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1. Introduction

Laplace operator or Laplacian is used ubiquitously in describing various physical phe-
nomena through partial differential equation (PDE) models, such as Poisson equation, 
diffusion equation, wave equation, and Stokes equation. For efficient numerical solution 
of such PDE models, a fundamental task is to (approximately) solve the corresponding 
sparse discrete Laplacian linear system upon suitable discretization schemes (e.g., finite 
difference method), where both direct and iterative solvers are extensively studied in the 
past century. In this paper, we will focus on using multigrid solver for the two-dimensional 
(2D) and three-dimensional (3D) Laplacian system with the 5-point and 7-point sten-
cil central finite difference scheme, respectively, where new sparse approximate inverse 
(SAI) smoothers are our major contribution. More specifically, we consider the following 
Poisson equation on a unit square domain Ω = (0, 1)d, d = 2, 3 with Dirichlet boundary 
condition:

−Δu = f in Ω, u = g on ∂Ω, (1.1)

which, upon applying the standard second-order accurate 5-point stencil (2D) and 7-
point stencil (3D) central finite difference scheme with a uniform mesh step size h = 1/N , 
leads to a large-scale symmetric positive definite sparse linear system

Ahuh = bh. (1.2)

Here uh denotes the finite difference approximation to the true solution u over the set 
Ωh of all interior grid points, bh encodes the source term f and boundary data g, and 
Ah has the following well-known 5-point (2D) or 7-point (3D) stencil representation

Ah = 1
h2

[ −1
−1 4 −1

−1

]
or 1

h2

{[ 0
0 −1 0

0

][ −1
−1 6 −1

−1

][ 0
0 −1 0

0

]}
(1.3)

For simplicity, we assume f and g to be sufficiently smooth such that the finite difference 
approximation uh by (1.2) achieves a second-order accuracy in infinity norm, that is 
‖uh−u|Ωh

‖∞ = O(h2). For less regular f and g, finite element discretization may be used 
to improve approximation accuracy in possible different weaker norms. We numerically 
verified that our proposed algorithm with appropriate modification also works well for 
other types of boundary conditions (e.g. periodic and Neumann).

Due to the large condition number of the Laplacian matrix Ah as the mesh step 
size h is refined, the stationary iterative methods (e.g. Jacobi and Gauss-Seidel itera-
tions) usually converge extremely slowly as the system size n is increased. In contrast, 
multigrid methods can deliver mesh-independent convergence rate and the optimal com-
putational complexity for solving the above linear system (1.2), where the choice of 
efficient and effective smoother is the key component. In the past few decades, Pois-
son equation (1.1) has been numerically solved by various multigrid methods based on 
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different smoothers and discretization schemes, see [2,13–16,32,36,43,44,53,54] and the 
references therein. Though more effective than the weighted Jacobi smoother, the popular 
lexicographical Gauss-Seidel smoother is not very friendly to massively parallel comput-
ers due to its sequential nature [1,43]. Nevertheless, a higher parallel efficiency can be 
achieved with red-black or multi-colored Gauss-Seidel smoothers [1–3,23,38,39,49], for 
which the communication cost per iteration is proportional to the number of colors. 
For general symmetric positive definite linear systems, significant efforts in the develop-
ment of multigrid solvers have been concentrated on the design of effective parallelizable 
smoothers with smaller smoothing factors (and faster convergence rates), see for ex-
ample [10,22,30,37,40,41,51] and the references therein. In [18], the authors compared 
three different Chebyshev polynomial smoothers in the context of aggressive coarsening, 
where the one-dimensional minimization formulations are defined over a finite interval 
that bounds all the eigenvalues of diagonally preconditioned system. In this paper, we 
will only focus on the development of effective and highly parallelizable SAI smoothers, 
whose convergence rates can be precisely estimated by local Fourier analysis (LFA), a 
quantitative tool to study multigrid convergence performance and optimize relaxation 
parameters.

Inspired by the well-studied sparse approximate inverse preconditioners [4–6,8,24,29,
31,46,47] for preconditioning sparse linear systems, the class of so-called SAI smoothers 
were widely studied [12,20,21,48] for general linear systems, where superior smoothing 
effects were achieved. Besides broad applicability, the inherent parallelism [9,31] in the 
framework of parallel computing is one major advantage of SAI smoothers. The con-
struction of high quality SAI preconditioners or smoothers of general linear systems is 
computationally expensive since it often requires to solve (multiple) norm minimization 
problems. However, for our considered well-structured linear systems, it is possible to 
analytically find the symbols of highly optimized and effective SAI smoothers through 
LFA techniques, which completely avoids the expensive numerical construction proce-
dure using various optimization formulations.

In this work, we use LFA to derive new SAI smoothers for 2D and 3D Laplacian 
problems. Our proposed smoothers are more efficient and effective than these studied in 
[12,30]. In the literature, LFA has been widely used to study different discretization and 
relaxation schemes for the Poisson equation (1.1). For example, [34] uses LFA to study Ja-
cobi smoother of multigrid methods for higher-order finite-element approximations to the 
Laplacian problem. In [25], multiplicative Schwarz smoothers are investigated by LFA for 
isogeometric discretizations of the Poisson equation. While, [30] studies additive Vanka-
type smoothers. Multigrid methods based on triangular grids with standard-coarsening 
and three-coarsening strategies for the Poisson equation are studied in [26,27]. Our new 
SAI smoothers are very efficient in inverting Laplacian.

The whole paper is organized as follows. In the next section we recall basic concepts 
and ideas of LFA that will be used in our analysis. In Section 3, new SAI smoothers 
are developed and analyzed, where the technical proofs of our main theoretical results 
Theorems 3.1 and 3.2 are given. In Section 4, several numerical examples are reported to 
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confirm the LFA predicted multigrid convergence rates of our proposed SAI smoothers. 
Finally, some conclusions are given in Section 5.

2. A brief review of LFA

Local Fourier analysis (LFA) [49,50] is the standard tool to quantitatively predict 
the convergence rate of a given multigrid algorithm. In this section we briefly describe 
the main mechanism of how LFA works. In literature of multigrid methods, LFA is very 
useful to study the performance of multigrid smoothers. For this, a typical LFA procedure 
includes the following three steps:

(1) choose a good smoother (e.g. Jacobi) based on the system coefficient matrix;
(2) analyze LFA smoothing factor μ(ω) of a ω-parameterized relaxation scheme, and 

(exactly or approximately) find the best relaxation parameter ωopt that minimizes 
μ(ω), which often requires very technical and tedious analysis;

(3) numerically verify the corresponding LFA two-grid convergence factor and the actual 
multigrid convergence rate and compare with the obtained optimal smoothing factor 
μopt = μ(ωopt).

To address some predictive limitation of the smoothing factor μ, where coarse-grid cor-
rection plays an important role in multigrid performance, the more sophisticated two-grid 
LFA convergence factor provides a more reliable estimate of actual multigrid convergence 
rate. For the finite difference discretization considered here, the LFA smoothing factor 
can offer a sharp prediction of actual multigrid performances. Thus, we will focus on 
optimizing the smoothing factor μ analytically and then checking the two-grid LFA con-
vergence factor numerically (see below Table 1). Clearly, the choice of an efficient and 
effective smoother plays a decisive role in determining the practical convergence rate of 
the overall multigrid algorithm, and the selection of best relaxation parameter ωopt is 
highly dependent on the chosen smoother too. We aim to design and analyze fast sparse 
approximate inverse smoothers by LFA techniques.

In the standard (geometric) multigrid method for solving the linear system (1.2), the 
most commonly used smoothers (e.g., damped Jacobi or Gauss-Seidel) have the following 
preconditioned Richardson iteration form

uk+1
h = uk

h + ωMh(bh −Ahu
k
h) = (Ih − ωMhAh)︸ ︷︷ ︸

Sh(ω)

uk
h + ωMhbh, (2.1)

where Mh approximates A−1
h , ω ∈ R is a damping parameter to be determined, and 

Sh(ω) is called relaxation error operator. For example, the damped Jacobi smoother 
takes Mh = diag(Ah)−1 and the Gauss-Seidel smoother uses Mh = tril(Ah)−1, where 
tril(A) extracts the lower triangular part of A. Let �(Sh(ω)) be the spectral radius of 
Sh(ω). Then the above fixed-point iteration (2.1) is asymptotically convergent if and 
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only if �(Sh(ω)) < 1, which enforces some restrictions on the choice of ω. To estimate 
the multigrid performance, we can examine the smoothing effects of Sh(ω), that is how 
effectively it reduces the high frequency components of approximation errors. However, 
in practice, it is hard to directly compute or estimate �(Sh(ω)), instead, we can use LFA 
to study the smoothing properties of Sh(ω) via its Fourier symbol.

We first give some definitions of LFA following [49]. With the standard coarsening, 
the low and high frequencies are given by θ ∈ TL =

[
−π

2 ,
π
2
)d, θ ∈ TH =

[
−π

2 ,
3π
2
)d \TL, 

respectively. We define the LFA smoothing factor for Sh(ω) as

μloc(Sh(ω)) := max
θ∈TH

{�(S̃h(ω;θ))}, (2.2)

where the matrix S̃h(ω; θ) is the symbol of Sh(ω) and �(S̃h(ω; θ)) stands for its spectral 
radius. In particular, for the finite difference Laplacian operator considered here, the 
symbol S̃h(ω; θ) is just a scalar number. We also define the optimal smoothing factor 
μopt and the corresponding optimal relaxation parameter ωopt as

μopt := min
ω∈R

μloc(Sh(ω)), ωopt := arg minω∈R μloc(Sh(ω)). (2.3)

In general, it is very difficult to analytically find the values of μopt and ωopt. We point out 
that LFA assumes periodic boundary conditions and it does not consider the potential 
influence of different boundary conditions. However, in many applications, either the 
LFA smoothing factor or two-grid LFA convergence factor offers sharp predictions of 
problems with other boundary conditions [45].

Let Ãh(θ) and M̃h(θ) be the scalar symbol of Ah and Mh, respectively. Then the 
symbol of Sh(ω) = Ih − ωMhAh is obviously given by (note Ĩh = 1)

S̃h(ω;θ) = Ĩh − ωM̃hÃh = 1 − ωÃh(θ)M̃h(θ), (2.4)

which leads to a min-max optimization for finding the optimal smoothing factor

μopt = min
ω∈R

max
θ∈TH

|1 − ωÃh(θ)M̃h(θ)|. (2.5)

Define

λ0 := min
θ∈TH

Ãh(θ)M̃h(θ), λ1 := max
θ∈TH

Ãh(θ)M̃h(θ).

If there holds λ0 > 0, then it is easy to obtain

μopt = |1 − ωoptλ0| = |1 − ωoptλ1| = λ1 − λ0

λ1 + λ0
= 1 − 2

1 + λ1/λ0
< 1 (2.6)

with the optimal relaxation parameter
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ωopt = 2/(λ0 + λ1). (2.7)

Hence μopt is an increasing function of λ1/λ0 ∈ [1, ∞) and a smaller ratio (or spectral 
condition number) λ1/λ0 gives a smaller smoothing factor. The best choice of M̃h(θ)
highly depends on the expression of Ãh(θ) and hence the structure of matrix Ah. Math-
ematically, one may suggest to select M̃h(θ) = 1/Ãh(θ) such that λ1/λ0 = 1 leading 
to μopt = 0, which is however impractical in computation since it requires the dense 
matrix Mh = A−1

h . Nevertheless, it is still desirable to choose M̃h(θ) ≈ 1/Ãh(θ) for all 
θ ∈ TH such that λ1/λ0 is minimized in certain sense and meanwhile the matrix-vector 
product Mhrh with the residual vector rh := bh − Ahu

k
h is efficient to compute. In the 

next section, we will construct effective Mh by minimizing μopt over a class of predefined 
symmetric stencil pattern that leads to parameterized symbol M̃h(θ). From (2.6), we 
only need to either minimize λ1/λ0 or maximize λ0/λ1 to obtain the optimal smoothing 
factor, and the corresponding optimal ω is given by (2.7). We first notice that a scalar 
multiple of M̃h(θ) does not change μopt, but it indeed leads to a rescaled ωopt, hence 
one can normalize the symbol to simplify the analysis.

3. New optimized SAI smoothers

3.1. 2D case

For the 2D 5-point stencil Ah given in (1.3), its symbol reads

Ãh(θ) = 1
h2 (4 − eiθ1 − e−iθ1 − eiθ2 − e−iθ2) = 2

h2 (2 − cos θ1 − cos θ2). (3.1)

The weighted point-wise Jacobi smoother MJ = diag(Ah)−1 has a singleton stencil

MJ = h2

4

[ 0
0 1 0

0

]
(3.2)

with symbol M̃J (θ) = h2/4, which was shown to achieve the optimal smoothing factor 
μopt = 3/5 = 0.6 with ωopt = 4/5 = 0.8 [49]. Although MJ is very easy to parallelize, its 
convergence rate of 0.6 becomes rather slow and inefficient for large-scale systems.

In the seminar work [48], the authors derived a 5-point SAI smoother

M5,TW = h2

61

[ 3
3 17 3

3

]
(3.3)

with its symbol M̃5,TW(θ) = h2(17 + 6 cos θ1 + 6 cos θ2)/61, which was shown to have a 
smoothing factor of 21/61 ≈ 0.344 if choosing ω = 1. In fact, LFA shows this particular 
smoother M5,TW can achieve the optimal smoothing factor μopt ≈ 0.273 if taking ωopt ≈
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1.108. Nevertheless, such a 5-point SAI smoother can be further improved to obtain a 
smaller μopt. Specifically, in [12,17,21], the authors obtained the following best 5-point 
SAI smoother (among all symmetric 5-point stencils)

M5 = 8h2

41

[ 1
1 6 1

1

]
(3.4)

with its symbol M̃5(θ) = (48 +16 cos θ1+16 cos θ2)/41, which gives the optimal smoothing 
factor μopt = 9/41 ≈ 0.220 with ωopt = 1/4 = 0.25. One may wondering can we construct 
a new SAI smoother with a smaller optimal smoothing factor μopt?

The short answer is yes, but we have to search from those SAI smoothers with 
wider/denser stencil. In this paper, for the sake of computational efficiency, we consider 
a general class of symmetric 9-point stencil smoothers of the following form

Υ(α, β, γ) := h2

[
γ β γ
β α β
γ β γ

]
,

where α, β, and γ are to be optimized through LFA. Obviously, the special case Υ(α, β, 0)
with γ = 0 reduces to the above 5-point stencil and hence we expect a smaller optimal 
smoothing factor with the free choice of γ. The symbol of Υ reads

Υ̃(θ) = h2(α + 2β cos θ1 + 2β cos θ2 + 4γ cos θ1 cos θ2).

Based on the idea of domain decomposition method, an element-wise additive Vanka 
smoother corresponding to the above 9-point stencil was proposed recently in [30]

MVanka = h2

96

[1 4 1
4 28 4
1 4 1

]
= 1

96Υ(28, 4, 1), (3.5)

with M̃Vanka = (28 + 8 cos θ1 + 8 cos θ2 + 4 cos θ1 cos θ2)/96, which gives the optimal 
smoothing factor μopt = 7/25 = 0.28 with ωopt = 24/25. Though with better perfor-
mance than weighted Jacobi smoother, such a Vanka 9-point stencil smoother MVanka
can be greatly improved to attain a smaller optimal smoothing factor than the above 
best 5-point SAI smoother M5, which is one of our major contributions.

To find the best 9-point stencil Υ(α, β, γ) that achieves the optimal smoother factor 
μopt, we essentially need to solve the following min-max optimization problem

μopt = min
α,β,γ,ω

μloc = min
α,β,γ,ω

max
θ∈TH

|1 − ωÃh(θ)Υ̃(θ)|

= min
α,β,γ,ω

max
θ∈TH

|1 − ω(2α + 4β(cos θ1 + cos θ2) + 8γ cos θ1 cos θ2)(2 − cos θ1 − cos θ2)|

= min max
H
|1 − ω(b + a(cos θ1 + cos θ2) + cos θ1 cos θ2)(2 − cos θ1 − cos θ2)
a,b,ω θ∈T
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where we fixed 8γ = 1 and set b = 2α and a = 4β to simplify the discussion. Notice 
that the normalization condition 8γ = 1 only changes the choice of ωopt and it will not 
affect μopt since the ratio λ1/λ0 remains the same. Based on some technical analysis as 
stated in the following theorem, we can obtain the following best 9-point SAI smoother 
M9 that achieves the optimal smoothing factor

M9 = 1
24Υ(44, 10, 3) = h2

24

[ 3 10 3
10 44 10
3 10 3

]
. (3.6)

Theorem 3.1. Among all symmetric 9-point stencil of form Υ(α, β, γ), the SAI smoother 
M9 = 1

24Υ(44, 10, 3) gives the optimal smoothing factor

μopt = (9 + 8
√

10)/215 ≈ 0.1595

with the optimal relaxation parameter

ωopt = 309 − 12
√

10
1720 ≈ 0.1576.

Proof. For better exposition, we will only provide a sketch of the proof in the following. 
The technical detailed proof will be presented in the corresponding separate supplemen-
tary material for the interests of readers.

If (θ1, θ2) ∈ TH =
[
−π

2 ,
3π
2
)2 \

[
−π

2 ,
π
2
)2, then (x1, x2) := (cos θ1, cos θ2) ∈ XH :=

[−1, 1]2 \ (0, 1]2. Given (a, b) ∈ R2, we define

fa,b(x1, x2) := [b + a(x1 + x2) + x1x2](2 − x1 − x2).

Then,

μloc = max
(x1,x2)∈XH

|1 − ωfa,b(x1, x2)|.

By symmetry, we may assume without loss of generality that x1 ≤ x2. Hence,

μopt = min
a,b,ω

max
(x1,x2)∈X1∪X2

|1 − ωfa,b(x1, x2)|,

where

X1 :={(x1, x2) ∈ R2 : − 1 ≤ x1 ≤ 0, − x1 ≤ x2 ≤ 1},
X2 :={(x1, x2) ∈ R2 : − 1 ≤ x1 ≤ 0, x1 ≤ x2 ≤ −x1}.

Since X1 ∪X2 is compact, the extremes of fa,b on X1 ∪X2 can be achieved. We denote

χa,b := max fa,b(x1, x2), ma,b := min fa,b(x1, x2).

(x1,x2)∈X1∪X2 (x1,x2)∈X1∪X2
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Since Ãh is positive, to guarantee the convergence of relaxation scheme, we have to 
restrict (a, b) in the following region

R := {(a, b) ∈ R2 : ma,b > 0}.

To find a SAI smoother achieving the optimal smoothing factor, from (2.6), we need to 
solve the following two-variable non-convex constrained minimization problem

μopt = min
(a,b)∈R

J(a, b), (3.7)

where

J(a, b) = (χa,b −ma,b)/(χa,b + ma,b),

with the corresponding optimal choice of ω in the optimization problem (3.7) is

ωopt = 2/(χa,b + ma,b).

If (a, b) ∈ R, then we have

b > 1, b > |a|, b− 2a + 1 > 0,

and

ma,b = min{b + a, 2b− 2, 4(b− 2a + 1)},

and

χa,b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max{ (b+2a)2

4a , 4(b− 2a + 1)}, b ≤ 2a,
max{2b, 4(b− 2a + 1)}, (1 − 2a)2 < 3(b− 2a),
max{2b, 4(b− 2a + 1)}, (1 − 2a)2 ≥ 3(b− 2a) > 0, t− /∈ [0, 2],
(b− at− + t2−/4)(2 + t−), (1 − 2a)2 ≥ 3(b− 2a) > 0, t− ∈ [0, 2],

where

t− =
2a− 1 −

√
(1 − 2a)2 − 3(b− 2a)

3/2

is the smaller root of the quadratic function 3t2/4 +(1 −2a)t +b −2a provided (1 −2a)2 ≥
3(b − 2a) > 0. For convenience of discussion, we divide R into four disjoint sub-regions:
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R0 := {(a, b) ∈ R, b ≤ 2a},
R1 := {(a, b) ∈ R, (1 − 2a)2 < 3(b− 2a)},
R2 := {(a, b) ∈ R, (1 − 2a)2 ≥ 3(b− 2a) > 0, t− /∈ [0, 2]},
R3 := {(a, b) ∈ R, (1 − 2a)2 ≥ 3(b− 2a) > 0, t− ∈ [0, 2]}.

A tedious but straightforward calculation gives the following results:

1. If (a, b) ∈ R0, then J(a, b) ≥ 1/5.
2. If (a, b) ∈ R1 ∪R2, then J(a, b) ≥ 3/17.
3. If (a, b) ∈ R3, then J(a, b) ≥ (9 + 8

√
10)/215.

On the other hand, by choosing (a, b) = (5/3, 11/3) ∈ R3, we obtain that

J(5/3, 11/3) = (9 + 8
√

10)/215

with m5/3,11/3 = 16/3 and χ5/3,11/3 = (4352 + 320
√

10)/729. Hence, we have

μopt = min
(a,b)∈R

J(a, b) = 9 + 8
√

10
215 ,

and the corresponding optimal value of ω is calculated as

ωopt = 2
m5/3,11/3 + χ5/3,11/3

= 309 − 12
√

10
1720 ,

which completes the proof of Theorem 3.1. �
Compared to M5 (with μopt ≈ 0.2195), the proposed M9 (with μopt ≈ 0.1595) reduces 

μopt by about 30%, which hence leads to a faster multigrid convergence rate. Clearly, 
M9 also provides much faster convergence rate than MVanka with the same cost. Recall 
the 2D pointwise lexicographic Gauss-Seidel smoother only gives μopt = 0.5 [35,49].

It is worthwhile to point out that the LFA technique can be applied to other dis-
cretizations to identify optimal smoother. For example, the authors in [12] studied a 
9-point stencil arising from linear finite element method for the 2D Poisson equation

Âh = 1
h2

[−1 −1 −1
−1 8 −1
−1 −1 −1

]
,

where the best SAI smoother with a 9-point stencil (of the reduced form Υ(α, β, β))

M̂9 = 4h2

153

[1 1 1
1 10 1

]

1 1 1
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gives the optimal smoothing factor μopt = 1/17 ≈ 0.0588 with ωopt = 1. We emphasize 
that it is technically more difficult to theoretically find M9 than both M5 and M̂9, 
since the product symbol M̃9(θ)Ãh(θ) is more complicated than both M̃5(θ)Ãh(θ) and ˜̂
M9(θ) ˜̂Ah(θ) due to mis-matched stencil patterns (5-point verse 9-point). However, for 
given structured smoother, one can apply some robust optimization approaches, for 
example, [22], to numerically identify the (approximate) optimal smoother.

3.2. 3D case

For the 3D 7-point stencil Ah given in (1.3), its symbol reads

Ãh(θ) = 2
h2 (3 − (cos θ1 + cos θ2 + cos θ3)). (3.8)

The simplest Jacobi smoother is MJ = (h2/6)Ih with M̃J(θ) = h2/6 and it achieves a 
quite large μopt = 5/7 ≈ 0.714 with the optimal damping parameter ωopt = 6/7 [49].

Inspired by M5, we look at all 7-point stencil SAI smoothers of the form

T (α, β) := h2

4

{[ 0
0 β 0

0

][
β

β 2α β
β

][ 0
0 β 0

0

]}
(3.9)

with a symbol T̃ (θ) = (h2/4)(2α + 2β(cos θ1 + cos θ2 + cos θ3)). Hence there holds

T̃ (θ)Ãh(θ) = (α + β(cos θ1 + cos θ2 + cos θ3)) (3 − (cos θ1 + cos θ2 + cos θ3)) .

Following the techniques in [12], we can find the following best 7-point SAI smoother

M7 = h2

10

{[ 0
0 1 0

0

][ 1
1 8 1

1

][ 0
0 1 0

0

]}
= T (8/5, 2/5), (3.10)

which gives the optimal smoothing factor as stated in the following theorem.

Theorem 3.2. Among all symmetric 7-point stencil of form T (α, β), the SAI smoother 
M7 = T (8/5, 2/5) gives the optimal smoothing factor

μopt = 25/73 ≈ 0.343

with the optimal relaxation parameter

ωopt = 20/73 ≈ 0.274.
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Proof. By normalization, we assume without loss of generality that β = 2/5 and α = aβ. 
Let xi = cos θi with i = 1, 2, 3, and transform the high frequency variable θ ∈ TH to 
(x1, x2, x3) ∈ XH := [−1, 1]3 \ (0, 1]3. By standard calculation, we have

μloc = max
(x1,x2,x3)∈XH

|1 − 2/5 · ωfa(x1, x2, x3)|,

where

fa(x1, x2, x3) := (a + x1 + x2 + x3)(3 − x1 − x2 − x3).

Denote the extreme values of fa as

χa := max
(x1,x2,x3)∈XH

fa(x1, x2, x3), ma := min
(x1,x2,x3)∈XH

fa(x1, x2, x3).

From (2.6), to obtain the optimal smoothing factor, we only need to maximize the ratio 
ra := ma/χa.

We restrict a in the region R := {a ∈ R : ma > 0} to guarantee the convergence 
of the relaxation scheme. Note that fa(x1, x2, x3) = Va(t) := (a + t)(3 − t) with t :=
x1 + x2 + x3 ∈ [−3, 2]. Using fa > 0, we have a > 3. Since Va(t) is a concave function in 
t (i.e., V ′′

a (t) < 0) with a unique critical point at t = (3 − a)/2, we obtain

ma = min{Va(−3), Va(2)} = min{6a− 18, a + 2},

and

χa =
{

(a + 3)2/4, 3 < a ≤ 9,
6a− 18, a ≥ 9.

If 3 < a ≤ 4, then ra = 6a−18
(a+3)2/4 ≤ 24

49 . If 4 ≤ a ≤ 9, then ra = a+2
(a+3)2/4 ≤ 24

49 . If a ≥ 9, 
then ra = a+2

6a−18 ≤ 11
36 . A combination of the above three cases gives ra ≤ r4 = 24/49

with m4 = 6 and χ4 = 49/4. Hence, from (2.6) we obtain

μopt = χ4 −m4

χ4 + m4
= 25

73 ≈ 0.343

with optimal ωopt satisfied βωopt = 2/(χ4 + m4), where β = 2
5 , that is

ωopt = 2
β(χ4 + m4)

= 5
2

8
73 = 20

73 ≈ 0.274. �
Similar to the above discussed 2D cases (from M5 to M9), one may obtain a smaller 

optimal smoothing factor if a wider/denser (e.g. 19-point or 27-point) symmetric stencil 
is used to construct the SAI smoother for 3D problem. Nevertheless, the resulting product 
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symbol becomes much more complicated, which is overwhelmingly tedious to optimize 
analytically. In such situations, one may resort to some robust optimization approaches 
(based on the same min-max formulation), see e.g. [22]. Although further discussion is 
beyond the scope of this paper, we numerically verified such heuristically optimized 19-
point or 27-point SAI smoothers indeed deliver slightly faster convergence rates than 
that of M7. We also mention the 3D pointwise lexicographic Gauss-Seidel smoother only 
attains μopt = (4 +

√
5)/11 ≈ 0.567 [35], which is much larger than that of the above 

optimized SAI smoother M7.

4. Numerical results

In this section, we present some numerical tests to illustrate the effectiveness of our 
proposed multigrid algorithms for 2D and 3D Poisson problems with Dirichlet, periodic 
and Neumann boundary conditions. All simulations are implemented with MATLAB on a 
Dell Precision 5820 Workstation with Intel(R) Core(TM) i9-10900X CPU@3.70 GHz and 
64 GB RAM, where the CPU times (in seconds) are estimated by the timing functions
tic/toc. In our multigrid algorithms, we use the coarse operator from re-discretization 
with a coarse mesh step size H = 2h, full weighting restriction and linear interpolation 
operators, W or V cycle with ν1-pre and ν2-post smoothing iteration, the coarsest mesh 
step size h0 = 1/4, and the stopping tolerance tol = 10−10 based on reduction in relative 
residual norms. We will test both W (ν1 + ν2) = W (1 + 0) and V (ν1 + ν2) = V (1 + 1)
cycles in our numerical examples. The initial guess u(0)

h is chosen as uniformly distributed 
random numbers in (0, 1). The multigrid convergence rate (factor) of k-th iteration is 
computed as [49]

ρ̂(k) = (‖rk‖2/‖r0‖2)1/k , (4.1)

where rk = bh − Ahu
(k)
h denotes the residual vector after the k-th multigrid iteration. 

We will report ρ̂(k) of the last multigrid iteration as the actual convergence rate. The 
MATLAB codes for reproducing the following figures are available online at the link: 
https://github .com /junliu2050 /SAI -MG -Laplacian.

Let ν = ν1 + ν2 be the total number of smoothing steps in each multigrid cycle. 
In practice, the LFA smoothing factor often offers a sharp prediction of LFA two-grid 
convergence factor ρh and actual two-grid performance, which also predicts the W-cycle 
multigrid convergence rate [49,50]. In Table 1, we numerically optimize the LFA two-grid 
convergence factor ρh(ν = 1) with respect to the relaxation parameter ω ∈ (0, 1], and 
then use the numerically obtained optimal parameter ωTG

opt to compute the corresponding 
smoothing factor μ(ωTG

opt ), and ρh(ν) as a function of ν = 2, 3, 4. We observe that two-grid 
LFA convergence factor ρh(ν = 1) is the same as the LFA smoothing factor μ(ωTG

opt ), and 
the approximately optimal ωTG

opt and ρh(ν = 1) match with our theoretical smoothing 
analysis, ωopt and μopt, respectively. As compared in Table 1, we also include the damped 
Jacobi smoother MJ and the SAI smoother M5. Both our proposed SAI smoothers M9

https://github.com/junliu2050/SAI-MG-Laplacian
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Table 1
LFA predicted two-grid convergence factor ρh(ν) using ωTG

opt obtained from numerically 
minimizing two-grid LFA convergence factor ρh(ν = 1) and the corresponding LFA 
smoothing factor μ(ωTG

opt ) with h = 1
256 (for 2D) and h = 1

64 (for 3D).

ωTG
opt μ(ωTG

opt ) ρh(ν = 1) ρh(ν = 2) ρh(ν = 3) ρh(ν = 4)

2D
MJ 0.800 0.600 0.600 0.360 0.216 0.137
M5 0.250 0.220 0.220 0.087 0.056 0.044
M9 0.158 0.160 0.160 0.070 0.046 0.035

3D
MJ 0.857 0.714 0.714 0.510 0.364 0.260
M7 0.274 0.343 0.343 0.152 0.107 0.085

Fig. 1. Example 1: comparison of multigrid convergence with different smoothers. Left: W(1+0)-cycle. Right: 
V(1+1)-cycle.

and M7 significantly outperform the Jacobi smoother MJ , which are also confirmed by 
the following several 2D and 3D numerical examples with various boundary conditions.

4.1. Example 1 [19]

In the first example we consider the following data

u = (x2 − x4)(y4 − y2), f = 2(1 − 6x2)(y2 − y4) + 2(1 − 6y2)(x2 − x4), g = 0.

In Fig. 1, we compare the multigrid convergence performance of our considered three SAI-
type smoothers: MJ , M5, and M9, where the estimated convergence rates match with 
the LFA preconditions shown in Table 1. Moreover, Fig. 1 reveals that using V-cycle is 
much cheaper than W-cycle. Clearly, both SAI smoothers M5 and M9 attain significantly 
faster convergence rates and also cost less CPU times than the Jacobi smoother MJ . In 
serial computation, we only observe marginal speed up in CPU times for M9 over M5, 
since M9 has a wider stencil and higher operation cost in each iteration. But we expect 
to achieve even more significant speedup in parallel computation since SAI smoothers 
are embarrassingly parallelizable and the parallel CPU times will be mainly determined 
by the required sequential iteration numbers.
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Fig. 2. Example 2: comparison of multigrid convergence with different smoothers. Left: W(1+0)-cycle. Right: 
V(1+1)-cycle.

4.2. Example 2

In the second example we consider the following data

u = x ln(x)y ln(y), f = −x ln(x)/y − y ln(y)/x, g = 0,

where f has singularity near the boundary with x = 0 or y = 0. In Fig. 2, we compare 
the multigrid convergence performance of our considered three SAI-type smoothers: MJ , 
M5, and M9, where the observed convergence rates are the same as those reported in 
Example 1. Again, we see V-cycle multigrid is more efficient than W-cycle multigrid. This 
example shows that the convergence rates of SAI smoothers are not obviously influenced 
by the lower regularity of the given source term f .

4.3. Example 3 (Periodic boundary conditions)

In this example we consider the same 2D Poisson equation

−Δu = f in Ω = (0, 1)2 (4.2)

with periodic boundary conditions

u(0, y) = u(1, y), u(x, 0) = u(x, 1), ux(0, y) = ux(1, y), uy(x, 0) = uy(x, 1),

where f is assumed to satisfy the compatibility condition such that there exists a unique 
zero-mean solution. In particular, we choose the following data

u = sin(2πx) cos(2πy), f = 8π2 sin(2πx) cos(2πy).

To accommodate the periodic structure of the system matrix Ah, we also enforce peri-
odic structure in constructing the SAI smoothers. In Fig. 3, we compare the multigrid 
convergence performance of our considered three SAI-type smoothers: MJ , M5, and M9, 
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Fig. 3. Example 3: comparison of multigrid convergence with different smoothers. Left: W(1+0)-cycle. Right: 
V(1+1)-cycle.

where the observed W-cycle and V-cycle convergence rates are the same as the cases of 
Dirichlet boundary conditions reported in Example 1 and 2. This is anticipated since 
LFA predictions essentially assume periodic boundary conditions.

4.4. Example 4 (Neumann boundary condition)

In this example we consider 2D Poisson equation with pure Neumann boundary con-
dition:

−Δu = f in Ω, ∂u
∂n = ϕ, on ∂Ω, (4.3)

where f and ϕ are assumed to satisfy the compatibility condition such that there exists 
a unique zero-mean solution. In particular, we choose the following data

u = (x3/3 − x5/5 − 1/20)(y5/4 − y3/3 − 1/20), f = −Δu, ϕ = 0.

As suggested in [19, Chap. 7], we have introduced ghost points near boundary to obtain 
a symmetric discrete system with a second-order accuracy, and modified the restriction 
and interpolation operators in multigrid to effectively handle Neumann boundary points. 
In Fig. 4, we compare the multigrid convergence performance of our considered three 
SAI-type smoothers: MJ , M5, and M9, where the observed W-cycle and V-cycle con-
vergence rates are the same as those reported in previous 2D examples with Dirichlet 
and periodic boundary conditions. This example indicates our proposed SAI smoother 
M9 also works very well for the case with pure Neumann boundary conditions that lead 
to a singular linear system [52]. We mention that the Neumann boundary conditions 
are also widely used in time-dependent diffusion models from fluid dynamics and many 
other applications.
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Fig. 4. Example 4: comparison of multigrid convergence with different smoothers. Left: W(1+0)-cycle. Right: 
V(1+1)-cycle.

Fig. 5. Example 5: comparison of multigrid convergence with different smoothers. Left: W(1+0)-cycle. Right: 
V(1+1)-cycle.

4.5. Example 5 [54]

In the last example, we consider the following 3D data

u = sin(πx) sin(πy) sin(πz), f = 3π2 sin(πx) sin(πy) sin(πz), g = 0.

In Fig. 5, we compare the multigrid convergence performance of the two SAI-type 
smoothers: MJ and M7, where the observed convergence rates are compatible with the 
LFA predictions presented in Table 1. For both W and V cycles, M7 takes about half of 
the CPU times by MJ , as predicted by Table 1. For all smoothers, we see that V-cycle 
is more efficient that W-cycle. We highlight that with N = 512 the system has about 
134 million unknowns, which takes about 200 seconds for M7 with V-cycle.

5. Conclusion

In this paper, we proposed and analyzed new 9-point and 7-point stencil based SAI 
multigrid smoothers for solving 2D and 3D Laplacian linear systems respectively. The 
obtained optimal LFA smoothing factors are significantly smaller than that of the state-
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of-the-art SAI smoothers in literature. The crucial optimal relaxation parameters are 
exactly derived through rigorous analysis. Numerical results with 2D and 3D examples 
with various boundary conditions validated our theoretical analysis and demonstrated 
the effectiveness of our proposed SAI smoothers.

It is interesting to extend such SAI smoothers to general second-order elliptic PDEs 
with variable coefficients, see e.g. [28,42] for the potential idea of preconditioning by 
inverting Laplacian with our proposed multigrid solvers. We highlight that more so-
phisticated multigrid methods (e.g. operator-based interpolation) are required for ef-
fectively handling variable coefficients with drastic variations and our current used 
LFA techniques can not be directly applied. One promising approach is to use the 
generalized locally Toeplitz theory, which was exploited in [7,11] for approximately op-
timizing the multigrid Runge-Kutta smoothers in solving unsteady variable-coefficient 
convection-diffusion equations. It is also possible to apply our proposed SAI smoothers 
to elliptic optimal control problem [33] involving Laplacian. The MATLAB codes for 
implementing our proposed algorithms are publicly available online at the link: https://
github .com /junliu2050 /SAI -MG -Laplacian.
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