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We propose a general model to investigate the joint impact of viral diffusion and 
cell-to-cell transmission on viral dynamics. The mathematical challenge lies in the 
fact that the model system is partially degenerate and the solution map is not 
compact. While the simpler cases with only indirect transmission mode or weak 
cell-to-cell transmission mode have been extensively studied in the literature, it 
remains an open problem to understand the local and global dynamics of fully 
coupled viral infection model with partial degeneracy. In this paper, we identify the 
basic reproduction number as the spectral radius of the sum of two linear operators 
corresponding to direct and indirect transmission modes. It is well-known that viral 
mobility may induce infection in low-risk regions. However, as diffusion coefficient 
increases, we prove that the basic reproduction number actually decreases, which 
indicates that faster viral movements may result in a lower level of viral infection. 
By an innovative construction of Lyapunov functionals, we further demonstrate 
that the basic reproduction number is the threshold parameter which determines 
global picture of viral dynamics. In addition to the traditional dichonomy results of 
extinction and persistence as obtained in earlier works for many simpler models, we 
are able to prove global asymptotic stability of infection-free steady state and global 
attractiveness (as well as uniqueness) of chronic-infection steady state, depending 
on whether the basic reproduction number is smaller or greater than one. Numerical 
simulation supports our theoretical results and suggests an interesting phenomenon: 
boundary layer and internal layer may occur when the diffusion parameter tends to 
zero.

© 2020 Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous proposons un modèle général pour étudier l’impact conjoint de la diffusion 
virale et de la transmission de cellule à cellule sur la dynamique virale. Le défi 
mathématique réside dans le fait que le système modèle est partiellement dégénéré 
et que la carte des solutions n’est pas compacte. Alors que les cas les plus simples 
avec uniquement un mode de transmission indirecte ou un mode de transmission 
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de cellule à cellule faible ont été largement étudiés dans la littérature, il reste 
un problème ouvert pour comprendre la dynamique locale et globale du modèle 
d’infection virale entièrement couplé avec dégénérescence partielle. Dans cet article, 
nous identifions le nombre de reproduction de base comme le rayon spectral de 
la somme de deux opérateurs linéaires correspondant aux modes de transmission 
directe et indirecte. Il est bien connu que la mobilité virale peut induire une infection 
dans les régions à faible risque. Cependant, à mesure que le coefficient de diffusion 
augmente, nous prouvons que le nombre de reproduction de base diminue réellement, 
ce qui indique que des mouvements viraux plus rapides peuvent entraîner un niveau 
inférieur d’infection virale. Par une construction innovante des fonctionnelles de 
Lyapunov, nous démontrons en outre que le nombre de reproduction de base est le 
paramètre de seuil qui détermine l’image globale de la dynamique virale. En plus des 
résultats de dichonomie d’extinction et de persistance traditionnels obtenus dans des 
travaux antérieurs pour de nombreux modèles plus simples, nous sommes en mesure 
de prouver la stabilité asymptotique globale d’un état d’équilibre sans infection et 
l’attractivité globale (ainsi que l’unicité) d’un état d’équilibre d’infection chronique, 
selon si le nombre de reproduction de base est inférieur ou supérieur à un. La 
simulation numérique soutient nos résultats théoriques et suggère un phénomène 
intéressant : la couche limite et la couche interne peuvent se produire lorsque le 
paramètre de diffusion tend vers zéro.

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction

Recently, there has been growing interests in the study of partially degenerate reaction-diffusion systems 
(see, for example, [11,30,34,35]). The reason for this is twofold: mathematical challenges and practical 
applications. On one hand, a partially degenerate reaction-diffusion system is a system that couples partial 
differential equations (PDEs) with ordinary differential equations (ODEs). Since there are no diffusion terms 
in those ODEs, the associated solution maps are not compact, which brings in some technical difficulties in 
analyzing the model dynamics as many theories of dynamical systems require compactness of the solution 
maps. To overcome the noncompactness issue, one may employ the Kuratowski measure of noncompactness 
([3]) and a generalized Krein-Rutman Theorem [18]; see more related techniques in [15] and references 
therein. On the other hand, many biological processes can be modeled by partially degenerate reaction-
diffusion systems. For instance, for hepatitis B virus (HBV) infection, susceptible target cells and infected 
cells are hepatocyte and cannot move under normal conditions, while viruses can move freely in liver. 
Based on this fact, a partially degenerated reaction-diffusion system was proposed in [32] to study the 
propagation of HBV with spatial dependence; see also [8,30]. Note that in the aforementioned works, only 
cell-free infection mode was considered for the viral infection. However, it has been recognized that there 
is another major viral infection mode, namely, the cell-to-cell infection mode [16,23], which allows viral 
particles to be transferred directly from an infected source cell to a susceptible target cell through the 
formation of virological synapses [5,12]. The impacts of both the cell-free and cell-to-cell infection modes 
on viral dynamics were recently discussed in [9,25].

It seems to be a challenging problem to investigate joint impact of viral diffusion and cell-to-cell trans-
mission on viral dynamics. Even the definition of basic reproduction number is not an easy task. So far 
as we know, there is only one partial result in [31] where the so-called “basic reproduction number” was 
introduced under a crucial assumption that cell-to-cell transmission is too weak to initiate viral infection 
alone. If the assumption is violated, this quantity is not well-defined or even becomes negative. As we shall 
see later, the so-called “basic reproduction number” is incorrectly defined because the decomposition of lin-
earized operator about infection-free steady state in [31] is not biologically relevant, though it still defines a 
threshold parameter under the assumption of weak cell-to-cell transmission. It has been revealed that more 
than half of viral infections are due to cell-to-cell transmission [13]. Thus, it is more realistic and important 
to consider the case when cell-to-cell infection may be strong.
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In this paper, we will consider a general model without the condition of weak cell-to-cell infection. We 
will define a basic reproduction number R0 which is biologically meaningful and well defined even when 
cell-to-cell infection is strong. When reducing to the model with weak cell-to-cell transmission assumption 
in [31], our basic reproduction number is still better than the one defined in [31] because we will define 
the next generation operator in a more biologically relevant manner. Furthermore, we will prove that R0 is 
a threshold parameter for the global dynamics of our general model. To be more specific, we consider the 
following general viral infection model incorporating both infection modes and spatial heterogeneity:

∂u1(x, t)
∂t

= n(x, u1(x, t)) − f(x, u1(x, t), u3(x, t)) − g(x, u1(x, t), u2(x, t)),

∂u2(x, t)
∂t

= f(x, u1(x, t), u3(x, t)) + g(x, u1(x, t), u2(x, t)) − b(x)u2(x, t),

∂u3(x, t)
∂t

= dΔu3(x, t) + k(x)u2(x, t) −m(x)u3(x, t),

(1.1)

for x ∈ Ω and t > 0, with nonnegative initial conditions

ui(x, 0) = u0
i (x) ≥ 0, and u0

1(x) �≡ 0, x ∈ Ω, i = 1, 2, 3,

and the homogeneous Neumann boundary condition

∂u3(x, t)
∂ν

= 0, x ∈ ∂Ω, t > 0.

Here, u1(x, t), u2(x, t) and u3(x, t) denote the populations of susceptible target cells, infected target cells 
and free virus particles at location x and time t, respectively. d > 0 is the diffusion coefficient and Δ is 
the Laplacian operator. k(x) > 0 is the rate of virus production due to the lysis of infected cells. m(x) > 0
stands for the death rate of free viruses. ∂u3(x,t)

∂ν denotes the differentiation of u3(x, t) along the outward 
normal direction ν to ∂Ω. In comparison with the model proposed in [31], we choose very general cell repro-
duction function n(x, u1), cell-free transmission function f(x, u1, u3) and cell-to-cell transmission function 
g(x, u1, u2). Note that our model includes existing models such as those in [30,31] as special cases. It should 
be mentioned that this general model originates from the in-host viral models proposed and studied in 
[2,20–22].

Throughout this paper, we make the following assumptions:

(H1) n(x, u1) ∈ C1(Ω ×R+) and ∂u1n(x, u1) ≤ 0 for all x ∈ Ω and u1 ≥ 0. Moreover, there exists a unique 
ū1(x) > 0 in C(Ω̄, R) such that n(x, ̄u1(x)) = 0.

(H2) f(x, u1, u3), g(x, u1, u2) ∈ C1(Ω × R+ × R+) and all of the partial derivatives ∂u1f(x, u1, u3), 
∂u3f(x, u1, u3), ∂u1g(x, u1, u2) and ∂u2g(x, u1, u2) are positive for all x ∈ Ω, u1 > 0, u2 > 0 and 
u3 > 0; f(x, u1, u3) = 0 if and only if u1u3 = 0, and g(x, u1, u2) = 0 if and only if u1u2 = 0; 
∂2f(x,u1,u3)

∂u2
3

≤ 0 and ∂
2g(x,u1,u2)

∂u2
2

≤ 0 for ui ≥ 0 (i = 1, 2, 3).

We organize the rest of this paper as follows. In Section 2, we follow a routine process to show that 
the models admits a unique solution, which exists globally and is ultimately bounded. We also prove that 
the orbit of any bounded set is also bounded. In Section 3, we identify the biologically meaningful basic 
reproduction number R0 for the model using the standard procedure of next generation operator [33]. Some 
properties of the basic reproduction number are also analyzed in this section. Sections 4 and 5 are devoted 
to the global dynamics of the model for the case of R0 ≤ 1 and R0 > 1, respectively. In Section 6, we present 
some numerical simulation results to support the analytical results and to further explore the asymptotic 
profile of steady state solutions. A brief discussion is given in the last section.
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2. Preliminaries

2.1. Boundedness and global existence of solutions

Denote by X the Banach space C(Ω̄, R3) equipped with the supremum norm. The nonnegative cone of 
X is denoted by X+ = C(Ω̄, R3

+). For any nontrivial initial condition φ = (φ1, φ2, φ3) ∈ X+ we define 
T1(t)φ1 = φ1 and T2(t)φ2 = e−b(·)tφ2. Let T3(t) = et(dΔ−m(·)) be the compact and strongly positive C0
semigroup [27, Corollary 7.2.3] generated by dΔ − m(·) subject to the no flux boundary condition. It is 
readily seen that T (t) = (T1(t), T2(t), T3(t)) is a C0 semigroup with an infinitesimal generator A [19]. We 
rewrite (1.1) as an abstract differential equation u′(t) = Au(t) + F (u(t)), where

F (φ)(x) :=

⎛⎜⎝ n(x, φ1(x)) − f(x, φ1(x), φ3(x)) − g(x, φ1(x), φ2(x))
f(x, φ1(x), φ3(x)) + g(x, φ1(x), φ2(x))

k(x)φ2(x)

⎞⎟⎠
for any φ ∈ X+. Denote c = min{c1 ≥ 0 : min

Ω̄
[F1(φ)(x) + c1φ1(x)] ≥ 0}. We obtain

φ(x) + hF (φ)(x) ≥ (φ1(x)(1 − hc), φ2(x), φ3(x))T for x ∈ Ω.

By choosing h > 0 sufficiently small, we have 1 > hc and φ + hF (φ) ∈ X+. Especially,

lim
h→0+

1
h

dist(φ + hF (φ),X+) = 0.

The above limit is satisfied for all φ ∈ X+. Thus, by using [17, Corollary 4] or [27, Theorem 7.3.1], we have 
the following lemma.

Lemma 2.1. For every initial condition φ ∈ X+, system (1.1) has a unique mild solution u(·, t, φ) on a 
maximal interval of existence [0, Tmax) with u(·, 0, φ) = φ and u(·, t, φ) ∈ X for any t ∈ [0, Tmax). If 
Tmax < ∞, then lim sup

t→Tmax

‖u(x, t)‖X = ∞.

Let u(x, t) be the solution of (1.1) with initial condition φ ∈ X+. A standard comparison argument 
together with maximum principle implies u(·, t) ∈ X+. Furthermore, u1(x, t) > 0 for all x ∈ Ω and t > 0. 
Now, we want to show that u(x, t) is bounded for all t ∈ [0, Tmax), which then implies Tmax = ∞. First, since 
∂tu1(x, t) ≤ n(x, u1(x, t)), it follows from (H1) and comparison principle that u1(x, t) ≤ max{φ1(x), ̄u1(x)}. 
Especially, there exists K1 > 0 such that u1(x, t) ≤ K1 for all x ∈ Ω and t ∈ [0, Tmax). Adding the first two 
equations of (1.1) gives

∂t[u1(x, t) + u2(x, t)] ≤ n(x, 0) + b(x)K1 − b(x)[u1(x, t) + u2(x, t)].

Let K2 be a large positive constant such that K2 > K2+n(x, 0)/b(x) and K2 > φ1(x) +φ2(x). It then follows 
from comparison principle that u1(x, t) + u2(x, t) ≤ K2 for all x ∈ Ω and t ∈ [0, Tmax). Finally, we obtain 
from the third equation of (1.1) that ∂tu3(x, t) ≤ dΔu3(x, t) + k̄K2 − mu3(x, t) where k̄ = max k(x) > 0
and m = minm(x) > 0. It again follows from comparison principle that u3(x, t) is bounded by a constant 
K3. Consequently, we have the following result.

Proposition 2.2. For every initial condition in φ ∈ X+, system (1.1) has a unique solution u(·, t) ∈ X+ on 
t ∈ [0, ∞). Moreover, u1(x, t) > 0 for all (x, t) ∈ Ω × (0, ∞). There exists a constant M > 0, independent 
of φ, such that lim supt→∞ ui(x, t) ≤ M for all x ∈ Ω and i = 1, 2, 3.
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Proof. We only need to show that M is independent of φ. From first equation of (1.1), we have 
lim supt→∞ u1(x, t) ≤ ū1(x) ≤ M1. Especially, there exists t1 > 0 such that u1(x, t) ≤ 2M1 for t > t1. 
Add the first two equations of (1.1) gives

∂t[u1(x, t) + u2(x, t)] ≤ n(x, 0) + 2M1b(x) − b(x)[u1(x, t) + u2(x, t)], t > t1.

Let M2 = 2M1 + max[n(x, 0)/b(x)]. We have lim supt→∞[u1(x, t) + u2(x, t)] ≤ M2. Choose t2 > 0 such that 
u2(x, t) ≤ 2M2 for t > t2. It then follows from the third equation of (1.1) and comparison principle that 
lim supt→∞ u3(x, t) ≤ 2M2k̄/m. This completes the proof. �
2.2. Orbits of bounded sets

Define the continuous semiflow {Θt}t≥0 : X+ → X+ for the system (1.1) by

Θtφ(·) := u(·, t, φ), t ≥ 0.

It then follows from Proposition 2.2 that each orbit γ+(φ) = ∪t≥0Θtφ is ultimately bounded with the bound 
independent of initial value φ ∈ X+. However, this does not imply that the orbit γ+(U) = ∪φ∈Uγ

+(φ) is 
bounded for any bounded set U , a condition that should be verified in proving existence of the global 
attractor; see [7, Theorem 2.1]. Thus, we shall derive the following result concerning positive invariance and 
attractiveness of the bounded set

ΓK =
{
φ ∈ X+ : φ1 ≤ K, φ1 + φ2 ≤ K + n̄/b, φ3 ≤ k̄(K + n̄/b)/m

}
, (2.1)

where K is a constant greater than the maximum of ū1 on Ω̄, and k̄ (resp. n̄) is the maximum of k(x) (resp. 
n(x, 0)) on Ω̄, while b (resp. m) is the minimum of b(x) (resp. m(x)) on Ω̄.

Proposition 2.3. For any K > ‖ū1‖, the set ΓK defined as in (2.1) is positively invariant with respect to the 
semiflow Θt. Furthermore, for any bounded set U ⊂ X+, the orbit γ+(U) is bounded and there exists t0 ≥ 0
such that Θtφ ∈ ΓK for all t ≥ t0 and φ ∈ U .

Proof. We first use a contradiction argument to show that the set

Γ1
K =

{
φ = (φ1, φ2, φ3) ∈ X+ : φ1 ≤ K

}
is positively invariant. Let u(x, t) be the solution of (1.1) with initial condition in Γ1

K . If u(x, t) leaves Γ1
K

for the first time at t = t0 and x = x0, we have u1(x0, t0) = K and ∂tu1(x0, t0) ≥ 0. But, the first equation 
of (1.1) gives 0 ≤ ∂tu1(x0, t0) < n(x0, K1) < n(x0, ̄u1(x0)) = 0, a contradiction. Similarly, we can add the 
first two equations of (1.1) and prove that the set

Γ2
K =

{
φ = (φ1, φ2, φ3) ∈ X+ : φ1 ≤ K, φ1 + φ2 ≤ K + n̄/b

}
is positively invariant.

Now, for any solution u(x, t) with initial condition in ΓK ⊂ Γ2
K , we know that u1(x, t) ≤ K and u2(x, t) ≤

K + n̄/b for all x ∈ Ω̄ and t ≥ 0. A simple comparison method yields u3(x, t) ≤ k̄(K + n̄/b)/m for all x ∈ Ω̄
and t ≥ 0, thus proving the positive invariance of ΓK .

Let U be any bounded subset in X+, we can find a large K ′ > ‖ū1‖ such that U ⊂ ΓK′ . The boundedness 
of γ+(U) follows immediately from the positive invariance of ΓK′ . For each φ ∈ U , by Proposition 2.2, there 
exists t0 such that Θtφ ∈ ΓK for all t ≥ t0. Here, we have to prove that the choice of t0 is independent of φ, 
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though it should depend on K and K ′. If K ′ ≤ K, the result is obvious by choosing t0 = 0. So, we assume 
K ′ > K.

Since K > ‖ū1‖, we may choose ε > 0 small such that K1 := K − 2ε > ‖ū1‖; for instance, ε =
(K − ‖ū1‖)/3. For simplicity, we also denote K2 := K − ε + n̄/b and K3 := k̄(K + n̄/b)/m. Consider 
the differential equation ∂tv1(x, t) = n(x, v1(x, t)) with initial condition v1(x, 0) = K ′. It follows from 
comparison principle that u1(x, t) ≤ v1(x, t) for all x ∈ Ω̄ and t ≥ 0. On the other hand, since n(x, v1) ≤
n(x, K1) ≤ maxx∈Ω̄ n(x, K1) < 0 whenever v1 ≥ K1, we choose

t1 = ln(K1/K
′)

maxx∈Ω̄ n(x,K1)
= ln[(K − 2ε)/K ′]

maxx∈Ω̄ n(x,K1)
> 0

such that v1(x, t) ≤ K1 for all t ≥ t1. Next, we consider the differential equation v′2(t) = n̄ + bK1 − bv2(t)
for t ≥ t1 with initial condition v2(t1) = K ′ + n̄/b. Similarly, we obtain by comparison principle that 
u1(x, t) + u2(x, t) ≤ v2(t) for all x ∈ Ω̄ and t ≥ t1. Whenever v2(t) ≥ K2, we have v′2(t) ≤ −εb. By choosing

t2 = ln[K2/(K ′ + n̄/b)]
−εb

= ln[(K − ε + n̄/b)/(K ′ + n̄/b)]
−εb

> 0,

we obtain u1(x, t) + u2(x, t) ≤ v2(t) ≤ K2 for all x ∈ Ω̄ and t ≥ t1 + t2. Finally, we consider the differential 
equation v′3(t) = k̄K2 −mv3(t) for t ≥ t1 + t2 with initial condition v3(t1 + t2) = k̄(K ′ + n̄/b)/m. Again, by 
comparison principle, we have u3(x, t) ≤ v3(t) for all x ∈ Ω̄ and t ≥ t1 + t2. Furthermore, since v′3(t) ≤ −εk̄

whenever v3(t) ≥ K3, we choose

t3 = ln[K3m/(k̄(K ′ + n̄/b))]
−εk̄

= ln[(K + n̄/b)/(K ′ + n̄/b)]
−εk̄

> 0

to obtain u(x, t) ≤ v3(t) ≤ K3 for all x ∈ Ω̄ and t ≥ t1 + t2 + t3. Let t0 = t1 + t2 + t3. We have ΦtU ⊂ ΓK

for all t ≥ t0. This completes the proof. �
3. Basic reproduction number

Clearly, system (1.1) always has a unique infection-free steady state (ū1(x), 0, 0). For simplicity, we denote

βd(x) = ∂g(x, ū1(x), 0)
∂u2

, βi(x) = ∂f(x, ū1(x), 0)
∂u3

. (3.1)

Linearizing the system (1.1) for (u2(x, t), u3(x, t)) at (ū1(x), 0, 0) gives the following cooperative system for 
the infected cells and free virus,

∂u2(x, t)
∂t

= βi(x)u3(x, t) + βd(x)u2(x, t) − b(x)u2(x, t),

∂u3(x, t)
∂t

= dΔu3(x, t) + k(x)u2(x, t) −m(x)u3(x, t),
(3.2)

for x ∈ Ω and t > 0. The suitable functional space for the above homogeneous linear differential system is 
Y := C(Ω̄, R2). The associated linear operator of this system can be decomposed as A = F + B, where

F =
(
βd(·) βi(·)

0 0

)
, B =

(
−b(·) 0
k(·) dΔ −m(·)

)
.

The basic reproduction number R0 is then defined as the spectral radius of −FB−1, denoted by ρ(−FB−1). 
In [31], a different decomposition is used: the cell-to-cell transmission rate βd in the 11-entry of F was 
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misplaced in the 11-entry of B, which leads to a biologically meaningless definition of “basic reproduction 
number” when cell-to-cell transmission is strong. For illustration, considering the linearized homogeneous 
ordinary differential equations for viral transmission, the basic reproduction number should be defined as 
βd/b + βik/(mb), instead of βik/[m(b − βd)]; note that the second quantity becomes negative when βd > b.

Since B is resolvent-positive with s(B) < 0, F is positive and A is also resolvent-positive, it follows from 
[29, Theorem 3.5] that R0 − 1 has the same sign as s(A). Let eBt be the semigroup generated by B. Wang 
and Zhao [33] gave a biological interpretation of the next generation operator:

−FB−1 =
∞∫
0

FeBtdt,

and proved local asymptotic stability of infection-free steady state under the condition R0 < 1. Here, we 
shall prove global asymptotic stability of infection-free steady state under the condition R0 ≤ 1. Also, we 
will derive an equivalent formula for R0 such that the direct and indirect transmission mechanisms are 
clearly separated in the expression. To reach this end, we need the following result.

Lemma 3.1. Let F =
(
F11 F12
0 0

)
be a positive operator and B =

(
−V11 0
−V21 dΔ − V22

)
be a resolvent-

positive operator with s(B) < 0. Then we have ρ(−FB−1) = ρ(Ad + Ai), where Ad = F11V
−1
11 and Ai =

−F12(V22 − dΔ)−1V21V
−1
11 .

Proof. Let ψ = Fϕ and ϕ = −B−1φ. It is readily seen that V11ϕ1 = φ1 and V21ϕ1 + (V22 − dΔ)ϕ2 = φ2. 
Solving this system gives ϕ1 = V −1

11 φ1 and ϕ2 = (V22 − dΔ)−1[φ2 − V21V
−1
11 φ1]. Consequently, ψ1 =

F11V
−1
11 φ1 + F12(V22 − dΔ)−1[φ2 − V21V

−1
11 φ1] and ψ2 = 0. Thus, we can rewrite

−FB−1
(
φ1
φ2

)
=

(
A1φ1 + A2φ2

0

)
,

where A1 = F11V
−1
11 − F12(V22 − dΔ)−1V21V

−1
11 , and A2 = F12(V22 − dΔ)−1. By iteration, we have

(−FB−1)n
(
φ1
φ2

)
=

(
An

1φ1 + An−1
1 A2φ2

0

)
.

Thus, ‖An
1‖ ≤ ‖(−FB−1)n‖ ≤ ‖An−1

1 ‖(‖A1‖ +‖A2‖). By Gelfand’s formula and squeeze theorem, we obtain 
ρ(−FB−1) = ρ(A1). The lemma is proved since A1 = Ad + Ai. �

By Lemma 3.1, we have another expression of the basic reproduction number:

R0 = ρ(Ad + Ai), (3.3)

where Ad = βd/b is the next generation operator for direct transmission, and Ai = βi(m − dΔ)−1k/b is the 
next generation operator for indirect transmission. Remark that the integral operator (m − dΔ)−1 and the 
multiplication operator k/b do not commute. In the absence of indirect transmission, the basic reproduction 
number for the direct transmission is simply given as

Rd
0 = ρ(Ad) = max

x∈Ω̄

βd(x)
b(x) . (3.4)

On the other hand, if only indirect transmission is taken into consideration, the corresponding basic repro-
duction number is
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Ri
0 = ρ(Ai) = ρ(βi(m− dΔ)−1k/b) = sup

φ∈H1(Ω),φ�=0

∫
Ω βi(x)k(x)φ2(x)/b(x)dx∫

Ω d|∇φ(x)|2 + m(x)φ2(x)dx
, (3.5)

where the last equation is obtained by a standard variational method. It is obvious that R0 ≤ Rd
0 + Ri

0. 
The equality holds if βd(x)/b(x) is independent of x. From the variational formula (3.5), it is also observed 
that Ri

0 is a decreasing function of the diffusion coefficient d. However, since there is no simple variational 
formula for R0, it is a nontrivial result that R0 is also a decreasing function of d. Actually, we use the 
ideas in the proofs of [1, Lemma 2.2] and [14, Lemma 3.1] to find the following properties for the basic 
reproduction number.

Theorem 3.2. The basic reproduction number R0 given in (3.3) is a principal eigenvalue of Ad+Ai associated 
with a positive eigenfunction. If we treat d as an independent variable in (0, ∞), then R0 is a decreasing 
function of d. As d → 0, we have

R0 → R0 := max
x∈Ω̄

[
βd(x)
b(x) + βi(x)k(x)

b(x)m(x)

]
. (3.6)

As d → ∞, we have

R0 → R0, (3.7)

where R0 > Rd
0 is the unique solution of the equation∫

Ω

−m(x) + k(x)βi(x)/b(x)
R0 − βd(x)/b(x)dx = 0. (3.8)

Proof. Since Ai = βi(m − dΔ)−1k/b is compact and positive, we have

ρe(Ad + Ai) = ρe(Ad) = max
x∈Ω̄

βd(x)
b(x) = ρ(Ad) < ρ(Ad + Ai),

where ρe and ρ are the essential spectral radius and spectral radius, respectively. The generalized Krein-
Rutman Theorem [18] implies that R0 = ρ(Ad + Ai) is a principal eigenvalue of Ad + Ai associated with a 
positive eigenfunction, denoted by φ(x). We then obtain

dΔψ −mψ + kβi/b

R0 − βd/b
ψ = 0, (3.9)

where ψ = φ/βi. Now, we treat d as a variable, and denote ϕ to be the derivative of ψ with respect to d. 
Taking derivative on both sides of (3.9) gives

Δψ + dΔϕ−mϕ + kβi/b

R0 − βd/b
ϕ− kβi/b

(R0 − βd/b)2
R′

0ψ = 0, (3.10)

where R′
0 is the derivative of R0 with respect to d. We then multiply (3.9) by ϕ and (3.10) by ψ, subtract 

the resulting equations, and integrate over Ω to obtain

R′
0

∫
Ω

kβi/b

(R0 − βd/b)2
ψ2dx =

∫
Ω

Δψ · ψdx = −
∫
Ω

|∇ψ|2dx ≤ 0.

Hence, R′
0 ≤ 0. Moreover, R′

0 = 0 if and only if ψ(x) is a nonzero constant function, if and only if the 
function βd/b + kβi/(bm) ≡ R0 is independent of x.
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It is clear that R0 ≤ R0; otherwise −m + kβi/b
R0−βd/b

< 0 and the principal eigenvalue of dΔ −m + kβi/b
R0−βd/b

is negative, which contradicts to (3.9). So the limit of R0 as d → 0 exists. We claim that the limit is exactly 
R0. If not, then there exists ε > 0 such that R0 < R0−2ε for all d > 0. By continuity of coefficient functions, 
we may find a point x0 ∈ Ω and a δ > 0 such that βd(x)/b(x) + βi(x)k(x)/[b(x)m(x)] > R0 − ε > R0 + ε

for all x ∈ Bδ(x0). By compactness of continuous functions on a bounded domain, there exists ε0 > 0 such 
that

−m(x) + k(x)βi(x)/b(x)
R0 − βd(x)/b(x) > ε0

for all x ∈ Bδ(x0) and d > 0. Let μ > 0 be principal eigenvalue of −Δ on Bδ(x0) with Neumann boundary 
condition and ψ− the corresponding eigenfunction. We may normalize ψ− such that ψ−(x) ≤ 1 for all 
x ∈ Bδ(x0). On the other hand, we choose a d ∈ (0, ε0/μ) and normalize the eigenfunction for (3.9) as

ψ+(x) = ψ(x)
infx∈Bδ(x0) ψ(x) .

Obviously, ψ+(x) ≥ 1 ≥ ψ−(x) for all x ∈ Bδ(x0). Moreover, we have −Δψ+(x) > ε0
d ψ+(x), and −Δψ−(x) =

μψ−(x) < ε0
d ψ−(x). Hence, ψ+ and ψ− are the super- and sub-solutions of the elliptic operator −Δ − ε0/d

with Neumann boundary condition. Thus, an eigenfunction exists and ε0/d > μ is an eigenvalue for the 
Laplace operator −Δ on Bδ(x0) with Neumann boundary condition, which contradicts to the assumption 
that μ is the principal eigenvalue. Therefore, we have proved R0 → R0 as d → 0.

To investigate the limit of R0 as d → ∞, we first note that R0 ≥ Rd
0 = maxx∈Ω

βd(x)
b(x) and thus such a 

limit R0 exists. We can find a sequence dn → ∞ and the corresponding eigenfunctions of (3.9) formulate a 
monotone sequence that tends to a nonzero constant function. Such a sequence can be constructed recursively 
using super- and sub-solutions technique, where a large constant function is regarded as the super-solution 
for (3.9) with any dn > 0, and the eigenfunction corresponding to dn is used as a sub-solution to find 
an eigenfunction of (3.9) with d = dn+1. The limit function is a constant function because it is harmonic 
and satisfies Neumann boundary condition. For this sequence, we integrate (3.9) over Ω and take the limit 
dn → ∞ to obtain (3.8), which has a unique root in (Rd

0, ∞) because, the integral on the right-hand side is 
a decreasing function of R0, and it is positive near the left end point Rd

0 and negative if R0 is sufficiently 
large. This completes the proof. �

A direct application of the above theorem is the following classification of viral infection environment.

Proposition 3.3.

(i) If βd(x) ≥ b(x) for some x ∈ Ω, then R0 > 1. The disease will persist if the cell-to-cell transmission 
is strong at some point.

(ii) If βd(x)/b(x) +βi(x)k(x)/[b(x)m(x)] ≤ 1 for all x ∈ Ω, then R0 ≤ 1 and the environment is infection-
free.

(iii) If βd(x) < b(x) for all x ∈ Ω, and βd(x)/b(x) +βi(x)k(x)/[b(x)m(x)] > 1 for some x ∈ Ω, we consider 
the following cases:
• If 

∫
Ω

βi(x)k(x)
b(x)−βd(x)dx >

∫
Ω m(x)dx, then R0 > 1 and the environment is favorable for the viral infection.

• If 
∫
Ω

βi(x)k(x)
b(x)−βd(x)dx ≤

∫
Ω m(x)dx, then there exists a d∗ > 0 such that R0 ≤ 1 if d ≥ d∗ and R0 > 1

if d < d∗.

We make some further biological interpretations of our mathematical results on basic reproduction num-
ber.
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Remark 3.4.

(i) Recall that R0 = Rd
0 +Ri

0 if βd(x)/b(x) is a constant but R0 ≤ Rd
0 +Ri

0 in a general case. This means 
that spatial heterogeneity may reduce the joint impact of cell-free and cell-to-cell transmissions.

(ii) Since R0 is a decreasing function of d, the spatial diffusion of virus will reduce the effect of viral 
infection.

(iii) When d = 0, there is no interaction between different locations, and the diffusion model reduces to a 
patch model (with infinitely many patches). As d → 0, the basic reproduction number tends to R0, 
which is exactly the basic reproduction number for the patch model. So, the formula (3.6) gives a link 
between diffusion model and patch model.

4. Global stability of infection-free steady state

Note that [33, Theorem 3.1] only gives local asymptotic stability of infection-free steady state when 
R0 < 1. To establish global asymptotic stability of infection-free steady state when R0 ≤ 1, we shall 
construct a suitable Lyapunov functional and make use of LaSalle invariance principle. First, we will develop 
the following uniform approach to prove local asymptotic stability of infection-free steady state not only 
when R0 < 1, but also for the critical case R0 = 1.

Lemma 4.1. Let A be the linear operator of the system (3.2) and eAt the semigroup generated by A. If R0 ≤ 1, 
then s(A) ≤ 0 and lim

t→∞
ln ‖eAt‖

t ≤ 0. Actually, there exists M > 0 such that ‖eAt‖ ≤ M .

Proof. By [29, Theorem 3.5], R0 − 1 and s(A) have the same sign. Thus, s(A) ≤ 0 if R0 ≤ 1. On account 
of [4, Section 4.2], it suffices to show that lim

t→∞
ln ‖êAt‖

t ≤ 0, where ‖êAt‖ denotes the distance of eAt from 

the set of compact linear operators in Y ; see [4, page 248]. Let (u2(x, t), u3(x, t)) be any solution of (3.2); 
namely,

(
u2(·, t)
u3(·, t)

)
= eAt

(
u2(·, 0)
u3(·, 0)

)
=

(
e(βd−b)tu2(·, 0) +

∫ t

0 e(βd−b)(t−s)βiu3(·, s)ds
e(dΔ−m)tu3(·, 0) +

∫ t

0 e(dΔ−m)(t−s)ku2(·, s)ds

)
,

where e(dΔ−m)t is the compact semigroup generated by the operator dΔ − m with Neumann boundary 
condition. Clearly, the second component of eAt is compact for each t > 0; namely, the operator that maps 
(u2(·, 0), u3(·, 0))T to u3(·, t) is compact. Since the limit of compact operators is also compact, we conclude 
that the operator that maps (u2(·, 0), u3(·, 0))T to 

∫ t

0 e(βd−b)(t−s)βiu3(·, s)ds is also compact for all t > 0. It 
then follows that ‖êAt‖ ≤ ‖e(βd−b)t‖. Since Rd

0 ≤ R0 ≤ 1, we have βd(x) ≤ b(x) for all x ∈ Ω, which implies 
‖e(βd−b)t‖ ≤ 1. Consequently, we obtain ln ‖êAt‖ ≤ 0 for all t > 0, and lim

t→∞
ln ‖êAt‖

t ≤ 0. This together with 

s(A) ≤ 0 implies that the semigroup eAt is stable; i.e., ‖eAt‖ ≤ M for some M > 0. �
Theorem 4.2. If R0 ≤ 1, then the infection-free steady state (ū1(x), 0, 0)T for (1.1) is locally asymptotically 
stable.

Proof. Given any small δ > 0, we let u(x, t) be any solution of (1.1) with initial profile such that |u1(x, 0) −
ū1(x)| + |u2(x, 0)| + |u3(x, 0)| < δ. Define v1(x, t) = u1(x, t)/ū1(x) − 1 which satisfies the equation

∂v1 = −αv1 −
f(x, u1, u3) + g(x, u1, u2)

,

∂t ū1
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where α(x, t) = −n(x,u1(x,t))−n(x,ū1(x))
u1(x,t)−ū1(x) > 0 by (H1). Since v1(x, 0) ≤ δ, we observe from positiveness of f

and g that v1(x, t) ≤ δ for all x ∈ Ω and t ≥ 0. Let α > 0 be the minimum of −∂n(x,u1)
∂u1

for x ∈ Ω̄ and 
0 ≤ u1 ≤ K1(1 + δ). Recall that K1 > maxx∈Ω ū1(x) and n(x, u1) is decreasing in u1. We then obtain 
v1(x, t) ≤ δe−αt for all x ∈ Ω and t ≥ 0. That is, u1(x, t) ≤ û1(x, t) := (1 + δe−αt)ū1(x). It then follows 
from (H2) that

f(x, u1, u3) ≤ f(x, û1, u3) ≤
∂f(x, û1, 0)

∂u3
u3, g(x, u1, u3) ≤ g(x, û1, u2) ≤

∂g(x, û1, 0)
∂u2

u2.

We obtain from the definition of βd and βi in (3.1) and the second equation of (1.1) that

∂u2

∂t
≤ βiu3 + (βd − b)u2 + (∂f(x, û1, 0)

∂u3
− ∂f(x, ū1, 0)

∂u3
)u3 + (∂g(x, û1, 0)

∂u2
− ∂g(x, ū1, 0)

∂u2
)u2.

By comparison principle, we have

(
u2(·, t)
u3(·, t)

)
≤ eAt

(
u2(·, 0)
u3(·, 0)

)
+

t∫
0

eA(t−s)
(
h(·, s)

0

)
ds,

where eAt is the solution semigroup of the linear system (3.2) with A being the infinitesimal generator, and 
h = (∂f(x,û1,0)

∂u3
− ∂f(x,ū1,0)

∂u3
)u3 + (∂g(x,û1,0)

∂u2
− ∂g(x,ū1,0)

∂u2
)u2. Denote

f̄ = max
x∈Ω̄

0≤u1≤K1

|∂
2f(x, u1, 0)
∂u1∂u3

|, ḡ = max
x∈Ω̄

0≤u1≤K1

|∂
2g(x, u1, 0)
∂u1∂u2

|.

We then have |h(x, s)| ≤ δK1e
−αs(f̄u3(x, s) + ḡu2(x, s)). Let

E(t) = max{max
x∈Ω

u2(x, t),max
x∈Ω

u3(x, t)}.

It follows from ‖eAt‖ ≤ M that

E(t) ≤ δM + δMK1(f̄ + ḡ)
t∫

0

e−αsE(s)ds.

By Gronwall’s inequality, we obtain

E(t) ≤ δMe
∫ t
0 δMK1(f̄+ḡ)e−αsds ≤ δMeδMK1(f̄+ḡ)/α

for all t ≥ 0. It then follows from (H2) that

f(x, u1, u3) ≤ f(x,K1(1 + δ), u3) ≤ f̂u3 ≤ δMf̂eδMK1(f̄+ḡ)/α,

and

g(x, u1, u2) ≤ g(x,K1(1 + δ), u2) ≤ ĝu2 ≤ δMĝeδMK1(f̄+ḡ)/α,

where
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f̂ = max
x∈Ω̄

∂f(x,K1(1 + δ), 0)
∂u3

, ĝ = max
x∈Ω̄

∂g(x,K1(1 + δ), 0)
∂u2

.

Substituting the above inequalities into the first equation of (1.1) yields

∂u1(x, t)
∂t

≥ n(x, u1(x, t)) − δM(f̂ + ĝ)eδMK1(f̄+ḡ)/α.

By comparison principle, we have u1(x, t) ≥ ūδ
1(x) where ūδ

1(x) is the solution of

n(x, ūδ
1(x)) = δM(f̂ + ĝ)eδMK1(f̄+ḡ)/α.

Since the right-hand side of the above equality is of order O(δ), such solution exists for sufficiently small δ
and maxx∈Ω |ūδ

1(x) −ū1(x)| = O(δ) as δ → 0. Recall that u1(x, t) is bounded above by û1(x, t) ≤ (1 +δ)ū1(x). 
We conclude that ‖u1(·, t) − ū1(·)‖ + ‖u2(·, t)‖ + ‖u2(·, t)‖ = O(δ) as δ → 0, thus proving local stability of 
infection-free steady state under the condition R0 ≤ 1. �

We now construct a Lyapunov functional and use LaSalle invariance principle to establish global asymp-
totic stability of infection-free steady state. By comparison principle, lim sup

t→∞
u1(x, t) ≤ ū1(x). However, 

it is not necessary that u1(x, t) ≤ ū1(x) for sufficiently large t. Special care is needed to be taken in the 
construction of Lyapunov functional.

Theorem 4.3. If R0 ≤ 1, then the infection-free steady state (ū1(x), 0, 0)T for (1.1) is globally asymptotically 
stable.

Proof. We first define a subset D = {φ ∈ X+ : φ(x) ≤ ū1(x)} and prove that for any initial profile φ ∈ X+, 
the omega limit set of φ is contained in D. Given any x ∈ Ω, it follows from the first equation of (1.1) and a 
simple contradiction argument that if u1(x, t0) ≤ ū1(x) for some t0 ≥ 0, then u1(x, t) ≤ ū1(x) for all t ≥ t0. 
Now, we divide the domain Ω into two sub-domains Ω±, where

Ω+ := {x ∈ Ω : u1(x, t) > ū1(x) for all t ≥ 0},
Ω− := {x ∈ Ω : u1(x, t) ≤ ū1(x) for some t ≥ 0}.

It is obvious that Ω− is closed in Ω, and there exists t0 ≥ 0 that u1(x, t) ≤ ū1(x) for all x ∈ Ω−. Without 
loss of generality, we may assume t0 = 0.

For any x ∈ Ω+, it follows from (H1) that n(x, u1(x, t)) < 0 for all t ≥ 0. Thus, the first equation of 
(1.1) implies that u1(x, t) is a decreasing function in t. Since u1(x, t) ≥ ū1(x), the limit of u1(x, t) as t → ∞
exists, and u1(x, ∞) ≥ ū1(x). If the strict inequality holds, then we obtain from (H1) and the first equation 
of (1.1) that

0 = lim
t→∞

∂u1(x, t)
∂t

≤ lim
t→∞

n(x, u1(x, t)) ≤ n(x, u1(x,∞)) < 0,

a contradiction. Hence, we have u1(x, t) → ū1(x) as t → ∞. This implies that the omega limit set of φ is 
contained in D.

Next, we consider the solution map restricted on the invariant domain D and show that the infection-free 
steady state (ū1(x), 0, 0)T attracts all initial profiles in D. To achieve this, we define a Lyapunov functional

V (φ1, φ2, φ3) = 1
2

∫
k(x)
βi(x)φ

2
2(x) + φ2

3(x)dx.

Ω
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Taking the derivative along the solution, we obtain

d

dt
V (u1, u2, u3) =

∫
Ω

k

βi
u2[f(x, u1, u3) + g(x, u1, u2) − bu2] + u3(dΔu3 + ku2 −mu3)dx.

Since u1(x, t) ≤ ū1(x), it is readily seen from (H2) that f(x, u1, u3) ≤ f(x, ̄u1, u3) ≤ βiu3 and g(x, u1, u2) ≤
g(x, ̄u1, u2) ≤ βdu2; see the definitions of βd and βi in (3.1). A simple calculation gives

d

dt
V (u1, u2, u3) ≤

∫
Ω

−(k/βi)(b− βd)u2
2 + 2ku2u3 + u3(dΔu3 −mu3)dx

≤
∫
Ω

kβi

b− βd
u2

3 −mu2
3 − d|∇u3|2dx,

where we have made use of the fact that b > βd (since Rd
0 < R0 ≤ R0 ≤ 1) and

−k(b− βd)
βi

u2
2 + 2ku2u3 = −k(b− βd)

βi
(u2 −

βiu3

b− βd
)2 + kβiu

2
3

b− βd
≤ kβiu

2
3

b− βd
.

We claim ∫
Ω

kβi

b− βd
φ2 ≤

∫
Ω

mφ2 + d|∇φ|2dx (4.1)

for any φ ∈ H1(Ω). Once this is proved, it then follows that the derivative of Lyapunov functional V ′ ≤ 0. 
Let K be an invariant set on which V ′ = 0. We observe that K is a singleton {(ū1(x), 0, 0)}. This is because 
for any (φ1, φ2, φ3) ∈ K, V ′ = 0 implies that all inequalities in deriving V ′ ≤ 0 should be equal, and 
thus (φ1(x), φ2(x), φ3(x)) = (ū1(x), 0, 0). Note that the infection-free steady state is the unique point in the 
largest invariant set on which V ′ = 0. By LaSalle invariance principle, this steady state is globally attractive 
in D.

We now prove the claim (4.1). For this purpose, we shall make another decomposition of the linear 
operator A associated with the linear system (3.2): A = F1 + B1, where

F1 =
(

0 βi(·)
0 0

)
, B1 =

(
−[b(·) − βd(·)] 0

k(·) dΔ −m(·)

)
. (4.2)

Since b > βd (by Rd
0 < R0 ≤ 1), the operator B1 is still resolvent-positive with s(B1) < 0. An application 

of [29, Theorem 3.5] together with R0 ≤ 1 yields s(A) ≤ 0 and ρ(−F1B
−1
1 ) ≤ 1. By [33, Theorem 3.3 (i)] or 

a simple direct calculation, we have

ρ(−F1B
−1
1 ) = ρ(βi(m− dΔ)−1k(b− βd)−1) = sup

φ∈H1(Ω),φ�=0

∫
Ω

βi(x)k(x)φ2(x)
b(x)−βd(x) dx∫

Ω d|∇φ(x)|2 + m(x)φ2(x)dx
.

The claim (4.1) follows immediately from the above variational representation.
Finally, we apply [36, Lemma 1.2.1] to find that the omega limit set of any initial profile φ ∈ X+ is 

internally chain transitive. Since this omega limit set is contained in D and the infection-free steady state 
attracts D, it follows from [36, Theorem 1.2.1] that the infection-free steady state is globally attractive in 
X+. On account of local stability result in Theorem 4.2, this steady state is globally asymptotically stable 
in X+. The proof is completed. �
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5. Global dynamic of system (1.1) when R0 > 1

5.1. Persistence of infection

It follows from Proposition 2.2 and Proposition 2.3 that the semiflow Θt of system (1.1) is point dissipative 
and the orbit of any bounded set is also bounded. To apply [7, Theorem 2.1], we have to show that Θt is 
asymptotically smooth. But Θt is not compact because the first two equations in (1.1) have no diffusion 
terms. Here we shall introduce the Kuratowski measure of the noncompactness defined by [6]

κ(U) := inf{r ≥ 0 : B has a finite cover of diameter less than r}.

We set κ(U) = ∞ whenever U is unbounded. Clearly, κ(U) = 0 if and only if U is precompact. Let

G(u1, u2, u3) =
(
n(x, u1) − f(x, u1, u3) − g(x, u1, u2)
f(x, u1, u3) + g(x, u1, u2) − b(x)u2

)
be the vector field corresponding to the first two equations of (1.1). The Jacobian of G with respect to 
(u1, u2) is calculated as

G12 := ∂G(u1, u2, u3)
∂(u1, u2)

=
(
∂(n− f − g)/∂u1 −∂g/∂u2
∂(f + g)/∂u1 ∂g/∂u2 − b

)
.

We obtain a similar lemma as in [11, Lemma 4.1] and [30, Lemma 2.5].

Lemma 5.1. Θt is asymptotically smooth and κ-contracting if there exists a r > 0 such that

vTG12v ≤ −rvT v, for all v ∈ R2, x ∈ Ω̄, u ∈ ΓK . (5.1)

Proof. Actually, one can use a similar proof in [11, Lemma 4.1] to show that Θt is asymptotically compact 
on any closed bounded set U for which TU ⊂ U . It then follows from [24, Lemma 23.1 (2)] that the omega 
limit set ω(U) is nonempty, compact and invariant, and attracts U . This proves asymptotic smoothness of 
Θt. On account of [15, Lemma 2.1 (b)], we have

κ(ΘtU) ≤ κ(ω(U)) + δ(ΘtU, ω(U)) = δ(ΘtU, ω(U)),

where δ(ΘtU, ω(U)) is the distance from ΘtU to ω(U), which tends to zero as t → ∞. Therefore, we prove 
that Θt is κ-contracting. �

The following result is a simple application of [7, Theorem 2.1].

Theorem 5.2. Assume (5.1) holds. (1.1) admits a connected global attractor in X+.

Remark 5.3. A sufficient condition for (5.1) is that

(H3) ∂g(x,u1,u2)
∂u2

< ∂g(x,u1,u2)
∂u1

+ ∂f(x,u1,u3)
∂u1

< b for all u ∈ ΓK .

Denote Qt : Y → Y to be the solution semiflow associated with the linear system (3.2); that is,

Qtφ = (u2(·, t, φ), u3(·, t, φ)) for φ ∈ Y := C(Ω̄,R2), t ≥ 0.

It is clear that Qt is a positive C0-semigroup on Y , and its infinitesimal generator A = F +B is closed and 
resolvent positive.
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Lemma 5.4. If R0 > 1 and (H3) holds, then s(A) > 0 is the principal eigenvalue of the eigenvalue problem

βi(x)φ3 + βd(x)φ2 − b(x)φ2 = λφ2, x ∈ Ω,

dΔφ3 + k(x)φ2 −m(x)φ3 = λφ3, x ∈ Ω,

∂φ3
∂ν = 0, x ∈ ∂Ω,

and there is a strongly positive eigenfunction associated with s(A).

Proof. It follows from [29, Theorem 3.5] that R0−1 has the same sign as s(A), which implies that s(A) > 0
if R0 > 1. Define linear operators L(t) and N(t) on Y as

L(t)φ = (e−(b(·)−βd(·))tφ2, 0),

N(t)φ =
(∫ t

0 e−(b(·)−βd(·))(t−s)βi(·)u3(·, s, φ)ds, u3(·, t, φ)
)

for any φ = (φ1, φ2) ∈ Y . It follows from (H3) that b(x) > βd(x) for all x ∈ Ω̄; namely, q := minx∈Ω̄{b(x) −
βd(x)} > 0. In view of the definition of L(t), we have

‖L(t)‖ = sup
φ∈Y

‖L(t)φ‖
‖φ‖ ≤ sup

φ∈Y

‖e−(b(·)−βd(·))tφ2‖
‖φ‖ ≤ sup

φ∈Y

‖e−qtφ2‖
‖φ‖ ≤ e−qt.

Let T3(t) = et(dΔ−m) be the semigroup associated with dΔ −m(·) subject to Neumann boundary condition. 
Then T3(t) is compact for any t > 0, which together with the boundedness of Qt, implies that N(t) is 
compact for any t > 0. Let U be any bounded set in Y . We have κ(N(t)U) = 0 for any t > 0 since N(t)U
is precompact. Consequently,

κ(QtU) ≤ κ(L(t)U) + κ(N(t)U) ≤ ‖L(t)‖κ(U) ≤ e−qtκ(U) for any t > 0.

Thus, we obtain

ρe(Qt) ≤ e−qt < 1 ≤ es(A)t = ρ(Qt), for all t > 0,

where ρe(Qt) and ρ(Qt) are the essential spectral radius and spectral radius of Qt, respectively. Meanwhile, 
Qt is a strongly positive and bounded operator on Y . It follows from the generalized Krein-Rutman Theorem 
[18] that s(A) is the principal eigenvalue associated with a strictly positive eigenfunction. �

To establish the existence of the chronic-infection steady state, we first apply the permanence theorem 
in [28, Theorem 3] to obtain the following persistence result.

Theorem 5.5. If R0 > 1 and (H3) holds, then system (1.1) is uniformly persistent in X+ in the sense that 
there exists an ε > 0 such that for any φ ∈ X+ with φj �≡ 0 for all j = 2, 3, we have

lim inf
t→∞

ui(x, t, φ) ≥ ε, (i = 1, 2, 3) uniformly for all x ∈ Ω̄.

Moreover, system (1.1) admits at least one chronic-infection steady state (u∗
1(x), u∗

2(x), u∗
3(x)).

Proof. We need to validate all conditions in [7, Theorem 4.2]. Denote

X0 := {φ = (φ1, φ2, φ3) ∈ X+ : φ2(·) �≡ 0 and φ3(·) �≡ 0}
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and

∂X0 := X+\X0 = {φ = (φ1, φ2, φ3) ∈ X+ : φ2(·) ≡ 0 or φ3(·) ≡ 0}.

It is obvious that X0∩∂X0 = ∅, X+ = X0∪∂X0, X0 is open and dense in X+, and Θt∂X0 ⊆ ∂X0. We shall also 
prove that ΘtX0 ⊆ X0, that is, X0 is positively invariant with respect to Θt. In fact, let φ = (φ1, φ2, φ3) ∈ X0
such that φ2 �≡ 0 and φ3 �≡ 0. It follow from non-negativeness of the solution (u1(x, t), u2(x, t), u3(x, t)) and 
the third equation of (1.1) that ∂u3(x, t)/∂t ≥ dΔu3(x, t) −m(x)u3(x, t). Thus, u3(x, t) is an upper solution 
of

∂w(x,t)
∂t = dΔw(x, t) −m(x)w(x, t), x ∈ Ω, t > 0,

∂w(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = φ3 �≡ 0, x ∈ Ω.

By maximum principle and comparison principle, we have u3(x, t) ≥ w(x, t) > 0 for all x ∈ Ω̄ and t > 0. 
Moreover, from second equation of (1.1), we have

u2(x, t) = e−b(x)tφ2 +
t∫

0

e−b(x)(t−s) (f(x, u1(x, s), u3(x, s)) + g(x, u1(x, s), u2(x, s))) ds, (5.2)

which, together with the positiveness of u1(x, t) (in Proposition 2.2) and u3(x, t), implies that u3(x, t) > 0
for all x ∈ Ω̄ and t > 0. Therefore, ΘtX0 ⊆ X0.

Now, we let ω(φ) be the omega limit set of the orbit γ+(φ) :=
⋃
t≥0

{Θtφ}, and denote

M∂ := {φ ∈ ∂X0 : Θtφ ∈ ∂X0, for all t ≥ 0}.

We need to prove ω(φ) = {(ū1(x), 0, 0)} for all φ ∈ M∂ . This is true if we can show that M∂ ⊆ {(φ1, 0, 0) :
φ1 ∈ C(Ω̄, R+)}. If, to the contrary, there exists ψ = (ψ1, ψ2, ψ3) ∈ M∂ but ψ /∈ {(φ1, 0, 0) : φ1 ∈ C(Ω̄, R+)}. 
There are two cases to be considered: (i) ψ2 ≡ 0 and ψ3 �≡ 0; (ii) ψ2 �≡ 0 and ψ3 ≡ 0. For case (i), it follows 
from the proof of ΘtX0 ⊆ X0 that ui(x, t) > 0 for all x ∈ Ω̄ and t > 0 with i = 1, 2. Thus, we have Θtψ ∈ X0
for all t > 0, which contradicts the definition of M∂ . For case (ii), it follows from (5.2) that u2(·, t) �≡ 0 for 
all t > 0. In view of φ ∈ C(Ω̄, R+) and Proposition 2.2, we obtain that u1(x, t) > 0 for all x ∈ Ω̄ and t > 0. 
From the third equation of (1.1), we have

u3(·, t) = T3(t)ψ3 +
t∫

0

T3(t− s)k(·)u2(·, s)ds,

where T3(t) is the semigroup associated with dΔ − m(·) subject to Neumann boundary condition. Thus, 
u3(x, t) > 0 for all x ∈ Ω̄ and t > 0. It then follows from (5.2) that u2(x, t) > 0 for all x ∈ Ω̄ and t > 0. Again, 
we obtain Θtψ ∈ X0 for t > 0, a contradiction to the fact that ψ ∈ M∂ . Therefore, ω(φ) = {(ū1(x), 0, 0)}
for all φ ∈ M∂ .

Define a continuous function � : X+ → [0, ∞) by

�(φ) = min{φi(x) : x ∈ Ω̄, i = 2, 3} for φ ∈ X+.

Note that �(Θtφ) > 0 for all φ ∈ �−1(0, ∞) ∪ (X0 ∩ �−1(0)). Thus, �(x) is a generalized distance function 
for the semiflow Θt; see [28]. Denote W s((ū1(x), 0, 0)) as the stable manifold of (ū1(x), 0, 0). We shall verify 
that W s((ū1(x), 0, 0)) ∩ �−1(0, ∞) = ∅. It suffices to show that there exists a δ > 0 such that
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lim sup
t→∞

‖Θtφ− (ū1(x), 0, 0)‖ ≥ δ for any φ ∈ �−1(0,∞).

If not, then for any δ > 0, there exists φ̃ = (φ̃1, φ̃2, φ̃3) ∈ �−1(0, ∞) such that

lim sup
t→∞

‖Θtφ̃− (ū1(x), 0, 0)‖ < δ.

Here, φ̃1 ≥ 0, φ̃2 > 0 and φ̃3 > 0 for all x ∈ Ω, and Θtφ̃ = (u1(·, t, φ̃), u2(·, t, φ̃), u3(·, t, φ̃)). Hence, there 
exists a t̃ > 0 such that u1(·, t, φ̃) > ū1(x) − δ and ui(·, t, φ̃) < δ (i = 2, 3) for all t ≥ t̃. Moreover, for t ≥ t̃, 
(u2(x, t, φ̃), u3(x, t, φ̃)) is an upper solution of the following system

∂w2(x,t)
∂t = ηi(x)w3(x, t) + ηd(x)w2(x, t) − b(x)w2(x, t), x ∈ Ω, t > t̃,

∂w3(x,t)
∂t = dΔw3(x, t) + k(x)w2(x, t) −m(x)w3(x, t), x ∈ Ω, t > t̃,

∂w3(x,t)
∂ν = 0, x ∈ ∂Ω, t > t̃,

w2(x, 0) ≤ u2(x, t̃, φ̃), w3(x, 0) ≤ u3(x, t̃, φ̃), x ∈ Ω,

(5.3)

where ηi = ∂f(x, ̄u1(x) −δ, δ)/∂u3 and ηd = ∂g(x, ̄u1(x) −δ, δ)/∂u2. Denote λ0(δ) as the principle eigenvalue 
of the eigenvalue problem

dΔψ −m(x)ψ + k(x)ηi(x)
b(x)−ηd(x)ψ = λψ, x ∈ Ω,

∂ψ
∂ν = 0, x ∈ ∂Ω.

It follows from [29, Theorem 3.5] that R0 > 1 implies λ0(0) = s(A) > 0. Since λ0(δ) is a continuous in δ, we 
can choose δ > 0 sufficient small such that λ0(δ) > 0. Similar as in the proof of Lemma 5.4, one can show 
that the eigenvalue problem

ηi(x)φ3 + ηd(x)φ2 − b(x)φ2 = λφ2, x ∈ Ω,

dΔφ3 + k(x)φ2 −m(x)φ3 = λφ3, x ∈ Ω,

∂φ3
∂ν = 0, x ∈ ∂Ω,

has a principle eigenvalue λ̃0(δ) with a strongly positive eigenfunction (φδ
2, φ

δ
3). Choose a sufficiently small 

ε > 0 and wi(x, 0) such that wi(x, 0) = εφδ
i ≤ ui(·, ̃t, φ̃) for i = 2, 3. Then the linear system (5.3) has a 

unique solution

(w2(x, t), w3(x, t)) = (εeλ̃0(δ)(t−t̃)φδ
2, εeλ̃0(δ)(t−t̃)φδ

3) for t ≥ t̃.

By comparison principle, we have

(u2(x, t, φ̃), u3(x, t, φ̃)) ≥ (εeλ̃0(δ)(t−t̃)φδ
2, εeλ̃0(δ)(t−t̃)φδ

3) for x ∈ Ω̄, t ≥ t̃.

Therefore, ui(x, t, φ̃) → ∞ as t → ∞ for i = 2, 3, which contradicts to Proposition 2.2. Thus, we prove 
W s((ū1(x), 0, 0)) ∩ �−1(0, ∞) = ∅. Clearly, there is no cycle in M∂ from (ū1(x), 0, 0) to (ū1(x), 0, 0).

Summarizing the above results, we obtain from Theorem 5.2 and abstract persistence theory in [28] that 
Θt is uniformly persistent; namely, there exists a ε > 0 such that lim inf

t→∞
�(Θtφ) ≥ ε for any φ ∈ X0. This, 

together with the definition of �, implies that

lim inf ui(x, t, φ) ≥ ε, (i = 2, 3) uniformly for all x ∈ Ω̄.

t→∞
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Next, we shall prove lim inf
t→∞

u1(·, t, φ) > 0 by contradiction. If lim inf
t→∞

u1(·, t, φ) = 0, then there exists a 

sequence tn → ∞ such that u1(·, tn, φ) → 0 and ∂u1(·, tn, φ)/∂t = 0, which contradicts to the first equation 
of (1.1). Thus, by choosing ε > 0 sufficiently small, we have lim inf

t→∞
u1(·, t, φ) ≥ ε uniformly for all x ∈ Ω̄.

By Theorem 5.2 and W s((ū1(x), 0, 0)) ∩ �−1(0, ∞) = ∅, the semiflow Θt |X0 : X0 → X0 has 
a connected global attractor. This together with Theorem 4.7 in [15] implies that Θt has a steady 
state (u∗

1(x), u∗
2(x), u∗

3(x)) in X0. Moreover, Proposition 2.2 and the first part of this proof imply that 
(u∗

1(x), u∗
2(x), u∗

3(x)) is a chronic-infection steady state. This ends the proof. �
5.2. Global attractivity of the chronic-infection steady state

We now establish global attractivity of the chronic-infection steady state (u∗
1(x), u∗

2(x), u∗
3(x)) by com-

bining the method of Lyapunov functionals and LaSalle invariance principle. To this end, we shall make use 
of the following additional assumption.

(H4) f(x, u1, u3)/g(x, u1, u2) is independent on u1, namely, there exists a function h0(x, u1) such that 
f(x, u1, u3) = h0(x, u1)f1(x, u3), g(x, u1, u2) = h0(x, u1)g1(x, u2).

The biological interpretation of this condition is that the transmission via two infection modes have the 
same response function on uninfected target cells.

Theorem 5.6. Assume that (H1)-(H4) hold. If R0 > 1, then the chronic-infection steady state (u∗
1(x), u∗

2(x),
u∗

3(x)) of (1.1) is globally attractive in X0. Moreover, u∗ is the unique chronic-infection steady state for 
(1.1).

Proof. It follows from Theorem 5.5 that the chronic-infection steady state exists if R0 > 1. Proposition 2.2
implies that X0 ∩ Γ is positively invariant and absorbing in X0. Thus, it suffices to show that the chronic-
infection steady state is globally attractive in X0 ∩ Γ. Denote p(θ) = θ − 1 − ln θ. It is readily seen that 
p(θ) ≥ 0 for θ > 0, and p(θ) = 0 if and only if θ = 1. Motivated by [25,26], we construct a Lyapunov 
functional W : X0 ∩ Γ → R as follows.

W (u1(x, t), u2(x, t), u3(x, t)) =
∫
Ω

μ(x)E(u1(x, t), u2(x, t), u3(x, t)) dx,

where μ(x) = k(x)u∗
2(x)u∗

3(x)/f(x, u∗
1(x), u∗

3(x)) is strictly positive in Ω, and

E(u1, u2, u3) = u1(x, t) −
u1(x,t)∫
u∗

1(x)

f(x, u∗
1(x), u∗

3(x))
f(x, θ, u∗

3(x)) dθ

+ u∗
2(x) p(u2(x, t)

u∗
2(x) ) + f(x, u∗

1(x), u∗
3(x))u∗

3(x)
k(x)u∗

2(x) p(u3(x, t)
u∗

3(x) ).

Since the solutions are bounded (see Proposition 2.2) and the system (1.1) is uniform persistent (see 
Theorem 5.5), the above functionals W and E are well-defined. Notice that the steady state solution 
(u∗

1(x), u∗
2(x), u∗

3(x)) of (1.1) satisfies

n(x, u∗
1(x)) = b(x)u∗

2(x) = f(x, u∗
1(x), u∗

3(x)) + g(x, u∗
1(x), u∗

2(x)),

dΔu∗
3(x) = m(x)u∗

3(x) − k(x)u∗
2(x), and ∂u∗

3(x)
∂ν

|∂Ω = 0.
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From a tedious calculation, the time derivative of W along a positive solution of system (1.1) is

dW

dt
=

∫
Ω

μ(x)
(

(n(u1) − n(u∗
1))

(
1 − f(x, u∗

1, u
∗
3)

f(x, u1, u∗
3)

)
+ f(x, u∗

1, u
∗
3)Φ1 + g(x, u∗

1, u
∗
2)Φ2

)
dx

−
∫
Ω

μ(x)f(x, u∗
1, u

∗
3)

(
p(f(x, u∗

1, u
∗
3)

f(x, u1, u∗
3)

) + p(u3f(x, u1, u
∗
3)

u∗
3f(x, u1, u3)

) + p(u
∗
2f(x, u1, u3)

u2f(x, u∗
1, u

∗
3)

) + p(u2u
∗
3

u∗
2u3

)
)
dx

−
∫
Ω

μ(x)g(x, u∗
1, u

∗
2)

(
p(f(x, u∗

1, u
∗
3)

f(x, u1, u∗
3)

) + p( u
∗
2g(x, u1, u2)

u2g(x, u∗
1, u

∗
2))

) + p(u2f(x, u1, u
∗
3)g(x, u∗

1, u
∗
2)

u∗
2f(x, u∗

1, u
∗
3)g(x, u1, u2)

)
)
dx

+ d

∫
Ω

(
u∗

3(1 − u∗
3

u3
)Δu3 + (u∗

3 − u3)Δu∗
3

)
dx,

where

Φ1 = u3

u∗
3

(
f(x, u1, u3)
f(x, u1, u∗

3)
− 1

)(
u∗

3
u3

− f(x, u1, u
∗
3)

f(x, u1, u3)

)
,

Φ2 =
(
u2

u∗
2
− f(x, u∗

1, u
∗
3)g(x, u1, u2)

f(x, u1, u∗
3)g(x, u∗

1, u
∗
2)

)(
f(x, u1, u

∗
3)g(x, u∗

1, u
∗
2)

f(x, u∗
1, u

∗
3)g(x, u1, u2)

− 1
)
.

Making use of (H4), we can simply Φ2 as

Φ2 =
(
u2

u∗
2
− g1(x, u2)

g1(x, u∗
2)

)(
g1(x, u∗

2)
g1(x, u2)

− 1
)
.

In view of (H2), g1(x, u2) is strictly increasing and concave down with respect to u2. Hence, Φ2 ≤ 0 in X0∩Γ. 
Similarly, it follows from the monotonicity and concavity of f(x, u1, u3) with respect to u3 that Φ1 ≤ 0 in 
X0 ∩ Γ. Moreover, by (H1)-(H2), n(x, u1) and f(x, u1, u3) are decreasing with respect to u1. Therefore,

(n(x, u1) − n(x, u∗
1))

(
1 − f(x, u∗

1, u
∗
3)

f(x, u1, u∗
3)

)
≤ 0 for all (x, u1) ∈ Ω × (0,K1].

By using the Green’s first identity and Neumann boundary condition, we obtain∫
Ω

(
u∗

3(1 − u∗
3

u3
)Δu3 + (u∗

3 − u3)Δu∗
3

)
dx =

∫
Ω

(
−∇(u∗

3 −
u∗2

3
u3

)∇u3 −∇(u∗
3 − u3)∇u∗

3

)
dx

= −
∫
Ω

n∑
j=1

(
u∗

3
u3

∂u3

∂xj
− ∂u∗

3
∂xj

)2

dx ≤ 0.

The above estimates together with the positive definiteness of p(θ) yield

dW

dt
≤ 0 for all (u1(x, t), u2(x, t), u3(x, t)) ∈ X0 ∩ Γ.

Denote M as the largest compact invariant subset of {(u1, u2, u3) ∈ X0 ∩ Γ : W ′(t) = 0}. By the LaSalle 
invariance principle [10], the omega limit sets of solutions are contained in M. It can be verified that 
dW/dt = 0 implies

u1(x, t) = u∗
1,

u∗
2f(x, u1, u3)

∗ ∗ = u∗
2g(x, u1, u2)

∗ ∗ = 1, and u2u
∗
3

∗ = 1.

u2f(x, u1, u3) u2g(x, u1, u2) u2u3
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Substituting the above relations into the second equation of (1.1) gives

∂u2(x, t)
∂t

= (f(x, u∗
1(x), u∗

3(x)) + g(x, u∗
1(x), u∗

2(x))) u2(x, t)
u∗

2(x) − b(x)u2(x, t) = 0.

Note that u1(x, t) = u∗
1(x). Adding the first two equations of (1.1) gives u2(x, t) = n(x, u∗

1(x))/b(x) =
u∗

2(x), which together with u2u
∗
3 = u∗

2u3 implies that u3(x, t) = u∗
3(x). Therefore, we obatin M =

{(u∗
1(x), u∗

2(x), u∗
3(x))}. Thus we prove the global attractivity of the chronic-infection steady state 

(u∗
1(x), u∗

2(x), u∗
3(x)) in X0. The uniqueness of chronic-infection steady state follows immediately form the 

global attractivity of u∗. �
6. Numerical simulation

In this section, we use numerical simulation to illustrate our analytical results on the properties of basic 
reproduction number and global dynamics of model system. Following the work in [20], we choose the cell 
reproduction function as n(x, u1(x, t)) = s −μu1(x, t) +ru1(x, t)[1 −u1(x, t)/Tm], where s = 10 day−1mm−3

is the supply rate from precursors, μ = 0.02 day−1 is the death rate, r = 0.03 day−1 is the growth rate, 
and Tm = 1500 mm−3 is the maximum cell population level. The cell-free and cell-to-cell transmissions are 
bilinear functions: f(x, u1, u3) = β1u1u3 and g(x, u1, u2) = β2u1u2, where the per capita infection rates 
β1 = 2.4e−5 mm3day−1 and β2 = 1.2e−4 mm3day−1, respectively. For simplicity, we assume the domain is 
a one-dimensional interval [0 mm, 1 mm] and spatial heterogeneity occurs in the following three functions:

b(x) = 0.24(1 + x), k(x) = 24(1 − x/2), m(x) = 2.4(1 + x)

with the same unit day−1. As seen in Fig. 1, the basic reproduction number R0 is a decreasing function 
of the diffusion coefficient d. Its maximum R̄0 is achieved at d = 0, while R0 → R0 as d → ∞. There is a 
critical value d∗ = 0.12 mm2day−1 near which the values of R0 − 1 switch signs. Numerical computation 
confirms that the infection-free steady state is globally asymptotically stable when d > d∗. On the other 
hand, if d < d∗, all solution converges to the chronic-infection steady state.

We choose a positive diffusion coefficient d = 0.01 mm2day−1, and compare the steady state solution 
with that for the diffusion-free system. When d = 0, we should drop the Neumann boundary condition 
because it may be inconsistent with the reduced ordinary differential system. For this reduced system, we 
can define local basic reproduction numbers:

Rl
0(x) := βd(x)

b(x) + βi(x)k(x)
b(x)m(x) ,

where βd and βi are the direct and indirect transmission rates as defined in (3.1). It is natural (see for 
example [1]) to divide the whole domain into high-risk region

Ωh := {x ∈ Ω : Rl
0(x) > 1}

and low-rick region

Ωl := {x ∈ Ω : Rl
0(x) < 1}.

For the diffusion-free system, the infection persists only in the high-risk region, while for the positive diffusion 
system, the virus may pervade into the low-risk region; see Fig. 2. In the simulations of two systems, we have 
chosen the initial profile as a small perturbation of infection-free steady state: u1(x, 0) = ū1(x), u2(x, 0) = 0, 
and u3(x, 0) = 1.
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Fig. 1. The basic reproduction number R0 as a function of the diffusion coefficient d.

Fig. 2. The dynamic solutions and stable steady states for diffusion-free and positive diffusion systems, respectively. The initial 
conditions are chosen as a small portion of virus introduced to the infection-free steady state.

To further understand the asymptotic profile of steady state solution as d → 0+, we choose a small 
diffusion coefficient d = 0.0001 mm2day−1. It is observed that the steady state solution is very close to that 
for diffusion-free system everywhere except near the boundary or near the interface between high-risk and 
low-risk regions; see Fig. 3. In the figure, we also plot the gradients of steady state solutions (i.e., ∂xu3(x, T )
with T sufficiently large) for small diffusion and diffusion-free systems. It is noted that boundary layer 
occurs near the high-risk boundary (i.e., x = 0) but not near the low-risk boundary (i.e., x = 1). This is 
because the steady state solution for the diffusion-free system is inconsistent with the Neumann boundary 
condition near the high-risk boundary. A similar reason explains the existence of internal boundary layer 
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Fig. 3. The stable steady states and their gradients of viral distributions for diffusion-free system (crosses) and low diffusion system 
(lines), respectively. The initial conditions are chosen as a small portion of virus introduced to the infection-free steady state.

near the interface of high-risk and low-risk regions. Both boundary and internal layers have the thickness 
of order O(

√
d) as d → 0.

7. Summary and discussion

In this paper, we have studied a general in-host model with spatial heterogeneity and general cell-free and 
cell-to-cell modes. We defined and studied the basic reproduction number R0, which serves as a threshold 
parameter determining the global dynamics of the model system. When R0 < 1, we first obtained local 
asymptotic stability of the infection-free steady state, and then by Lyapunov functional method and LaSalle 
invariance principle, we proved that the infection-free steady state is indeed globally asymptotically stable.

Since only the free virus diffuses, the model is a partially degenerate reaction-diffusion system, which 
poses a non-compactness problem. To overcome this, we made use of the Kuratowski measure of non-
compactness, and showed that the semiflow associated with our systems is asymptotically smooth (i.e., 
κ-contracting) under certain conditions. If R0 > 1, we also obtained the persistence of infection which guar-
antees the existence of a chronic-infection steady state. Finally, we established global attractiveness of the 
chronic-infection steady state by constructing a suitable Lyapunov functional and using LaSalle invariance 
principle. This idea may also be used to study global dynamics of other hybrid epidemic models with partial 
degeneracy.

Numerical simulation supports our theoretical results that viral diffusion has an opposite effect on the 
basic reproduction number, and in some scenarios, the virus may be cleared out due to large diffusion but 
persist by reducing random spatial movement and staying only in high-risk region. A mathematical challenge 
arises from the simulation results for small diffusion coefficients. It is observed that boundary layer may 
occur due to the mismatch of steady state solution of the diffusion-free system with the Neumann boundary 
condition. Moreover, the non-smoothnees of such steady state solution across the interface between high-
risk and low-risk regions may induce internal layer. It is believed that singular perturbation analysis is 
necessary to study the asymptotic profile of steady state solution when the diffusion coefficient decreases 
to zero.
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