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Abstract
We study a viral infection model incorporating both cell-to-cell infection and immune
chemokines. Based on experimental results in the literature, we make a standing
assumption that the cytotoxic T lymphocytes (CTL) will move toward the location
withmore infected cells, while the diffusion rate of CTL is a decreasing function of the
density of infected cells. We first establish the global existence and ultimate bounded-
ness of the solution via a priori energy estimates.We then define the basic reproduction
number of viral infection R0 and prove (by the uniform persistence theory, Lyapunov
function technique and LaSalle invariance principle) that the infection-free steady
state E0 is globally asymptotically stable if R0 < 1. When R0 > 1, then E0 becomes
unstable, and another basic reproduction number of CTL response R1 becomes the
dynamic threshold in the sense that if R1 < 1, then theCTL-inactivated steady state E1
is globally asymptotically stable; and if R1 > 1, then the immune response is uniform
persistent and, under an additional technical condition the CTL-activated steady state
E2 is globally asymptotically stable. To establish the global stability results, we need
to prove point dissipativity, obtain uniform persistence, construct suitable Lyapunov
functions, and apply the LaSalle invariance principle.
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1 Introduction

Mathematical models have been playing an important role in understanding viral
dynamics (Perelson and Nelson 1999). A simple three-compartment ordinary differ-
ential systemwas proposed in (Nowak et al. 1996) to study the interaction of uninfected
target cells, infected cells, and free viruses. Thismodelwas further extended in (Nowak
and Bangham 1996) to describe the crucial role of cytotoxic T lymphocytes (CTL) in
antiviral defense. A general result was obtained in (Shu et al. 2013) in determining
sharp conditions for global stability in equilibria of viral infection models with CTL
immune responses and intracellular delays.

Chemokines compose a complicated communication system among all kinds of
cell types, including immune cells (Rot and von Andrian 2004). However, the under-
standing of this mechanism is far from clear (Bromley et al. 2008). A simple model
of the immune system was proposed by (Lee et al. 2017) to characterize the dynam-
ics of the immune cells, the chemokines, and the antigens. It was shown that strong
chemotaxis may induce nonlinear instability of the system. Recently, Zheng and Shan
(Zheng and Shan 2023) modified the three-compartmental model of the immune sys-
temwith general kinetic functions. They proved the global existence and boundedness
of classical solutions under certain conditions. Stability and instability of the system
were also investigated via the energy estimate and bootstrap method. As commented
in (Dyson et al. 2008), the solutions of many existing models of chemotaxis may blow
up at a finite time. However, in biological settings, the cell densities and the viral load
shall be bounded. It is thus important to develop a viral infection model with immune
chemokines so that the solutions exist globally.

Another important feature of viral dynamics is the cell-to-cell transmission mode,
which allows viral particles to be transferred directly from an infected cell to an
uninfected target cell through the formation of virological synapses (Galloway et al.
2015; Hübner et al. 2009; Martin and Sattentau 2009; Sattentau 2008). It has been
revealed that over half of viral infections are due to the cell-to-cell infection mode
(Iwami et al. 2015). Moreover, the cell-to-cell infection of HIV may permit ongoing
replication even during antiretroviral therapy (Sigal 2011). Some earlier works on the
cell-to-cell infection mode were given in (Gummuluru et al. 2000; Dixit and Perelson
2004). Lai and Zou (Lai and Zou 2014, 2015) proposed viral infection models with
both virus-to-cell and cell-to-cell infection modes. They demonstrated that the basic
reproduction number is the sum of the basic reproduction numbers for virus-to-cell
and cell-to-cell infections, respectively. A similar result was obtained in (Deng et al.
2023) for a general model with immune responses and intracellular delays.

To the best of our knowledge, there is no existing model to couple the immune
chemokines with both viral infection modes. In this paper, we will incorporate the
viral population model with chemokines and cell-to-cell infection. According to the
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study in (Halle et al. 2016), CTL tends to migrate more slowly while recognizing
infected cells. Hence, we will assume in our model that the diffusion rate of CTL is a
decreasing function of the density of infected cells. More specifically, we propose to
study the following reaction-diffusion system with general incidence functions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t T = dT�T + b(T ) − f (T , I ) − g(T , V ), x ∈ �, t > 0,

∂t I = dI�I + f (T , I ) + g(T , V ) − r1 I Z − μI I , x ∈ �, t > 0,

∂t V = dV�V + k I − μV V , x ∈ �, t > 0,

∂t Z = �[dZ (I )Z ] + r2 I Z − μZ Z , x ∈ �, t > 0,

∂νT = ∂ν I = ∂νV = ∂ν Z = 0, x ∈ ∂�, t > 0,

{T , I , V , Z}(x, 0) = {T0, I0, V0, Z0}(x), x ∈ �,

(1.1)

where � ⊂ R
2 is a bounded domain with smooth boundary ∂�. T (x, t), I (x, t),

V (x, t) and Z(x, t) denote the densities of uninfected targeted cells, infected targeted
cells, viruses and cytotoxic T lymphocytes (CTL), respectively. dT , dI and dV are
positive diffusion constants for T , I and V , respectively. The growth function for
uninfected targeted cells is given by b(T ). The cell-to-cell and virus-to-cell transmis-
sions are characterized by the nonlinear functions f (T , I ) and g(T , V ), respectively.
r1 I Z stands for the removal rate of infected cells by CTL and k I is the virion pro-
duction rate. The recruitment rate of CTL is r2 I Z . Upon scaling Z̃ = (r1/r2)Z , we
may assume without loss of generality that r1 = r2 = r . The constant per capital
death rates of I , V and Z are denoted by μI , μV and μZ , respectively. Finally, the
function dZ (I ) > 0 characterizes the dependence of CTL motility on the density of
infected cells. Note that �[dZ (I )Z ] = ∇ · [dZ (I )∇Z ] + ∇ · [d ′

Z (I )Z∇ I ]. The first
term∇·[dZ (I )∇Z ] implies that the CTLs diffusemore slowly if the density of infected
cells is higher, while the second term ∇ · [d ′

Z (I )Z∇ I ] together with the assumption
d ′
Z (I ) ≤ 0 indicates that the CTLs tend to move toward the location with higher den-

sity of infected cells. The term �[dZ (I )Z ] is also related to the density-suppressed
motility, which may produce more complex dynamics and patterns (Fu et al. 2012;
Liu 2011). The density-suppressed motility has been studied extensively in the con-
text of chemotaxis (Keller and Segel 1970, 1971) and prey-taxis (Kareiva and Odell
1987). More precisely, it has been proved that the density-suppressed motility can
prevent the blow-up of solution (Tao and Winkler 2017; Jin et al. 2018; Jiang et al.
2022; Fujie and Jiang 2020, 2021), enhance the diffusion (Winkler 2020), and trigger
pattern formation (Ma et al. 2020; Jin and Wang 2021; Li and Wang 2021).

Notations: Fix p0 > 2 and let X = W 1,p0(�,R) be the phase space for initial
conditions.Moreover, we use a plus symbol in the subscript to denote the non-negative
cone of the corresponding Banach space; for instance, R+ = [0,∞) and X+ =
W 1,p0(�,R+). For 1 ≤ p ≤ ∞, ‖ · ‖p denotes the L p-norm in L p(�̄). Given a
linear operator L , the spectral bound and spectral radius of L are denoted by s(L)

and ρ(L), respectively. We say a linear dynamical system u′(t) = Lu (or the linear
operator L) is stable if s(L) < 0 and unstable if s(L) > 0. We use ∂ν and dS to denote
the normal derivative and differential form on ∂�. The symbols ∇, ∇2, and � stand
for the gradient vector, Hessian matrix, and Laplacian, respectively. Especially, �u
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is the trace of ∇2u. The notation | · | indicates the Euclidean norm of a vector, while
| · |E is the Frobenius norm of a matrix. The solution semiflow of (1.1) is denoted as
�(t) : X4+ → X

4+ for t ≥ 0. For any initial condition φ ∈ X
4+, the omega limit set

of φ is ω(φ) = ∩s≥0∪t≥s�(t)φ. For any subset D ⊂ X
4+, the omega limit set of D

is ω(D) = ∪φ∈Dω(φ). We say the subset D is positively invariant if �(t)D ⊂ D.
Obviously, if a positively invariant subset D is closed then ω(D) ⊂ D. Given a
steady state E ∈ X

4+ such that �(t)E = E for all t ≥ 0, the stable set of E is
Ws(E) = {φ ∈ X

4+ : limt→∞ �(t)φ = E}.
Basic assumptions: Throughout this paper, we set r1 = r2 = r , and make the

following biologically relevant assumptions.

(H1) b ∈ C2(R+) with b′ < 0 on R+. Moreover, there exists (a unique) T0 > 0 such
that b(T0) = 0.

(H2) f , g ∈ C2(R+×R+) such that f and g vanish on the boundary of first quadrant,
the first-order partial derivatives ∂T f , ∂I f , ∂T g, and ∂V g are strictly positive in
the interior of the first quadrant, the second-order partial derivatives ∂I I f and
∂VV g are non-positive in the first quadrant, and there exists K > 0 such that
f (T , I ) ≤ KT I and g(T , V ) ≤ KTV for all T , I , V ∈ R+.

(H3) dZ ∈ C2(R+) such that dZ > 0 and d ′
Z ≤ 0 on R+.

Main results: Our main results can be summarized in the following two theorems.

Theorem 1.1 (Global existence and point dissipativity) Let � ⊂ R
2 and X+ =

W 1,p0(�,R+). Assume (H1)-(H3). For any initial value in [X+ \ {0}]4, the system
(1.1) has a unique nonnegative classical solution (T , I , V , Z) satisfying

(T , V , Z) ∈ [C([0,∞) × �̄) ∩ C2,1((0,∞) × �̄)]3

and

I ∈ C([0,∞) × �̄) ∩ C2,1((0,∞) × �̄) ∩ L∞
loc([0,∞);W 1,∞(�)).

Moreover, there exists C > 0 independent of initial conditions such that

lim sup
t→∞

(‖T (·, t)‖X + ‖I (·, t)‖X + ‖V (·, t)‖X + ‖Z(·, t)‖X) ≤ C .

Here, X = W 1,p0(�,R) and ‖u‖X = ‖u‖p0 + ‖∇u‖p0 for u ∈ X.

Theorem 1.2 (Global dynamics) Assume (H1)-(H3) and define

R0 := ∂I f (T0, 0)

μI
+ k∂V g(T0, 0)

μVμI
.

Let (T (t), I (t), V (t), V (t)) be any solution to (1.1) with initial value in [X+ \ {0}]4.
• If R0 ≤ 1, then the solution will converge to the infection-free steady state E0 =

(T0, 0, 0, 0) as t → ∞.
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• If R0 > 1, then there exists a unique CTL-inactivated steady state E1 =
(T1, I1, V1, 0). We define R1 := r I1/(μZ1) and assume that f (T , I ) =
h0(T )hd(I ) and g(T , V ) = h0(T )hi (V ), where h0, hd , hi ∈ C2(R+).

– If R0 > 1 and R1 ≤ 1, then the solution will converge to E1.
– If R0 > 1 and R1 > 1, then there exists a unique CTL-activated steady state

E2 = (T2, I2, V2, Z2). Moreover, the solution converges to E2 provided

dI ≥ Z2

4I2
max

0≤I≤∞
|I d ′

Z (I )|2
dZ (I )

.

Outline of the paper: In Sect. 2, we establish the boundedness and global existence
of solutions. Thekey step is to use the fourth equationof (1.1) to obtain the boundedness
of

∫ t+τ

t

∫

�
Z2dxds for some fixed τ ∈ (0, 1]. With this in hand, we can further show

that
∫ t+τ

t ‖�I‖22ds is uniformly bounded. A direct application of L2 estimate on Z
gives

d

dt
‖Z‖2L2 ≤ K1‖Z‖2L2(‖�I‖2L2 + 1).

Making use of a lemma that generalizesGronwall’s inequality,we obtain ‖Z‖L2 ≤ K2,
which can be further improved by the standard bootstrap argument andMoser iteration
method to ‖Z‖L∞ ≤ K3. Note that the constants K1, K2, and K3 may depend on initial
conditions. In this section, we shall also prove a stronger result that the solution is
ultimately bounded by a constant that is independent of initial conditions. This stronger
result is also called the point dissipativity of the system. Once we have proved that the
system is point dissipative, it immediately follows from (Hale 1988, Theorem 3.4.8)
that the system possesses a nonempty global attractor inX4+. In Sect. 3, we first define
two basic reproduction numbers and establish the existence of three steady states. A
local stability analysis of these steady states will also be conducted. Furthermore, we
will use theLyapunov function technique and theLaSalle invariance principle to obtain
global asymptotic stability of the steady states under certain conditions. Due to the
non-closedness of the positively invariant sets on which some Lyapunov functions are
defined, we will need to prove the uniform persistence of the solution before applying
the LaSalle invariance principle. In Sect. 4, we will conduct numerical simulations to
illustrate the theoretical results and conclude the paper with a brief discussion.

2 Global existence and point dissipativity

In this section, we first prove that the solution exists globally and is uniformly bounded
by a constant that depends on the initial conditions. Aswe shall see later, wewill need a
stronger result on the point dissipativity of the system to prove the uniform persistence
of the solution. Hence, we will further prove that the solution is ultimately bounded
by a constant independent of the initial conditions. The key ingredients in the proof
are Gronwall-type inequality, Gagliardo-Nirenberg inequality, and Moser iteration.
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2.1 Global existence

First, we state the following lemma which is a generalization of (Stinner et al. 2014,
Lemma 3.4) and Gronwall’s inequality.

Lemma 2.1 Let tm > 0, τ ∈ (0, tm), c1 > 0 and c2 > 0. Assume that y
is a non-negative and continuously differentiable function on [0, tm) satisfying
y′(t) + c1y(t) ≤ h(t) for all t ∈ (0, tm), where h is a non-negative and locally
integrable function on (0, tm) such that

∫ t
t−τ

h(s)ds ≤ c2 for all t ∈ [τ, tm). Denote
c3 = max{y(0), c2/(c1τ)+c2}. We then have y( jτ) ≤ c3 for all non-negative integer
j < tm/τ , and y(t) ≤ c3 + c2 for all t ∈ [0, tm).

Proof We only need to prove the first assertion because the second one follows imme-
diately from the non-negativity of h and y together with an integration of the inequality
y′ + c1y ≤ h. Obviously, y(0) ≤ c3. Assume y( jτ) ≤ c3 and j + 1 < tm/τ . We con-
sider twocases: (i) y(s) ≥ c2/(c1τ) for all s ∈ [ jτ, ( j+1)τ ]; and (ii) y(s0) < c2/(c1τ)

for some s0 ∈ [ jτ, ( j + 1)τ ]. In the first case, we integrate y′ + c1y ≤ h to obtain
y(( j + 1)τ ) ≤ y( jτ) ≤ c3; while in the second case, an integration of y′ + c1y ≤ h
gives y(( j + 1)τ ) ≤ y(s0) + c2 ≤ c3. This completes the proof. 
�
Now, we are ready to prove the global existence of classical solutions as follows.

Theorem 2.2 Let � ⊂ R
2 and X+ = W 1,p0(�,R+). Assume (H1)-(H3). For any

initial value in [X+\{0}]4, the system (1.1) has a unique nonnegative classical solution
(T , I , V , Z) satisfying

(T , V , Z) ∈ [C([0,∞) × �̄) ∩ C2,1((0,∞) × �̄)]3

and

I ∈ C([0,∞) × �̄) ∩ C2,1((0,∞) × �̄) ∩ L∞
loc([0,∞);W 1,∞(�)).

Proof By adopting the idea in (Tao and Winkler 2011, Lemma 2.1) and (Jin et al.
2018), we can prove the existence of local solutions by using the Schauder fixed point
theorem and the parabolic regularity theory; namely, there exists tm ∈ (0,∞] such that
the problem (1.1) has a unique nonnegative classical solution (T , I , V , Z) satisfying

(T , V , Z) ∈ [C([0, tm) × �̄) ∩ C2,1((0, tm) × �̄)]3

and

I ∈ C([0, tm) × �̄) ∩ C2,1((0, tm) × �̄) ∩ L∞
loc([0, tm);W 1,∞(�)).

Moreover, we have either tm = ∞ or

lim sup
t→t−m

(‖T (·, t)‖L∞ + ‖V (·, t)‖L∞ + ‖Z(·, t)‖L∞ + ‖I (·, t)‖W 1,∞) = ∞.
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Note that [0, tm) is the maximum interval for the existence of classical solutions.
It suffices to prove that the solution does not blow up as t → t−m . Denote τ =
min{1, tm/2}. For convenience, we will use c to denote a generic (large) positive
constant that is independent of t . We proceed in the following nine steps.

Step 1. ‖T (·, t)‖∞ ≤ c.
In view of the non-negativity of the solution and (H2), we obtain from the first equation
of (1.1) that ∂t T ≤ dT�T+b(T ). By (H1) andmaximumprinciple, we have T (x, t) ≤
max{‖T (·, 0)‖∞, T0}.

Step 2. ‖I (·, t)‖1 + ‖V (·, t)‖1 + ‖Z(·, t)‖1 ≤ c.
From (1.1), we obtain

d

dt

∫

�

(T + I + Z)dx =
∫

�

[b(T ) − μI I − μZ Z ]dx

≤
∫

�

[b(0) + c − T − μI I − μZ Z ]dx .

It then follows fromGronwall’s inequality that ‖I (·, t)‖1+‖Z(·, t)‖1 ≤ c. Integrating
the fourth equation of (1.1) and applying Gronwall’s inequality yield ‖V (·, t)‖1 ≤ c.

Step 3. For any p > 1, ‖I (·, t)‖p + ‖V (·, t)‖p ≤ c.
Multiplying the second equation of (1.1) by I p−1 and integrating over the domain �,
we obtain

1

p

d

dt

∫

�

I pdx = dI

∫

�

(�I )I p−1dx +
∫

�

[ f (T , I ) + g(T , V )]I p−1dx

−
∫

�

(r1Z + μI )I
pdx .

The Green’s identity gives

∫

�

(�I )I p−1dx = −
∫

�

(∇ I ) · ((p − 1)I p−2∇ I )dx = −4(p − 1)

p2

∫

�

|∇ I p/2|2dx .

On account of (H2), we have

∫

�

[ f (T , I ) + g(T , V )]I p−1dx ≤
∫

�

KT (I p + I p−1V )dx ≤ c
∫

�

(I p + V p)dx .

Hence,

1

p

d

dt

∫

�

I pdx + 4(p − 1)dI
p2

∫

�

|∇ I p/2|2dx ≤ c
∫

�

(I p + V p)dx . (2.1)

Similarly, we multiply the third equation of (1.1) by V p−1 and then apply Green’s
identity to have

1

p

d

dt

∫

�

V pdx + 4(p − 1)dV
p2

∫

�

|∇V p/2|2dx ≤ c
∫

�

(I p + V p)dx . (2.2)
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Now, we use the Gagliardo-Nirenberg inequality and boundedness of ‖I‖q + ‖V ‖q
to find

‖I p/2‖22 ≤ c(‖∇ I p/2‖2(1−1/p)
2 ‖I p/2‖2/p2/p + ‖I p/2‖22/p) ≤ 1

c
‖∇ I p/2‖22 + c, (2.3)

and similarly,

‖V p/2‖22 ≤ 1

c
‖∇V p/2‖22 + c, (2.4)

Taking a weighted sum of inequalities (2.1), (2.2), (2.3), and (2.4), and then applying
Gronwall’s inequality, we obtain ‖I (·, t)‖p

p + ‖V (·, t)‖p
p ≤ c.

Step 4. ‖I (·, t)‖∞ + ‖V (·, t)‖∞ ≤ c.
It follows from the third equation of (1.1) that

V (·, t) = e(dV �−μV )t V (·, 0) + k
∫ t

0
e(dV �−μV )(t−s) I (·, s)ds.

By estimates of Neumann heat semigroup (Horstmann andWinkler 2005; Kowalczyk
and Szymańska 2008) and uniform boundedness of ‖I‖3, we find ε > 0 such that

‖V (·, t)‖∞ ≤ ‖V (·, 0)‖∞ + c
∫ t

0
[1 + (t − s)−1/3]e−ε(t−s)ds ≤ c.

Similarly, using the assumptions in (H2), we obtain from the equation of (1.1) and the
uniform boundedness of ‖I‖3 + ‖V ‖3 that ‖I (·, t)‖∞ ≤ c.

Step 5.
∫ t
t−τ

∫

�
Z2(x, s)dxds ≤ c for all t ∈ [τ, tm).

To this end, we shall use the duality arguments based on some nice ideas developed
in (Tao and Winkler 2017). Denote δ1 = μZ/[2dZ (0)] and let A be the self-adjoint
positive operator−�+ δ1 with Neumann boundary condition on L2(�). ThenA−1 is
a bounded and positive operator on L2(�). Adding the second and the fourth equation
of (1.1) gives (recalling that r1 = r2 = r )

∂t (I + Z) + A[dI I + dZ (I )Z ] = δ1[dI I + dZ (I )Z ]
+ f (T , I ) + g(T , V ) − μI I − μZ Z ≤ c,

where we have made use of (H2), δ1 < μZ/dZ (0) ≤ μZ/dZ (I ), and the uniform
boundedness of‖T ‖∞+‖I‖∞+‖V ‖∞.Multiplying the above inequality by2A−1(I+
Z) ≥ 0 gives

d

dt

∫

�

|A−1/2(I + Z)|2dx + 2
∫

�

(I + Z)[dI I + dZ (I )Z ]dx ≤ c
∫

�

A−1(I + Z)dx .

(2.5)
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Since ‖I‖∞ is uniformly bounded, it follows from (H1) that dZ (I ) ≥ dZ (c2) > 0.
Let δ2 > 0 be sufficiently small such that

dI I + dZ (I )Z ≥ δ2(I + Z). (2.6)

It follows from boundedness of A−1 and A−1/2 on L2(�) that

‖A−1(I + Z)‖1 ≤ c‖A−1(I + Z)‖2 ≤ c‖I + Z‖2 ≤ δ3‖I + Z‖22 + c, (2.7)

and

‖A−1/2(I + Z)‖22 ≤ c‖I + Z‖22, (2.8)

where δ3 > 0 is sufficiently small. A combination of the above four inequalities
(2.5–2.8) yields

d

dt

∫

�

|A−1/2(I + Z)|2dx + 1

c

∫

�

|A−1/2(I + Z)|2dx + 1

c

∫

�

(I + Z)2dx ≤ c.

Gronwall’s inequality implies that ‖A−1/2(I + Z)‖22 ≤ c, which together with an
integration of the above inequality gives

∫ t
t−τ

∫

�
(I + Z)2dxds ≤ c. Since I and Z

are positive, we have
∫ t
t−τ

∫

�
Z2(x, s)dxds ≤ c for all t ∈ [τ, tm).

Step 6. ‖∇ I (·, t)‖2 ≤ c for all t ∈ [0, tm) and
∫ t
t−τ

‖�I (·, s)‖22ds ≤ c for all
t ∈ [τ, tm).
We multiple the second equation of (1.1) by −2�I and apply Green’s identity to find

d

dt

∫

�

|∇ I |2dx + 2dI

∫

�

|�I |2dx ≤ dI

∫

�

|�I |2dx + c

(∫

�

Z2dx + 1

)

. (2.9)

By Gagliardo-Nirenberg inequality and the uniform boundedness of ‖I‖2, we have

‖∇ I‖22 ≤ c(‖�I‖2‖I‖2 + ‖I‖22) ≤ dI
2

‖�I‖22 + c. (2.10)

Adding the above two inequalities (2.9) and (2.10) yields

d

dt

∫

�

|∇ I |2dx +
∫

�

|∇ I |2dx + dI
2

∫

�

|�I |2dx ≤ c
∫

�

Z2dx + c.

By Lemma 2.1, we have ‖∇ I‖2 ≤ c. An integration of the above inequality then gives∫ t
t−τ

‖�I‖22ds ≤ c for all t ∈ [τ, tm).
Step 7. ‖Z(·, t)‖2 ≤ c.

Multiplying the fourth equation of (1.1) by 2Z and applying Green’s identity give

d

dt

∫

�

Z2dx + 2
∫

�

dZ (I )|∇Z |2dx ≤ c
∫

�

(Z |∇Z | · |∇ I | + Z2)dx .
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By (H1) and uniform boundedness of ‖I‖∞, we can find a small δ4 > 0 such that
dZ (I ) ≥ δ4. It then follows from the above inequality and Cauchy’s inequality that

d

dt

∫

�

Z2dx + 2δ4

∫

�

|∇Z |2dx ≤ δ4

∫

�

|∇Z |2dx + c
∫

�

(Z2|∇ I |2 + Z2)dx .

By Hölder’s inequality, we obtain

d

dt
‖Z‖22 + δ4‖∇Z‖22 ≤ c(‖Z‖24‖∇ I‖24 + ‖Z‖22).

The right-hand side of the above inequality can be further estimated via the Gagliardo-
Nirenberg inequality and elliptic regularity theory. Hence, we obtain

d

dt
‖Z‖22 + δ4‖∇Z‖22 ≤ c(‖∇Z‖2‖Z‖2 + ‖Z‖22)(‖�I‖2‖∇ I‖2 + ‖∇ I‖22) + c‖Z‖22

≤ c(‖∇Z‖2‖Z‖2 + ‖Z‖22)(‖�I‖2 + c)

≤ c‖∇Z‖2‖Z‖2‖�I‖2 + c‖∇Z‖2‖Z‖2 + c‖Z‖22‖�I‖2 + c‖Z‖22
≤ δ4‖∇Z‖22 + c‖Z‖22(‖�I‖22 + 1).

This together with the uniform boundedness of
∫ t
t−τ

‖�I‖22ds and Lemma 2.1 implies
that ‖Z(·, t)‖22 ≤ c.

Step 8. For any p > 1, ‖Z(·, t)‖p ≤ c.
Since ‖Z‖2 is uniformly bounded, an application of parabolic regularity (Kowalczyk
and Szymańska 2008, Lemma 1) to the second equation of (1.1) gives the uniform
boundedness of ‖∇ I‖4. Recall that dZ (I ) ≥ δ4 > 0. We multiple the fourth equation
of (1.1) by Z p−1 and apply Green’s identity to find

1

p

d

dt

∫

�

Z pdx + (p − 1)δ4

∫

�

Z p−2|∇Z |2dx ≤ c
∫

�

Z p−1|∇Z ||∇ I |dx + c
∫

�

Z pdx .

Applying Cauchy’s inequality, Hölder’s inequality, and the Gagliardo-Nirenberg
inequality, we obtain

1

p

d

dt

∫

�

Z pdx + 1

c

∫

�

Z p−2|∇Z |2dx +
∫

�

Z pdx ≤ c
∫

�

Z p(|∇ I |2 + 1)dx

≤c‖Z p/2‖24 ≤ c(‖∇Z p/2‖2(1−1/p)
2 ‖Z p/2‖2/p4/p + ‖Z p/2‖24/p)

≤c(‖∇Z p/2‖2(1−1/p)
2 + 1) ≤ 1

c
‖∇Z p/2‖22 + c.

By Gronwall’s inequality, we have ‖Z(·, t)‖p ≤ c.
Step 9. ‖Z(·, t)‖∞ ≤ c.

Since ‖Z‖3 is uniformly bounded, a simple application of parabolic regularity (Kowal-
czyk and Szymańska 2008, Lemma 1) to the second equation of (1.1) gives the uniform
boundedness of ‖∇ I‖∞. Based on a modified Moser iteration as in (Tao and Winkler
(2012), Lemma A.1), we can obtain ‖Z(·, t)‖∞ ≤ c directly.
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Since ‖T ‖∞ +‖I‖∞ +‖∇ I‖∞ +‖V ‖∞ +‖Z‖∞ is uniformly bounded, the solution
cannot blow up as t → t−m . Thus, tm = ∞; namely, the solution exists globally. This
completes the proof. 
�

2.2 Point dissipativity

In this subsection, we will show that the solution is ultimately bounded by a constant
independent of initial conditions. However, the constants 0 ≤ t0 ≤ t1 ≤ · · · may
depend on the initial condition. We first state a lemma that is analogous to Lemma
2.1.

Lemma 2.3 Let y(t) ≥ 0 be continuously differentiable, h(t) ≥ 0 be locally integrable
on [t0,∞), and y′(t)+C1y(t) ≤ h(t) for all t ≥ t0, where C1 > 0 and t0 ≥ 0. Assume
lim sup
t→∞

∫ t
t−1 h(s)ds ≤ C2, then we have lim sup

t→∞
y(t) ≤ C2/C1 + 2C2.

Proof For any sufficiently small ε > 0, there exists t1 ≥ t0 such that
∫ t
t−1 h(s)ds ≤

C2+ε for all t ≥ t1.We claim that there exists t2 ≥ t1 such that y(t2) ≤ (C2+2ε)/C1;
otherwise, y(t) > (C2 + 2ε)/C1 for all t ≥ t1, which implies that y′(t) < h(t) −
(C2 + 2ε) and y(t + 1) < y(t) − ε for all t ≥ t1, a contradiction. So, we have
y(t2) ≤ (C2 + 2ε)/C1 for some t2 ≥ t1, which together with Lemma 2.1 implies
that y(t) ≤ max{(C2 + 2ε)/C1 + C2,C2/C1 + 2C2} for all t ≥ t2. Especially,
lim sup
t→∞

y(t) ≤ max{(C2 + 2ε)/C1 + C2,C2/C1 + 2C2}. Since ε > 0 is arbitrarily

small, we may choose ε < C1C2/2 and obtain lim sup
t→∞

y(t) ≤ C2/C1 + 2C2. This

completes that proof. 
�
Now, we are ready to show that the system is point dissipative.

Theorem 2.4 Let � ⊂ R
2 and X+ = W 1,p0(�,R+). Assume (H1)-(H3). Let

(T , I , V , Z) be the classical solution of system (1.1) obtained in Theorem 2.2. There
exists C > 0 independent of initial conditions such that

lim sup
t→∞

(‖T (·, t)‖X + ‖I (·, t)‖X + ‖V (·, t)‖X + ‖Z(·, t)‖X) ≤ C . (2.11)

Here, X = W 1,p0(�,R) and ‖u‖X = ‖u‖p0 + ‖∇u‖p0 for u ∈ X.

Proof We proceed in the following 12 steps. The first nine steps are similar to the
proof of Theorem 2.2 and the details are omitted. As we shall see in the last step, the
main difficulty lies in the estimate of ‖∇Z‖2p with p > 1. For convenience, we use
Ci (with i = 1, 2, · · · ) to denote large positive constants that are independent of the
initial condition.
Step 1. From the first equation of (1.1), we have ∂t T ≤ dT�T + b(T ). By (H1), we
obtain from the comparison principle that lim sup

t→∞
‖T ‖∞ ≤ T0.

Step 2. There exist C1 > 0 and t0 ≥ 0 such that ‖T ‖∞ ≤ C1 for all t ≥ t0. From the
system (1.1), we have

d

dt

∫

�

(T + I + Z)dx ≤
∫

�

[b(0) + C1 − T − μI I − μZ Z ]dx, t ≥ t0
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which implies that lim sup
t→∞

(‖I‖1 + ‖Z‖1) ≤ C2. An integration of the third equation

of (1.1) gives lim sup
t→∞

‖V ‖1 ≤ C3.

Step 3. There exist C4 > 0 and t1 ≥ t0 such that ‖I‖1 + ‖V ‖1 + ‖Z‖1 ≤ C4 for
all t ≥ t1. For any p > 1, it follows from the second and third equation of (1.1) and
Gagliardo-Nirenberg inequality that

d

dt

∫

�

(I p + V p)dx + C5

∫

�

(I p + V p)dx ≤ C6, t ≥ t1

which implies that lim sup
t→∞

(‖I‖p + ‖V ‖p) ≤ C7. Note that C7 depends on p.

Step 4. There exist C8 > 0 and t2 ≥ t1 such that ‖I‖3 + ‖V ‖3 ≤ C8 for all t ≥ t2.
Since we have fixed p = 3, the constant C8 is independent of p. By the third equation
of (1.1), we have

V (·, t) = e(dV �−μV )(t−t2)V (·, t2) + k
∫ t

t2
e(dV �−μV )(t−s) I (·, s)ds, t ≥ t2,

which togetherwith the estimate ofNeumann heat semigroup (Horstmann andWinkler
2005; Kowalczyk and Szymańska 2008) implies that lim sup

t→∞
‖V ‖∞ ≤ C9. Similarly,

we obtain from the second equation of (1.1) that lim sup
t→∞

‖I‖∞ ≤ C10.

Step 5. There exist C11 > 0 and t3 ≥ t2 such that ‖T ‖∞ + ‖I‖∞ + ‖V ‖∞ ≤ C11
for all t ≥ t3. Let A be the self-adjoint positive operator −� + μZ/[2dZ (0)] with
Neumann boundary condition on ∂�. It follows from the second and third equations
of (1.1) that

d

dt

∫

�

|A−1/2(I + Z)|2dx + 1

C12

∫

�

|A−1/2(I + Z)|2dx + 1

C12

∫

�

(I + Z)2dx ≤ C13,

for t ≥ t3. Hence, we obtain lim sup
t→∞

∫ t
t−1

∫

�
(I + Z)2dxds ≤ C14.

Step 6. From the second equation of (1.1) and Gagliardo-Nirenberg inequality, we
have

d

dt

∫

�

|∇ I |2dx +
∫

�

|∇ I |2dx + dI
2

∫

�

|�I |2dx ≤ C15

∫

�

Z2dx + C15, t ≥ t3,

which together with Lemma 2.3 implies lim sup
t→∞

(‖∇ I‖2 + ∫ t
t−1 ‖�I‖22ds) ≤ C16.

Step 7. There exist C17 > 0 and t4 ≥ t3 such that ‖∇ I‖2 + ∫ t
t−1(‖�I‖22 +‖Z‖22)ds ≤

C17 for all t ≥ t4 ≥ 1. It then follows from the fourth equation of (1.1) and Gagliardo-
Nirenberg inequality that

d

dt
‖Z‖22 ≤ C18‖Z‖22(‖�I‖22 + 1), t ≥ t4.
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For any t ≥ t4 + 1, there exists s ∈ [t − 1, t] such that ‖Z(·, s)‖22 ≤ C17. It then
follows from the above inequality that ‖Z(·, t)‖22 ≤ C17eC18(C17+1) for all t ≥ t4 + 1.
Especially, lim sup

t→∞
‖Z‖2 ≤ C19.

Step 8. There exist C20 > 0 and t5 ≥ t4 such that ‖Z‖2 ≤ C20 for all t ≥ t5. An
application of (Kowalczyk and Szymańska 2008, Lemma 1) to the second equation of
(1.1) gives ‖∇ I‖4 ≤ C21 for t ≥ t5. For any p > 1, by the fourth equation of (1.1)
and Gagliardo-Nirenberg inequality, we obtain

d

dt

∫

�

Z pdx +
∫

�

Z pdx ≤ C22, t ≥ t5,

which implies that lim sup
t→∞

‖Z‖p ≤ C23.

Step 9. There exist C24 > 0 and t6 ≥ t5 such that ‖Z‖3 ≤ C24 for all t ≥ t6. Applying
(Kowalczyk and Szymańska 2008, Lemma 1), we can derive that ‖∇T ‖∞+‖∇ I‖∞+
‖∇V ‖∞ ≤ C25 for t ≥ t6. Based on amodifiedMoser iteration as in (Tao andWinkler
(2012), Lemma A.1), we can show that ‖Z(·, t)‖p is ultimately bounded for any finite
p > 0. This together with (Dung 1997, Theorem 1) then gives lim sup

t→∞
‖Z‖∞ ≤ C26.

Step 10. There exist C27 > 0 and t7 ≥ t6 such that ‖Z‖∞ ≤ C27 for all t ≥ t7. It then
follows from the fourth equation of (1.1) and the Gagliardo-Nirenberg inequality that

d

dt

∫

�

|∇Z |2dx +
∫

�

|∇Z |2dx ≤ C28, t ≥ t7,

which implies that lim sup
t→∞

‖∇Z‖22 ≤ C28.

Step 11. There exist C29 > 0 and t8 ≥ t7 such that ‖∇Z‖2 ≤ C29 for all t ≥ t8.
Denote J := ∇ I . It follows from the second equation of (1.1) that

∂t J = dI�J − μI J + 
(T , I , V , Z ,∇T , J ,∇Z),

where


 = (∂T f + ∂T g)∇T + ∂I f J + ∂Z g∇Z − r J Z − r I∇Z .

It is easily seen that ‖
‖2 ≤ C30 for t ≥ t8. For each p ∈ [1,∞), we apply themethod
of variations of constants to the equation for J and use the estimates of Neumann heat
semigroup (Horstmann andWinkler 2005; Kowalczyk and Szymańska 2008) to obtain
‖∇ J‖p ≤ C31 for all t ≥ t8. Especially, lim sup

t→∞
‖�I‖p ≤ C32.

Step 12. For each p > 1, there exist C33 > 0 and t9 ≥ t8 such that ‖�I‖2p ≤ C33 for
all t ≥ t9. It follows from the fourth equation of (1.1) and Green’s identity that

1

2p

d

dt

∫

�

|∇Z |2pdx =
∫

�

|∇Z |2p−2∇Z · ∇(∂t Z)dx = K1 + K2 + K3, (2.12)
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where

K1 := −
∫

�

∇ · (|∇Z |2p−2∇Z)∇ · [dZ (I )∇Z ]dx,

K2 := −
∫

�

∇ · (|∇Z |2p−2∇Z)∇ · [Zd ′
Z (I )∇ I ]dx,

K3 :=
∫

�

|∇Z |2p−2∇Z · (r I∇Z + r Z∇ I − μZ∇Z)dx .

For t ≥ t9, we have ‖I‖∞ ≤ C11, ‖∇ I‖∞ ≤ C25 and ‖Z‖∞ ≤ C27. Consequently,

K3 ≤ C34

(∫

�

|∇Z |2pdx + 1

)

, (2.13)

and

K2 ≤ C35

∫

�

[|∇Z |2p−3|∇(|∇Z |2)| + |∇Z |2p−2|�Z |](|∇Z | + |�I | + 1)dx .

To estimate K1, we apply Green’s identity again and use the identity ∇Z · ∇(�Z) =
1
2�(|∇Z |2) − |∇2Z |2E , where |∇2Z |E is the Frobenius norm of the Hessian matrix
∇2Z . It is readily seen that

K1 = −
∫

�

[∇(|∇Z |2p−2) · ∇Z ]∇ · [dZ (I )∇Z ]dx

+
∫

�

∇(|∇Z |2p−2�Z) · [dZ (I )∇Z ]dx
=K11 + K12 + K13, (2.14)

where

K11 = −
∫

�

[∇(|∇Z |2p−2) · ∇Z ][d ′
Z (I )∇ I · ∇Z ]dx

≤C36

∫

�

|∇Z |2p−2|∇(|∇Z |2)|dx, (2.15)

K12 =1

2

∫

�

dZ (I )|∇Z |2p−2�(|∇Z |2)dx

=1

2

∫

∂�

dZ (I )|∇Z |2p−2∂ν(|∇Z |2)dS − 1

2

∫

�

[d ′
Z (I )|∇Z |2p−2∇ I ] · ∇(|∇Z |2)dx

− p − 1

2

∫

�

dZ (I )|∇Z |2p−4|∇(|∇Z |2)|2dx,

K13 = −
∫

�

dZ (I )|∇Z |2p−2|∇2Z |2Edx ≤ −dZ (C11)

∫

�

|∇Z |2p−2|∇2Z |2Edx . (2.16)
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By (Mizoguchi and Souplet 2014, Lemma4.2), we have |∂ν(|∇Z |2)| ≤ 2κ(∂�)|∇Z |2,
where κ(∂�) is the maximum of curvatures on ∂�. It follows that

K12 ≤κ(∂�)dZ (0)
∫

∂�

|∇Z |2pdS + C37

∫

�

|∇Z |2p−2|∇(|∇Z |2)|dx

− dZ (C11)(p − 1)

2

∫

�

|∇Z |2p−4|∇(|∇Z |2)|2dx .

In view of the trace inequality (Souplet and Quittner 2007, Remark 52.9):

‖u‖L2(∂�) ≤ ε‖∇u‖L2(�) + C(ε)‖u‖L2(�)

and Cauchy’s inequality: 2uv ≤ εu2 + (1/ε)v2 with any small ε > 0, we further
obtain

K12 ≤ C38

∫

�

|∇Z |2pdx − dZ (C11)(p − 1)

3

∫

�

|∇Z |2p−4|∇(|∇Z |2)|2dx .
(2.17)

Another application of Cauchy’s inequality to (2.15) gives

K11 ≤ C39

∫

�

|∇Z |2pdx + dZ (C11)(p − 1)

9

∫

�

|∇Z |2p−4|∇(|∇Z |2)|2dx .
(2.18)

Note that |�Z | ≤ √
2|∇2Z |E . We apply Cauchy’s inequality again to K2 and make

use of ‖�I‖2p ≤ C33 to find

K2 ≤dZ (C11)(p − 1)

9

∫

�

|∇Z |2p−4|∇(|∇Z |2)|2dx

+ dZ (C11)

2

∫

�

|∇Z |2p−2|∇2Z |2Edx + C40

∫

�

|∇Z |2pdx + C40. (2.19)

A combination of (2.12), (2.13), (2.14), (2.16), (2.17), (2.18), and (2.19) yields

1

2p

d

dt

∫

�

|∇Z |2pdx + dZ (C11)(p − 1)

9

∫

�

|∇Z |2p−4|∇(|∇Z |2)|2dx

+ dZ (C11)

2

∫

�

|∇Z |2p−2|∇2Z |2Edx ≤ C41

∫

�

|∇Z |2pdx + C41.
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Finally, we useGreen’s identity, |�Z | ≤ √
2|∇2Z |E andCauchy’s inequality to obtain

(C41 + 2)
∫

�

|∇Z |2pdx

= (C41 + 2)
∫

�

(|∇Z |2p−2∇Z) · ∇Zdx

= −(C41 + 2)
∫

�

Z [|∇Z |2p−2�Z + (p − 1)|∇Z |2p−4∇(|∇Z |2) · ∇Z ]dx

≤ dZ (C11)(p − 1)

9

∫

�

|∇Z |2p−4|∇(|∇Z |2)|2dx

+ dZ (C11)

2

∫

�

|∇Z |2p−2|∇2Z |2Edx + C42

∫

�

|∇Z |2p−2dx,

and

C42

∫

�

|∇Z |2p−2dx ≤
∫

�

|∇Z |2pdx + C43.

Consequently, we have

1

2p

d

dt

∫

�

|∇Z |2pdx +
∫

�

|∇Z |2pdx ≤ C44,

which implies lim sup
t→∞

‖∇Z‖2p2p ≤ C44.

Therefore, we have proved the point dissipativity of the system. 
�

Coupling Theorem 2.2 and Theorem 2.4 gives Theorem 1.1.

3 Global dynamics

In this section, we investigate the long-time behaviors of the solutions to the system
(1.1). First, we study the constant steady state E = (T , I , V , Z) that satisfies the
following equilibrium equations

b(T ) = f (T , I ) + g(T , V ) = (r Z + μI )I , V = k I/μV , (r I − μZ )Z = 0.
(3.1)

In view of (H1) and (H2), one can easily check that (3.1) possibly has three types
of homogeneous steady states: the infection-free steady state E0 := (T0, 0, 0, 0), the
CTL-inactivated steady state E1 := (T1, I1, V1, 0), and the CTL-inactivated steady
state E2 := (T2, I2, V2, Z2). In the following subsections, we will analyze the exis-
tence and stability of these steady states.
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3.1 Basic reproduction numbers and local analyses

In this subsection, wewill establish the existence and local stability results for constant
steady states. In view of (H1) and (H2), there exists a unique infection-free steady state
E0 = (T0, 0, 0, 0) of (1.1). Linearizing the system (1.1) about E0 gives two equations

∂t T = dT�T + [b′(T ) − ∂T f (T0, 0) − ∂T g(T0, 0)]T − ∂I f (T0, 0)I − ∂V g(T0, 0)V

and ∂t Z = dZ (0)�Z −μZ Z , which do not affect the stability of E0, and a decoupled
system

{
∂t I = dI�I + ∂I f (T0, 0)I + ∂V g(T0, 0)V − μI I ,

∂t V = dV�V + k I − μV V .

The linear operator on the right-hand side of the above equation can be decomposed
as F − V , where

F =
(

∂I f (T0, 0) ∂V g(T0, 0)
0 0

)

, V =
(−dI� + μI 0

−k −dV� + μV

)

.

Now, we define the basic reproduction number of viral infection as R0 = ρ(FV−1),
the spectral radius of the next generation operator FV−1 on the Banach space X2 =
W 1,p0(�,R2). Let Bd = ∂I f (T0, 0)(−dI� + μI )

−1 be the next generation operator
of direct transmission and Bi = k∂V g(T0, 0)(−dV� + μV )−1(−dI� + μI )

−1 be the
next generation operator of indirect transmission. A simple calculation gives R0 =
ρ(Bd + Bi ). Note that the constant function 1 ∈ X is an eigenfunction of Bd + Bi . It
follows from Krein-Rutman theorem that the corresponding eigenvalue is a principal
eigenvalue; namely,

R0 = ∂I f (T0, 0)

μI
+ k∂V g(T0, 0)

μVμI
. (3.2)

Remark 3.1 The biological interpretation of the above formula is clear. The first frac-
tion gives the average number of newly infected cells through cell-to-cell transmission
during the life span of an infected cell which is introduced to the uninfected target
cells with density T0. The second fraction counts the average number of new viruses
produced during the indirect transmission cycle when a virus is introduced to the
uninfected target cells with density T0. These two fractions, denoted by Rd and Ri ,
are also referred to as the basic reproduction numbers of direct and indirect transmis-
sions, respectively. The above formula coincides with the earlier work on viral models
without spatial diffusion (Lai and Zou 2014, 2015; Pourbashash et al. 2014); see also
(Magal et al. 2019) for a similar formula of R0 for an HIV model without immune
response. Since R0 = Rd+Ri , it is concluded that the ignorance of either transmission
mechanism will underestimate the basic reproduction number of viral infection.
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Proposition 3.2 Assume (H1)-(H3). If R0 < 1, then the infection-free steady state E0
is linearly stable. If R0 > 1, then E0 is linearly unstable.

Proof Since the linearized equations for T and Z are stable, it suffices to show that
the decoupled linear system for I and V is stable when R0 < 1 and unstable when
R0 > 1.

If R0 < 1, we claim that all eigenvalues ofF −V have negative real parts. Assume
to the contrary, there exist λ ∈ C with Reλ ≥ 0 and an eigenvalue ξ ≥ 0 of −� with
Neumann boundary condition on ∂� such that

det

(
λ + dI ξ + μI − ∂I f (T0, 0) −∂V g(T0, 0)

−k λ + dV ξ + μV

)

= 0.

A simple calculation gives

λ + dI ξ

μI
+ 1 = ∂I f (T0, 0)

μI
+ k∂V g(T0, 0)

μI (λ + dV ξ + μV )
.

The modulus of the left-hand side is bounded below by one, while the modulus of the
right-hand side is bounded above by R0 < 1. This leads to a contradiction. Hence, all
eigenvalues ofF −V have negative real parts, which implies that E0 is linearly stable.

If R0 > 1, we have −μV (∂I f (T0, 0) − μI ) − k∂V g(T0, 0) < 0; namely, the
determinant of

A =
(

∂I f (T0, 0) − μI ∂V g(T0, 0)
k −μV

)

is negative. Hence, there exist an eigenvalue λ ∈ C with Reλ > 0 and an eigenvector
w ∈ R

2 \ {0} such that Aw = λw. We regard w as a constant vector-valued function
on �. It turns out that λ is also an eigenvalue of the linear operator F − V with
eigenfunction w. Therefore, E0 is linearly unstable. 
�
Next, we shall study the existence and linear stability of CTL-inactivated steady state
E1 = (T1, I1, V1, 0).Wefirst show theCTL-inactivated steady state E1 exists uniquely
if and only if R0 > 1. For T ∈ R+, define i(T ) = b(T )/μI , v(T ) = ki(T )/μV =
kb(T )/(μIμV ), and

R(T ) = f (T , i(T ))

μI i(T )
+ kg(T , v(T ))

μIμV v(T )
, T �= T0. (3.3)

When T = T0, we define

R(T0) := lim
T→T0

R(T ).

Since i(T0) = v(T0) = 0, we obtain from L’Hôpital’s rule that

lim
T→T0

f (T , i(T ))

μI i(T )
= ∂T f (T0, 0) + ∂I f (T0, 0)i ′(T0)

μI i ′(T0)
= ∂I f (T0, 0)

μI
,
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and

lim
T→T0

kg(T , v(T ))

μIμV v(T )
= k∂T g(T0, 0) + ∂V g(T0, 0)v′(T0)

μIμV v′(T0)
= k∂V g(T0, 0)

μVμI
.

In view of (3.2), we obtain R(T0) = R0. On account of (H1) and (H2), we have
i ′(T ) < 0, v′(T ) < 0 and R′(T ) > 0 for T ∈ R+. Next, we shall show that if R0 > 1,
there exists a unique CTL-inactivated steady state E1. Noting steady state E1 satisfies
(3.1), we only need to check that R(T ) = 1 has a unique solution. One can easily
check that R(0) = 0, which combined with the facts R′(T ) > 0 and R(T0) = R0 > 1
implies that there exists a unique T1 ∈ (0, T0) such that R(T1) = 1.On the other hand,
we can show that R0 > 1 if E1 exists. In fact, if E1 exists, one has R(T1) = 1, which
together with the facts R(T0) = R0 and R′(T ) > 0 as well as 0 < T1 < T0, gives
1 = R(T1) < R(T0) = R0.

Assuming R0 > 1, we linearize (1.1) about E1 to find

⎧
⎪⎨

⎪⎩

∂t T = dT�T + [b′(T1) − ∂T f − ∂T g]T − ∂I f I − ∂V gV ,

∂t I = dI�I + (∂T f + ∂T g)T + (∂I f − μI )I + ∂V gV − r I1Z ,

∂t V = dV�V + k I − μV V ,

(3.4)

and a decoupled equation

∂t Z = dZ (I1)�Z + (r I1 − μZ )Z . (3.5)

Here, the variables of ∂T f and ∂I f are (T1, I1), while the variables of ∂T g and ∂V g
are (T1, V1). We first claim that the system (3.4) (with Z = 0) is stable. Assume to the
contrary, then there exist λ ∈ C with Reλ ≥ 0 and an eigenvalue ξ ≥ 0 of −� with
Neumann boundary condition on ∂� such that

det

⎛

⎝
λ + dT ξ − b′(T1) + ∂T f + ∂T g ∂I f ∂V g

−∂T f − ∂T g λ + dI ξ + μI − ∂I f −∂V g
0 −k λ + dV ξ + μV

⎞

⎠ = 0.

A simplification of the above equation gives

[

1 + ∂T f + ∂T g

λ + dT ξ − b′(T1)

] (

1 + λ + dI ξ

μI

)

= ∂I f

μI
+ k∂V g

μI (λ + dV ξ + μV )
.

Taking modulus on both sides yields

1 <
∂I f

μI
+ k∂V g

μIμV
≤ f

μI I1
+ kg

μIμV V1
= 1,

a contradiction. Therefore, the linearized system (3.4) for T , I , V (with Z = 0) is
stable. The local stability of E1 is then determined by the stability of (3.5); namely,
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by the sign of R1 − 1, where

R1 := r I1
μZ

(3.6)

is the basic reproduction number of the immune response. We summarize the above
results in the following proposition.

Proposition 3.3 Assume (H1)-(H3). The CTL-inactivated steady state E1 exists
uniquely (i.e., 0 < T1 < T0, I1 > 0 and V1 > 0) if and only if R0 > 1. More-
over, if R0 > 1, then E1 is linearly stable when R1 < 1 and linearly unstable when
R1 > 1.

Finally, we shall study the existence and locally asymptotic stability of the CTL-
activated steady state E2 = (T2, I2, V2, Z2). In fact,wehave the followingproposition.

Proposition 3.4 Assume (H1)–(H3). TheCTL-activated steady state E2 exists uniquely
(i.e., 0 < T2 < T0, I2 > 0, V2 > 0 and Z2 > 0) if and only if R0 > 1 and R1 > 1.
Moreover, E2 is linearly stable whenever it exists.

Proof From (3.1), we have I2 = μZ/r and V2 = kμZ/(rμV ). To prove the existence
of E2, it suffices to show that H(T , I2, V2) = 1 has a unique solution T2 ∈ (0, T0)
such that b(T2) > μI I2 and then Z2 = [b(T2)/I2 − μI ]/r , where

H(T , I , V ) = f (T , I ) + g(T , V )

b(T )

is strictly increasing in T , I , V due to (H1)-(H2). To achieve this, we observe that
R1 > 1 gives I1 > μZ/r , which entails I1 > μZ/r = I2 and V1 = k I1/μV > V2.
Consequently, H(T1, I2, V2) < H(T1, I1, V1) = R(T1) = 1. Since H(T , I2, V2) →
∞ as T approaches T0 from the left, the equation H(T , I2, V2) = 1 has a unique
solution T2 ∈ (T1, T0). Moreover, noting the fact that b′(T ) < 0 in (H1), we obtain
b(T2) > b(T1) = μI I1 > μI I2.

Next, we show that R0 > 1 and R1 > 1 are necessary conditions for the existence
of E2. In fact, if E2 exists, then Z2 > 0 implies T2 < T0, I2 < b(T2)/μI = i(T2)
and V2 = k I2/μV < kb(T2)/(μIμV ) = v(T2). Consequently, using the definition of
R(T ) in (3.3), one has 1 = H(T2, I2, V2) < R(T2). It then follows from T2 < T0 and
(H1), as well as the fact R′(T ) > 0, one has R0 = R(T0) > R(T2) > 1.We now claim
R1 > 1. Otherwise, I1 ≤ μZ/r = I2, which implies b(T2) > μI I2 ≥ μI I1 = b(T1).
By (H1), we have T1 > T2, which gives R(T2) < R(T1) = 1, a contradiction.

From the above argument, we also note that there exists at most one CTL-activated
steady state. Linearizing (1.1) about E2 gives

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t T = dT�T + [b′(T2) − ∂T f − ∂T g]T − ∂I f I − ∂V gV ,

∂t I = dI�I + [∂T f + ∂T g]T + [∂I f − r Z2 − μI ]I + ∂V gV − r I2Z ,

∂t V = dV�V + k I − μV V ,

∂t Z = dZ (I2)�Z + d ′
Z (I2)Z2�I + r Z2 I ,
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where the variables of ∂T f and ∂I f are (T2, I2), while the variables of ∂T g and ∂V g
are (T2, V2). We will prove by contradiction that all eigenvalues of the linear operator
corresponding to the above linear system have negative real parts. Assume to the
contrary that there exist λ ∈ C with Reλ ≥ 0 and ξ ≥ 0 such that det(λ + B) = 0,
where

B =

⎛

⎜
⎜
⎝

dT ξ−b′(T2)+∂T f +∂T g ∂I f ∂V g 0
−∂T f − ∂T g dI ξ+μI +r Z2−∂I f −∂V g r I2

0 −k dV ξ + μV 0
0 −[r−d ′

Z (I2)ξ ]Z2 0 dZ (I2)ξ

⎞

⎟
⎟
⎠ .

A simple calculation gives

(

1 + ∂T f + ∂T g

λ + dT ξ

) (

1 + λ + dI ξ

μI + r Z2
+ r I2[r − d ′

Z (I2)ξ ]
(μI + r Z2)[λ + dZ (I2)ξ ]

)

= ∂I f

μI + r Z2
+ k∂V g

(μI + r Z2)(λ + dV ξ + μV )
.

Taking modulus on both sides gives

1 <
∂I f

μI + r Z2
+ k∂V g

μV (μI + r Z2)
≤ f

(μI + r Z2)I2
+ kg

μV (μI + r Z2)V2
= 1,

a contradiction. This completes the proof. 
�

3.2 Global dynamics: global attractivity and uniform persistence

In this subsection, we will establish global dynamics of the solution semiflow �(t)
for system (1.1) with an initial condition in X

4+. To obtain the compactness of the
solution semiflow, we first improve the regularity of the solution obtained in Theorem
2.2. More precisely, we have the following results:

Lemma 3.5 Assume (H1)-(H3). Let (T , I , V , Z) be the non-negative global classical
solution of the system (1.1) obtained in Theorem 2.2. Then there exist σ ∈ (0, 1) and
c > 0 such that

‖(T , I , V , Z)‖
C2+σ,1+ σ

2 (�̄×[1,∞))
≤ c.

Proof From Theorem 2.2, we can find two positive constants c1, c2 such that

0<T (x, t), I (x, t), V (x, t), Z(x, t)≤c1, |∇ I (x, t)| ≤ c2 for all x ∈� and t > 0.

We rewrite the fourth equation of (1.1) as ∂t Z = ∇ · A + B where A = dZ (I )∇Z +
d ′
Z (I )Z∇ I and B = r I Z − μZ Z . Obviously, |B| ≤ c3 and |A| ≤ dZ (0)|∇Z | + c4.
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By (H3) and Cauchy’s inequality, we also have

A · ∇Z = dZ (I )|∇Z |2 + d ′
Z (I )Z∇ I · ∇Z ≥ dZ (c1)

2
|∇Z |2 − c5.

Thus, we apply the Hölder regularity for quasilinear parabolic equations (Porzio and
Vespri 1993, Theorem 1.3 and Remark 1.4) to obtain ‖Z‖

Cσ, σ
2 (�̄×[1,∞))

≤ c6. More-

over, applying the standard parabolic Schauder theory (Ladyzhenskaya et al. 1968) to
the system (1.1), one has

‖(T , I , V , Z)‖
C2+σ,1+ σ

2 (�̄×[1,∞))
≤ c7,

which completes the proof. 
�
From Lemma 3.5, we observe that, for any t > 1 and a bounded set B in X

4+, the
set �(t)B is bounded in C2(�,R4+) and thus precompact in X

4+ = W 1,p0(�,R4+)

for p0 > 2. This implies that the solution map �(t) : X4+ → X
4+ is compact for all

t > 1. Recall from Theorem 2.4 that �(t) is point dissipative. It then follows from
(Hale 1988, Theorem 3.4.8) that the system admits a nonempty global attractor inX4+.
Next, we obtain the uniform persistence of solution which will be used to prove the
globally asymptotic stability of steady states.

Proposition 3.6 Assume (H1)-(H3). Let (T , I , V , Z) be the non-negative global clas-
sical solution of the system (1.1) with an initial value in [X+ \ {0}]4. There exists
δ0 > 0 such that

lim inf
t→∞ min

x∈�̄
T (x, t) ≥ δ0.

If R0 > 1, then there exists δ1 > 0 such that

lim inf
t→∞ min

x∈�̄
min{I (x, t), V (x, t)} ≥ δ1.

Proof In view of the first equation of (1.1), (H2) and (2.11), we findC0 > 0 and t0 > 0
such that ∂t T ≥ dT�T +b(T )−C0T for all t > t0. By (H1), there exists δ0 ∈ (0, T0)
such that b(δ0) − C0δ0 = 0. Comparison principle gives lim inf

t→∞ T (x, t) ≥ δ0 for all

x ∈ �.
When R0 > 1,wedenoteX1 = X+×[X+\{0}]2×X+ and ∂X1 = (X+×{0}×X

2+)∪
(X2+ ×{0}×X+). By strong maximum principle, the largest positively invariant set in
∂X1 is M1 = X+ ×{0}×{0}×X+. On M1, the system (1.1) reduces to two decoupled
equations ∂t T = dT�T + b(T ) and ∂t Z = dZ (0)�Z − μZ Z . It is readily seen
that E0 = (T0, 0, 0, 0) is globally attractive on M1. Following the idea in (Smith and
Zhao 2001), we introduce a generalized distance function η1(u) = minx∈�̄,i=2,3 ui (x)
for u ∈ X

4+. It follows from strong maximum principle that η1(�(t)φ) > 0 for all
φ ∈ X1. Note that η−1

1 (0,∞) ⊂ X1. Hence, the condition (P) in (Smith and Zhao
2001, Section 3) is verified. Now, we claimWs(E0)∩η−1

1 (0,∞) = ∅. Assume to the
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contrary that there exists a solution (T , I , V , Z) with initial condition in X1 such that
lim
t→∞(T , I , V , Z) = (T0, 0, 0, 0). There exists t1 > 0 such that

∂t I ≥ dI�I + (1 − ε)[∂I f (T0, 0)I + ∂V g(T0, 0)V ] − μI I ,

∂t V = dV�V + k I − μV V ,

where ε = (1 − 1/R0)/2 > 0. On account of Perron-Frobenius theorem, we let
(Iε, Vε) ∈ R

2+ be a positive eigenvector of the matrix

(
(1 − ε)∂I f (T0, 0) − μI (1 − ε)∂V g(T0, 0)

k −μV

)

corresponding to the principal eigenvalue λ1 > 0. There exists c1 > 0 such that
c1 I (x, t1) ≥ Iε and c1V (x, t1) ≥ Vε for all x ∈ �. It then follows from comparison
principle that I (x, t) ≥ eλ1(t−t1) Iε/c1 and V (x, t) ≥ eλ1(t−t1)Vε/c1 for all t > t1.
This contradicts to the assumption that I (x, t) → 0 and V (x, t) → 0 as t → ∞.
Thus, the stable set of E0 does not intersect η−1

1 (0,∞). By (Smith and Zhao 2001,
Theorem 3), there exists δ1 > 0 such that lim inf

t→∞ p(�(t)φ) ≥ δ1 for any φ ∈ X1. 
�

Now, we are ready to prove the global attractiveness of steady states via the Lya-
punov function technique and LaSalle invariance principle. Together with locally
asymptotic stability obtained in Sect. 3.1, we will actually obtain globally asymptotic
stability of steady states (under certain conditions). First, we shall establish global
attractiveness of the infection-free steady state E0 = (T0, 0, 0, 0) based on the fol-
lowing Lyapunov function:

L0(T , I , V , Z) := 1

2

∫

�

[k I 2 + ∂V g(T0, 0)V
2]dx . (3.7)

Here, and in the forthcoming content, a Lyapunov function is a differentiable and
non-negative functional on a subset of X4+ which is positively invariant with respect
to the solution map �(t). For instance, we define L0 on the subset

D0 = {φ = (φ1, φ2, φ3, φ4) ∈ X
4+ : φ1(x) ≤ T0}. (3.8)

The positive invariance of D0 follows from the non-negativity of f and g, (H1) and a
direct application of the comparison principle on the first equation of (1.1). Moreover,
the omega limit set ω(φ) ⊂ D0 for any φ ∈ X

4+. The main step in the Lyapunov func-
tion technique is to construct a suitable Lyapunov function that is non-increasing along
the solution trajectory. When restricted along a solution (T , I , V , Z), the Lyapunov
function can be always regarded as a single-variable function of t ∈ R+.

Theorem 3.7 Assume (H1)–(H3). If R0 ≤ 1, then the infection-free steady state E0 is
globally attractive. If R0 < 1, then E0 is globally asymptotically stable.
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Proof On account of the second and third equations of system (1.1), we obtain from
(3.7) and Green’s identity

dL0

dt
= −kdI

∫

�

|∇ I |2dx − ∂V g(T0, 0)dV

∫

�

|∇V |2dx − rk
∫

�

I 2Zdx − kμI

∫

�

I 2dx

− μV ∂V g(T0, 0)
∫

�

V 2dx + k
∫

�

I f (T , I )dx + k
∫

�

I (g(T , V ) + ∂V g(T0, 0)V )dx,

Since D0 in (3.8) is positively invariant,we have ‖T ‖∞ ≤ T0. It then follows from (H2)
that f (T , I ) ≤ f (T0, I ) ≤ ∂I f (T0, 0)I and g(T , V ) ≤ g(T0, V ) ≤ ∂T g(T0, 0)V .
Substituting these into the above equation gives

dL0

dt
≤

∫

�

k[∂I f (T0, 0) − μI ]I 2dx +
∫

�

2k∂V g(T0, 0)I V dx −
∫

�

μV ∂V g(T0, 0)V
2dx

= −μV ∂V g(T0, 0)
∫

�

(V − k

μI
I )2dx + kμI (R0 − 1)

∫

�

I 2dx ≤ 0,

because R0 ≤ 1. The largest positively invariance set of dL0/dt = 0 in D0 is a sin-
gleton {E0}. Obviously, ω(φ) ∈ D0 for any φ ∈ D0. By LaSalle invariance principle,
E0 is globally attractive in D0; namely, D0 is a subset of Ws(E0), the stable set of
E0. Now, for any initial value φ ∈ X

4+, the omega limit set ω(φ) is internally chain
transitive (Zhao 2017, Lemma 1.2.1) and ω(φ) ⊂ D0. On account of (Zhao 2017,
Theorem 1.2.1), E0 is globally attractive in X

4+. If further, R0 < 1, then Proposition
3.2 implies that E0 is actually globally asymptotically stable. 
�

If R0 < 1, one may use a similar argument as in (Bai and Winkler 2016) to prove
the global attractiveness of E0. However, for the critical case R0 = 1, we shall apply
the LaSalle invariance principle as in the above proof.

Next, we will explore the conditions for the global stability of E1 = (T1, I1, V1, 0)
and E2 = (T2, I2, V2, Z2). To this end, we assume that the incidence functions take
the following forms:

(H4) f (T , I ) = h0(T )hd(I ) and g(T , V ) = h0(T )hi (V ), where h0, hd , hi ∈
C2(R+).

Remark 3.8 We should point out that hypothesis (H4) is not stringent, because it can be
satisfied by many forms of f (T , I ) and g(T , V ) including the mass action incidence
f (T , I ) = βdT I , g(T , V ) = βi T V used in simulations, see Sect. 4.1 for details.
In fact, hypothesis (H4) is only used to prove the global stability of the homogeneous
steady states E1 and E2. For the linear stability of E0, E1, E2 and the nonlinear stability
of E0, hypothesis (H4) can be removed. Hence, it is natural to study the global stability
of the CTL-inactivated/activated steady state without assumption (H4) in our future
work.
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Similar as in (Magal et al. 2010), we make use of the function u−1− ln u to define
the following Lyapunov function:

L1(T , I , V , Z) :=
∫

�

(

T − T1 −
∫ T

T1

h0(T1)

h0(θ)
dθ

)

dx +
∫

�

(

I − I1 − I1 ln
I

I1

)

dx

+ h0(T1)hi (V1)

μV V1

∫

�

(

V − V1 − V1 ln
V

V1

)

dx +
∫

�

Zdx

(3.9)

on the positively invariant subset

D1 = {φ = (φ1, φ2, φ3, φ4) ∈ X
4+ : φi (x) > 0 for all i = 1, 2, 3 and x ∈ �̄}.

(3.10)

For any increasing function h ∈ C(R+,R+) and any u0 > 0, the function
1 − h(u0)/h(u) is increasing on (0,∞) with a unique zero at u0. Consequently,
the function

u − u0 −
∫ u

u0

h(u0)

h(θ)
dθ =

∫ u

u0

(

1 − h(u0)

h(θ)

)

dθ

is non-negative on (0,∞) with a unique minimum at u0. Especially, when h(θ) = θ ,
we have u − u0 − u0 ln(u/u0) ≥ 0 for all u > 0. Therefore, the Laypunov function in
(3.9) is non-negative and achieves its uniqueminimum value 0 at E1 = (T1, I1, V1, 0).
Under the assumption (H4), we can rewrite the basic reproduction numbers R0 in (3.2)
as

R0 = h0(T0)h′
d(0)

μI
+ kh0(T0)h′

i (0)

μIμV
.

Theorem 3.9 Assume (H1)-(H4). If R0 > 1 and R1 < 1, then the CTL-inactivated
steady state E1 is globally asymptotically stable. If R0 > 1 and R1 ≤ 1, then E1 is
globally attractive.

Proof On account of (1.1) and (H4), we have

dL1

dt
=

∫

�

[

1 − h0(T1)

h0(T )

]

(dT�T )dx +
∫

�

(

1 − I1
I

)

(dI�I )dx

+
∫

�

h0(T1)hi (V1)

μV V1

(

1 − V1
V

)

(dV�V )dx +
∫

�

�[dZ (I )Z ]dx +
∫

�

M1dx,

where

M1 =
[

1 − h0(T1)

h0(T )

]

b(T ) + h0(T1)[hd (I ) + hi (V )] − I1
I
h0(T )[hd(I ) + hi (V )]

+ μI (I1 − I ) + h0(T1)hi (V1)

μV V1

(

k I − μV V − kV1 I

V
+ μV V1

)

+ (r I1 − μZ )Z .
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Note from (H2) and (H4) that h′
0 > 0. This together with Green’s identity implies that

the first integral in the expression of dL1/dt is no more than zero. Similarly, it follows
from Green’s identity that the second and third integrals are non-positive, while the
fourth integral equals zero. Therefore, dL1/dt ≤ ∫

�
M1dx .

Next, we will show thatM1 ≤ 0. Since E1 = (T1, I1, V1, 0) satisfies the equations
(3.1) and R1 = r I1/μZ , we can rewrite b(T ) = b(T ) − b(T1) + h0(T1)[hd(I1) +
hi (V1)], μI = h0(T1)[hd(I1)+hi (V1)]/I1, k = μV V1/I1, and r I1 −μZ = μZ (R1 −
1). Consequently,

M1 =
[

1 − h0(T1)

h0(T )

]

[b(T ) − b(T1)] + μZ (R1 − 1)Z

+h0(T1)[hd(I1)M11 + hi (V1)M12], (3.11)

where

M11 =1 − h0(T1)

h0(T )
+ hd(I )

hd(I1)
− I1h0(T )hd(I )

I h0(T1)hd(I1)
+ 1 − I

I1
,

M12 =1 − h0(T1)

h0(T )
+ hi (V )

hi (V1)
− I1h0(T )hi (V )

I h0(T1)hi (V1)
+ 1 − I

I1
+ I

I1
− V

V1
− V1 I

V I1
+ 1.

By adding and subtracting 2 − I hd (I1)
I1hd (I ) we obtain

M11 =
[

3 − h0(T1)

h0(T )
− I1h0(T )hd(I )

I h0(T1)hd(I1)
− I hd(I1)

I1hd (I )

]

+
[
hd(I )

hd (I1)
− 1 − I

I1
+ I hd(I1)

I1hd (I )

]

,

=
[

3 − h0(T1)

h0(T )
− I1h0(T )hd(I )

I h0(T1)hd(I1)
− I hd(I1)

I1hd (I )

]

+
[
hd(I )

hd (I1)
− 1

] [

1 − I hd (I1)

I1hd (I )

]

.

Similarly, by adding and subtracting 3 − Vhi (V1)
V1hi (V )

we obtain

M12 =
[

4 − h0(T1)

h0(T )
− I1h0(T )hi (V )

I h0(T1)hi (V1)
− Vhi (V1)

V1hi (V )
− I V1

I1V

]

+
[
hi (V )

hi (V1)
− 1 − V

V1
+ Vhi (V1)

V1hi (V )

]

=
[

4 − h0(T1)

h0(T )
− I1h0(T )hi (V )

I h0(T1)hi (V1)
− Vhi (V1)

V1hi (V )
− I V1

I1V

]

+
[
hi (V )

hi (V1)
− 1

] [

1 − Vhi (V1)

V1hi (V )

]

.

On account of (H2) and (H4), we have h′
d > 0 and h′′

d ≤ 0. This together with
Cauchy’s inequality implies M11 ≤ 0. Similarly, we obtain from (H2), (H4) and
Cauchy’s inequality that M12 ≤ 0. Moreover, in view of (H1), (H2) and (H4), we
have b′ < 0 and h′

0 > 0. Hence, the first term in the expression of M1 in (3.11) is
non-positive. The second term is also no more than zero when R1 ≤ 1. Combining
these with non-positiveness of M11 and M12 yields M1 ≤ 0 and dL1/dt ≤ 0.
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The largest positively invariant set of dL1/dt = 0 in D1 is a singleton {E1}.
Since ω(D1) ⊂ D1 by Proposition 3.6, we apply LaSalle invariance principle to find
D1 ⊂ Ws(E1). Now, we consider the initial condition φ ∈ [X+ \ {0}]4. It again
follows from Proposition 3.6 that ω(φ) ⊂ D1. By (Zhao (2017), Lemma 1.2.1), ω(φ)

is internally chain transitive. An application of (Zhao 2017, Theorem 1.2.1) yields
ω(φ) = E1. This proves global attractiveness of E1 in [X+ \ {0}]4 when R0 > 1 and
R1 ≤ 1. If further, R1 < 1, then we obtain from Proposition 3.3 that E1 is globally
asymptotically stable in [X+ \ {0}]4. 
�
The following result gives uniform persistence in Z when both R0 > 1 and R1 > 1.

Proposition 3.10 Assume (H1)-(H4). Let (T , I , V , Z) be the solution of (1.1) with
initial condition in [X+ \ {0}]4. If R0 > 1 and R1 > 1, then there exists δ2 > 0,
independent of initial condition, such that

lim inf
t→∞ min

x∈�̄
Z(x, t) ≥ δ2.

Proof Define X2 = X+ × [X+ \ {0}]3 and ∂X2 = X+ × [X+\{0}]2 × {0}. Let M2 be
the largest positively invariant set in ∂X2. Using a similar argument as in the proof of
Proposition 3.6, we find that E1 = (T1, I1, V1, 0) is globally attractive on M2. Now,
we introduce a generalized distance function η2(u) = minx∈�̄ u4(x) for u ∈ X

4+. It
follows from strong maximum principle that η1(�(t)φ) > 0 for all φ ∈ X2. Note that
η−1
2 (0,∞) ⊂ X2. Hence, the condition (P) in (Smith and Zhao 2001, Section 3) is

verified.We are left to show thatWs(E1)∩η−1
2 (0,∞) = ∅. Assume to the contrary that

for some initial condition inX2, the solution (T , I , V , Z) → (T1, I1, V1, 0) as t → ∞.
There exists t2 > 0 such that ∂t Z ≥ �[dZ (I )Z ]+ε2Z , where ε2 = (r I2−μZ )/2 > 0.
By comparison principle, we have

∫

�
Z(x, t)dx ≥ eε2(t−t2)

∫

�
Z(x, t2)dx , which

contradicts to the assumption Z → 0 as t → ∞. Therefore, we obtain from (Smith
and Zhao 2001, Theorem 3) that lim inf

t→∞ p2(�(t)φ) ≥ δ2 for some δ2 > 0 independent

of the initial condition φ ∈ X2. 
�
Next, we shall prove the global attractiveness (as well as globally asymptotic stability)
of E2 = (T2, I2, V2, Z2) based on the following Lyapunov function:

L2(T , I , V , Z) :=
∫

�

(

T − T2 −
∫ T

T2

h0(T2)

h0(θ)
dθ

)

dx +
∫

�

(

I − I2 − I2 ln
I

I2

)

dx

+ h0(T2)hi (V2)

μV V2

∫

�

(

V − V2 − V2 ln
V

V2

)

dx

+
∫

�

(

Z − Z2 − Z2 ln
Z

Z2

)

dx

defined on the positively invariant set

D2 = {φ = (φ1, φ2, φ3, φ4) ∈ X
4+ : φi (x) > 0 for all i = 1, 2, 3, 4 and x ∈ �̄}.
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Similar to D1 defined in (3.10), the set D2 is positively invariant but not closed. For
any φ ∈ D2, we have �(t)φ ∈ D2. However, to show that ω(φ) ∈ D2, we need to
make use of the persistence results in Propositions 3.6 and 3.10.

Theorem 3.11 Assume (H1)–(H4). Let (T , I , V , Z) be the solution of (1.1) with initial
condition in [X+ \ {0}]4. If R0 > 1 and R1 > 1, then the CTL-activated steady state
E2 is globally asymptotically stable provided

dI ≥ Z2

4I2
max

0≤I≤∞
|I d ′

Z (I )|2
dZ (I )

. (3.12)

Proof Using a similar argument as in the proof of Theorem 3.9, we obtain after a
tedious calculation and an application of Green’s identity that dL2/dt = ∫

�
M2dx ,

where

M2 = −dT h0(T2)h′
0(T )

h20(T )
|∇T |2 − dV h0(T2)hi (V2)

μV V 2 |∇V |2

− dI I2
I 2

|∇ I |2 − Z2dZ (I )

Z2 |∇Z |2 − Z2d ′
Z (I )

Z
(∇ I · ∇Z)

+ h0(T2)hd(I2)

(
hd(I )

hd(I2)
− 1

) (

1 − I hd(I2)

I2hd(I )

)

+ h0(T2)hi (V2)

(
hi (V )

hi (V2)
− 1

) (

1 − Vhi (V2)

V2hi (V )

)

+
(

1 − h0(T2)

h0(T )

)

[b(T ) − b(T2)]

+ h0(T2)hd(I2)

(

3 − h0(T2)

h0(T )
− I2h0(T )hd(I )

I h0(T2)hd(I2)
− I hd(I2)

I2hd(I )

)

+ h0(T2)hi (V2)

(

4 − h0(T2)

h0(T )
− I2h0(T )hi (V )

I h0(T2)hi (V2)
− Vhi (V2)

V2hi (V )
− I V2

I2V

)

.

The first line in the expression of M2 is obviously no more than zero. The second
line is bounded by zero due to (3.12). The last five lines are also no more than zero
because h′

0 > 0, h′
d > 0, h′

i > 0 and b′ < 0. Consequently, we have M2 ≤ 0 and
dL2/dt ≤ 0. The largest positively invariant set of dL2/dt = 0 in D2 is a singleton
{E2}. For any φ ∈ D2, it follows from Propositions 3.6 and 3.10 that ω(φ) ∈ D2. By
LaSalle invariance principle, D2 ⊂ Ws(E2). Now, for any φ ∈ [X+ \ {0}]4, thanks to
Propositions 3.6 and 3.10, we still have ω(φ) ⊂ D2. Moreover, (Zhao 2017, Lemma
1.2.1) implies that ω(φ) is internally chain transitive. By (Zhao 2017, Theorem 1.2.1),
E2 is globally attractive. This together with Proposition 3.4 gives globally asymptotic
stability of E2 in [X+ \ {0}]4. 
�

A combination of Theorem 3.7, Theorem 3.9, and Theorem 3.11 gives Theorem
1.2.
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4 Simulations and discussions

4.1 Simulations

In this subsection, we conduct some numerical simulations of our model with specific
functions

b(T ) = λc − μT T + λl T (1 − T /KT ), f (T , I ) = βdT I , g(T , V )

= βi T V , dZ (I ) = d0e
−I .

The parameter values are chosen to be consistent with the studies in the literature
(Komarova et al. 2003; Li and Shu 2012; Shu et al. 2014):

λc = 10, μT = 0.02, λl = 0.005, KT = 1500, βd = 0.003, βi = 0.0027,

μI = 3, μV = 2.4, μZ = 0.3, r1 = r2 = r = 0.3, k = 3,

dT = 0.01, dI = 0.01, dV = 0.1, d0 = 0.01.

One of the simple positive and decreasing functions is the exponential function, so
we choose dZ (I ) = d0e−I with d0 = 0.001. The values of the diffusion coefficients
dT , dI , and dV are arbitrarily chosen. Based on the theoretical results, the diffusion
coefficients do not affect the global dynamics. The constant growth rate λc and the
logistic growth rate λl of the targeted cells as well as the cell-to-cell infection rate βd

are also arbitrarily chosen. The removal rate of infected cells r1 and the recruitment
rate of CTL r2 will be varying from 0.3 to 1 to simulate two cases R1 < 1 and R1 > 1,
respectively; noting that r1 = 1 in (Li and Shu 2012; Shu et al. 2014). The descriptions
and references for other parameters are listed in Table 1.

It can be calculated that T0 ≈ 589. The domain is set to be � = (0, 1) × (0, 1).
We choose the initial condition as a perturbation of infection-free steady state E0 =
(T0, 0, 0, 0):

T (x, 0) = T0, I (x, 0) = V (x, 0) = Z(x, 0) = e−100[(x1−0.5)2+(x2−0.5)2].

Table 1 Parameter values and descriptions

Parameter value Description Reference

μT = 0.02 Death rate of targeted cells (Li and Shu 2012)

KT = 1500 Carrying capacity of targeted cells (Li and Shu 2012)

βi = 0.0027 Virus-to-cell transmission rate (Li and Shu 2012)

μI = 3 Death rate of infected cells (Li and Shu 2012)

μV = 2.4 Death rate of virus (Li and Shu 2012)

k = 3 Production rate of virus (Li and Shu 2012)

μZ = 0.3 Death rate of CTL (Komarova et al. 2003)
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Fig. 1 The CTL-inactivated steady state E1 is globally asymptotically stable when R0 > 1 and R1 < 1

Fig. 2 The CTL-activated steady state E2 is globally asymptotically stable when R0 > 1 and R1 > 1

From (3.2) and (3.6), we calculate R0 ≈ 1.25 and R1 ≈ 0.73. By Theorem 3.9, the
CTL-inactivated steady state E1 = (T1, I1, V1, 0) is globally asymptotically stable,
where T1 ≈ 471, I1 ≈ 0.73, and V1 ≈ 0.92. The global dynamics of the model are
illustrated in Fig. 1.

Next, we increase the parameter value r = 1 such that the basic reproduction
number of immune response becomes R1 ≈ 2.45. By Proposition 3.4, there exists
a unique CTL-activated steady state E2 = (T2, I2, V2, Z2). It can be calculated that
T2 ≈ 535, I2 ≈ 0.30, V2 ≈ 0.38 and Z2 ≈ 0.41. Moreover, (3.12) can be verified:

Z2

4I2
max

0≤I≤∞
[I d ′

Z (I )]2
dZ (I )

= Z2

4I2
max

0≤I≤∞ d0 I
2e−I = d0Z2

I2e2
≈ 0.0018 < 0.01 = dI .

An application of Theorem 3.11 gives global asymptotic stability of E2; see Fig. 2.
We have conducted several numerical simulations (not shown here) with different

choices of the parameter values including the diffusion rates, and selected different
types of the positive and decreasing function dZ (I ). The simulation results all coincide
with our theoretical conclusions.
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4.2 Discussions

We considered a general viral infection model with cell-to-cell transmission and
immune chemokines. The global existence and ultimately boundedness of the solution
were obtained via a priori energy estimate.We introduced the basic reproduction num-
ber of infection R0 and proved that it is the threshold parameter to determine extinction
and persistence of viral infection; namely, the unique infection-free steady state E0 is
globally asymptotically stable if R0 < 1 and globally attractive if R0 = 1, while the
viral infection will be uniformly persistent if R0 > 1. When R0 > 1, there exists a
unique CTL-inactivated steady state E1. We defined another basic reproduction num-
ber of the CTL immune response R1 which determines the threshold dynamics of CTL.
To be more specific, if R1 < 1 then E1 is globally asymptotically stable; if R1 = 1
then E1 is globally attractive; and if R1 > 1 then there exists a unique CTL-activated
steady state E2 which is globally asymptotically stable.

The assumptions (H1)–(H4) are biologically relevant andmathematically broad. For
instance, the nonlinear infection rates f (T , I ) and g(T , V ) generalizemost commonly
used functional responses of Holling’s type I and II; and the growth function b(T )

includes a linear function bl(T ) = λc − μT T plus a possible nonlinear mitosis rate
bm(T ) as long as b′

m(T ) < μT for all T > 0. In the numerical simulation, we
chose a logistic growth bm(T ) = λl T (1 − T /KT ) with λl < μT . It is worth to
remark that Hopf bifurcation may occur if λl > μT ; see (Li and Shu 2012). Thus,
the monotonicity condition b′(T ) < 0 is important to establish the stability results of
steady states. In the proof of Theorem 3.11, we made a technical assumption (3.12) so
as to construct a suitable Lyapunov functionwhich is non-increasing along the solution
semiflow. Numerical simulations (not shown here) suggest that this assumption could
be removed; namely, the statement ofTheorem3.11 remains validwithout the technical
assumption (3.12). We leave this problem for further investigation.

There are some possible generalizations of our model. One extension is to incor-
porate the intracellular delays during viral infection (Lai and Zou 2014; Li and Shu
2012; Shu et al. 2013) and time lags in the process of immune response (Fenton
et al. 2006; Shu et al. 2014). Another extension is to replace the term �[dZ (I )Z ] =
∇ · [dZ (I )∇Z + d ′

Z (I )Z∇ I ] with a more general term of diffusion and chemotaxis
∇ · [dZ (I )∇Z −χ(I )Z∇ I ]; see (Jin and Wang 2021). It is expected that the extended
model with time delays andmore general chemotaxis will exhibit more rich dynamics.
We will provide a detailed study of this extended model in a forthcoming paper. On
the other hand, for the two-component system with degenerate motility, the global
existence of weak and generalized solutions for a large class of dZ (I ) with various
decay behavior (Winkler 2023a, b, c; Li and Winkler 2023; Li and Wang 2023) have
been established, hence it is an interesting issue to study the solution behavior for the
system (1.1) with the degenerate motility, that is dZ (I ) = 0 as I = 0.
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