ

] + γ (γ + γ ηw + 2ηwθ)
}

,

bω1
3 = γ

{
α2 + 2α(1 − ηw)[γ + ηw(θ + γ )] + γ (1 − ηw)(γ + γ ηw + 2ηwθ)

}
,

bω1
4 = (α + γ )(1 − ηw)

[
2α + (1 + ηw)(θ + γ )

]
,

and

bω1
5 = α3 + α2 [

γ (3 − 2ηw) + θ
] + (1 − ηw)γ {αγ (3 + ηw) + (1 + ηw)[2θα + γ (θ + γ )]} .

Since ηw ∈ [0, 1], all the above bω1
i ≥ 0 for 0 ≤ i ≤ 5. That is to say Dω1R0 ≤ 0 for

ρi = ρs = 1, and ηp = 0.
If further ηw = 0, taking the derivative of R0 in α yields

DαR0 = βθω1
[
ω2
1(ω2 + γ )a11 + θ(a12 + ω2

2a13) + ω1(ω2 + γ )a14
]

γ (ω1 + γ ) [αθ + ω1(α + θ)]2
[
(α + γ )(θ + γ ) + ω2(α + γ + θ)

]2 ,

(D.3)

where

a11 = (α + γ )2(θ + γ ) + ω2[2α2 + 2α(θ + γ ) + γ (θ + γ )],
a12 = γ (α + γ )2(θ + γ )2 + ω2γ (θ + γ )

[
α2 + 2(α + γ )(θ + γ + α)

]
,

a13 = 2αγ (θ + γ ) + γ (θ + γ )2 + α2(2γ + θ),
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and

a14 = (α + γ )2(θ + γ )2 + ω2

[
2α(θ + γ )2 + γ (θ + γ )2 + α2(2γ + 3θ)

]
.

Clearly, DαR0 ≥ 0 since a11, a12, a13, a14 ≥ 0 in (D.3). On the other hand, if ηw = 1,
then

DαR0

= −ω1αβθ
{
α(ω2 + γ )(α + γ )2θ(θ + γ )2 + ω2

1 [ω2a21 + a22] + ω1 [a23 + ω2a24]
}

γ (ω1 + γ )(α + γ )2 [αθ + ω1(α + θ)]2
[
(α + γ )(θ + γ ) + ω2(α + γ + θ)

]2 ,

(D.4)

where

a21 = (α + γ + θ)2[2γ θ + α(θ + γ )],
a22 = γ (θ + γ )

[
α3 + 2γ θ(θ + γ ) + 2α2(γ + 2θ) + α(γ 2 + 6γ θ + 2θ2)

]
,

a23 = γ (α + γ )(θ + γ )
[
2γ θ(θ + γ ) + α2(γ + 3θ) + α(γ 2 + 5γ θ + 4θ2)

]
,

and

a24 = 2γ 2θ(θ + γ )2 + α3(γ 2 + 4γ θ + 2θ2) + 2α2(γ 3 + 5γ 2θ + 5γ θ2 + θ3)

+ αγ (γ 3 + 8γ 2θ + 12γ θ2 + 5θ3).

Therefore, DαR0 ≤ 0 follows from a21, a22, a23, a24 ≥ 0 in (D.4).
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