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Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15,
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In this paper, we present explicit and computable error bounds for the asymptotic
expansions of the Hermite polynomials with Plancherel–Rotach scale. Three cases,
depending on whether the scaled variable lies in the outer or oscillatory interval, or
it is the turning point, are considered separately. We introduce the ‘branch cut’
technique to express the error terms as integrals on the contour taken as the
one-sided limit of curves approaching the branch cut. This new technique enables us
to derive simple error bounds in terms of elementary functions. We also provide
recursive procedures for the computation of the coefficients appearing in the
asymptotic expansions.
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1. Introduction

Plancherel–Rotach asymptotic expansions for the orthogonal polynomials as the
polynomial degree tends to infinity have been studied extensively in the literature.
There are many standard asymptotic techniques including the steepest descent
method for integrals [12], the WKB method for differential equations [8], the
Deift–Zhou method for Riemann–Hilbert problems [4, 5], asymptotic theory of
difference equations [13] and Darboux’s method [14]. The error term for the trun-
cated asymptotic expansion is usually of the same order of magnitude as the first
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Figure 1. The contour Γ with counter-clockwise orientation.

neglected term. In other words, the ratio of the error term and the first omitted
term is bounded by a constant independent of the polynomial degree. The exis-
tence of such a bound can be proved by standard ‘soft’ analysis. However, as far
as we know, the quantitative information for this error bound is unknown even for
the classical orthogonal polynomials. One may expect a rather complicated ‘hard’
analysis on finding explicit and computable expressions for error bounds. Various
reasons why we need error bounds for asymptotic expansions are discussed in Ref.
[9]. As mentioned in Ref. [11], the upper bounds of the error term obtained from
standard asymptotic techniques are difficult to compute, and thus may not be real-
istic. In this paper, we will derive explicit and computable error bounds for the
asymptotic expansions of the Hermite polynomials.

The main challenge is to find a convenient integral representation of the error
term on an appropriate contour so that the error bound is computable. Berry
and Howls [2] proposed the so-called ‘adjacent saddles’ method which was further
developed in [1, 3]. The key idea of their method is to express the error term as an
integral over the ‘adjacent contours’ passing through the ‘adjacent saddles’. How-
ever, the technique of ‘adjacent saddles’ cannot be applied directly to the Hermite
polynomials and many other orthogonal polynomials because the integrand (or the
phase function) of the integral representation for the Hermite polynomials has a
branch point in the complex plane. It is thus difficult to express the error term
as an integral over the ‘adjacent contours’. Moreover, for the turning point case,
when two saddle points coincide with each other, there does not exist any ‘adjacent
saddle’. To resolve these two difficulties, we introduce a new ‘branch cut’ technique
which deforms the contour of integration for the error term to the branch cut of
the phase function. More precisely, the contour is defined as the limit of the curves
approaching one side of the branch cut. By virtue of the ‘branch cut’ technique, we
are able to find simple error bounds in terms of elementary functions.

The Hermite polynomials can be expressed as contour integrals:

Hn(x) =
n!
2πi

∫
Γ

e2xt−t2t−n−1dt,

where Γ is a counter-clockwisely oriented contour encircling the negative real line
(cf. [7, § 18.10(iii)]). To be more specific, we may choose

Γ = {λ − iδ : λ < 0} ∪ {δeiθ : −π/2 � θ � π/2} ∪ {λ + iδ : λ < 0},

where δ > 0 is any fixed positive number; see figure 1.
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After introducing the Plancherel–Rotach scale, we rewrite the integral represen-
tation as

Hn(
√

Nx) =
n!

2πiNn/2

∫
Γ

e−N [t2−2xt+(ln t)/2]t−1/2dt, (1.1)

where N = 2n + 1. By symmetry, we may assume that x � 0. We shall denote the
phase function in the above integral by

f(t;x) = t2 − 2xt +
1
2

ln t. (1.2)

The zeros of f ′(t;x) are called saddle points and can be calculated as

t± =
x ±√

x2 − 1
2

=

⎧⎪⎨⎪⎩
e±β/2, x = cosh β > 1, β > 0;
e±iα/2, x = cos α ∈ [0, 1), α ∈ (0, π/2];
1/2, x = 1.

Note that the two saddle points coincide (t+ = t−) at the turning point x = 1. For
simplicity, we shall drop the dependence of f on x. There are three cases to be
considered.

Case I: x = cosh β > 1 with β > 0. This is called the outer interval.

Case II: x = cos α ∈ [0, 1) with α ∈ (0, π/2]. This is called the oscillatory
interval.

Case III: x = 1. This is called the turning point.

We will consider these three cases separately. We mention here that an asymptotic
expansion with error bounds for the slightly differently scaled Hn(

√
N + 1 cos α)

was given earlier by van Veen [10].
The rest of the paper is organized as follows. In § 2–4, we derive the asymptotic

expansions with error bounds for Case I, II and III, respectively. The main results
are stated at the end of each section. In § 5, we demonstrate the accuracy of the error
bounds through numerical examples. Recursive procedures for the computation of
the coefficients appearing in the asymptotic expansions are given in appendix A.

2. Case I: x = cosh β > 1 with β > 0

The saddle points are t± = e±β/2 with 0 < t− < t+. Moreover, f ′′(t−) = 2(1 −
e2β) < 0 and f ′′(t+) = 2(1 − e−2β) > 0. We shall deform the contour of integra-
tion Γ to the path of steepest descent passing through the saddle point t−. To
describe this steepest descent contour, we shall introduce the analytic function

w(z) = [f(z) − f(t−)]1/2, (2.1)

where the branch of the square root function is chosen so that

w(z) = −i(z − t−)
√

−f ′′(t−)/2 + O((z − t−)2)

= −i(z − t−)
√

e2β − 1 + O((z − t−)2),
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Figure 2. The contours Γ±. The arrows indicate the increasing direction of the phase
function f .

for z in a small complex neighbourhood of t−. Let z = reiθ with r > 0 and θ ∈
(−π, π). We investigate the equation Im[f(z) − f(t−)] = Im f(z) = 0; namely,

r2 sin(2θ) − 2r cosh β sin θ +
θ

2
= 0. (2.2)

Clearly, θ = 0 satisfies the above equation. By symmetry, we can restrict θ ∈ (0, π)
and find two solutions

r−(θ) =
θ/(2 sin θ)

cosh β +
√

cosh2 β − θ/ tan θ
, θ ∈ (0, π),

r+(θ) =
cosh β +

√
cosh2 β − θ/ tan θ

2 cos θ
, θ ∈ (0, π/2). (2.3)

It is readily seen that r±(θ) → t± = e±β/2 as θ → 0. For consistency, we define
r±(0) = t±. Consequently, we can regard r−(θ) as a symmetric function on (−π, π)
and r+(θ) a symmetric function on (−π/2, π/2). Define two contours

Γ− = {r−(θ)eiθ : θ ∈ (−π, π)}, Γ+ = {r+(θ)eiθ : θ ∈ (−π/2, π/2)}.
It follows that the solution of Im f(z) = 0 is the union Γ− ∪ Γ+ ∪ R

+, where R
+ is

the positive real line. The contours Γ± are depicted in figure 2.
Since f ′(z) has no zeros other than t±, it follows from the asymptotic behaviour

f(z) ∼ z2 as z → ∞ that Γ− is a steepest descent contour passing through t−,
while Γ+ is a steepest ascent contour passing through t+. Moreover, the solutions
of f(z) − f(t−) = 0 are real and positive. Consider f(t) = t2 − 2t cosh β + (ln t)/2
for t > 0. Since f(t) → −∞ as t → 0+ and f(t) → ∞ as t → ∞, we obtain from
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f ′(t±) = 0 that the equation f(t) − f(t−) = 0 has exactly two positive roots: one is
t−; and the other, denoted by tc, is larger than t+. Hence, we can choose [tc, ∞) as
a branch cut and extend the definition of w(z) on C \ (−∞, 0] ∪ [tc, ∞) by analytic
continuation.

Now, we deform the contour of integration from Γ to the steepest descent contour
Γ− with counter-clockwise orientation and then make a change of variable u = w(t):

Hn(
√

N cosh β) =
n!e−Nf(t−)

2πiNn/2

∫
Γ−

e−N [f(t)−f(t−)]t−1/2dt

=
n!e−Nf(t−)

2πiNn/2

∫
R

e−Nu2 [w−1(u)]−1/2

w′(w−1(u))
du. (2.4)

Recall that Γ+ is the steepest ascent contour passing through t+. We also denote
by Γ0 a clockwise oriented contour encircling (−∞, 0]; namely,

Γ0 = {λ + iδ : λ < 0} ∪ {δeiθ : −π/2 � θ � π/2} ∪ {λ − iδ : λ < 0},
where δ > 0 is a small positive number such that δ < tc. In fact, Γ0 is identical to
Γ but has the opposite orientation. Since |w(z)|/|z| → 1 as z → ∞, we have from
the Cauchy integral formula

[w−1(u)]−1/2

w′(w−1(u))
=

1
2πi

∫
Γ0∪Γ+

z−1/2

w(z) − u
dz

for any u ∈ R. Substituting this expression into (2.4) gives a double integral
representation

Hn(
√

N cosh β) =
n!e−Nf(t−)

(2πi)2Nn/2

∫
R

e−Nu2
∫

Γ0∪Γ+

z−1/2

w(z) − u
dzdu.

For any p � 0, it follows from

1
w(z) − u

=
2p∑

k=1

uk−1

w(z)k
+

u2p

w(z)2p[w(z) − u]

and ∫
R

e−Nu2
uk−1du =

{
0, k = 2j,

Γ(j + 1/2)/N j+1/2, k = 2j + 1
(2.5)

that

Hn(
√

N cosh β) =
n!e−Nf(t−)

(2πi)2Nn/2

{
2p∑

k=1

∫
R

e−Nu2
uk−1du

∫
Γ0∪Γ+

z−1/2

w(z)k
dz

+
∫

R

e−Nu2
u2p

∫
Γ0∪Γ+

z−1/2

w(z)2p[w(z) − u]
dzdu

}

=
n!e−Nf(t−)

2
√

π sinh βN (n+1)/2

⎧⎨⎩
p−1∑
j=0

Aj(coth β)
N j

+ εp(N,β)

⎫⎬⎭ ,

(2.6)
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where

Aj(coth β) = −
√

sinh β Γ(j + 1/2)
2π3/2

∫
Γ0∪Γ+

z−1/2

w(z)2j+1
dz, (2.7)

εp(N,β) = −
√

N sinhβ

2π3/2

∫
R

e−Nu2
u2p

∫
Γ0∪Γ+

z−1/2

w(z)2p[w(z) − u]
dzdu. (2.8)

We show in appendix A.1 that the coefficients Aj(coth β) are polynomials in cothβ
of degree 3j with rational coefficients, and can be calculated using a recursive
formula.

To find an upper bound for the remainder εp(N, β), we need to estimate the
integral

cp(u) =
∫

Γ0∪Γ+

z−1/2

w(z)2p[w(z) − u]
dz, u ∈ R. (2.9)

If there exists Cp > 0 such that |cp(u)| � Cp for all u ∈ R, then we obtain from
(2.5) with k = 2p + 1 and (2.8) that

|εp(N,β)| �
√

sinh β

2π3/2

CpΓ(p + 1/2)
Np

. (2.10)

First, we estimate the integral

I0 =
∫

Γ0

z−1/2

w(z)2p[w(z) − u]
dz.

Recall that the contour Γ0 encircles the negative real line having a distance δ > 0
from it. By analyticity of the integrand, the value I0 does not change if we let
δ → 0+. Hence,

|I0| �
∫ +∞

0

s−1/2

|w(seiπ)|2p|w(seiπ) − u|ds +
∫ +∞

0

s−1/2

|w(se−iπ)|2p|w(se−iπ) − u|ds,

(2.11)

where w(se±iπ) is defined as the limit of w(seiθ) as θ → ±π. Note from (1.2) and
(2.1) that

w(se±iπ)2 = s2 + 2s cosh β + (ln s)/2 − f(t−) ± iπ/2.

Thus, we obtain

|w(se±iπ)| = {[s2 + 2s cosh β + (ln s)/2 − f(t−)]2 + (π/2)2}1/4 =: R(s), (2.12)

where the last equality defines R(s), the modulus of w(se±iπ). Let θ±(s) be the
phase of w(se±iπ). We then have

R(s)2 cos[2θ±(s)] = Re[w(se±iπ)2] = s2 + 2s cosh β + (ln s)/2 − f(t−),
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which implies that

|w(se±iπ) − u| � |Im[w(se±iπ)]| = R(s)| sin[θ±(s)]| = R(s)

√
1 − cos[2θ±(s)]

2

=

√
R(s)2 − [s2 + 2s cosh β + (ln s)/2 − f(t−)]

2

=

√
(π/2)2/2

R(s)2 + [s2 + 2s cosh β + (ln s)/2 − f(t−)]

�
√

(π/2)2

4R(s)2
=

π

4R(s)
.

Assume that p � 1. Substituting this inequality into (2.11) yields

|I0| � 8
π

∫ +∞

0

s−1/2

R(s)2p−1
ds.

To estimate the integral on the right-hand side of the above inequality, we note
from (2.12) that R(s) �

√
π/2 for s ∈ [0, 1] and R(s) �

√
2s cosh β for s � 1 > t−.

Thus,

|I0| � 8
π

∫ 1

0

s−1/2

(π/2)p−1/2
ds +

8
π

∫ +∞

1

s−1/2

(2s cosh β)p−1/2
ds

=
2p+7/2

πp+1/2
+

1
π(p − 1)2p−7/2(cosh β)p−1/2

, (2.13)

where we have assumed p � 2 to ensure convergence of the second integral.
It remains to estimate the integral

Ic =
∫

Γ+

z−1/2

w(z)2p[w(z) − u]
dz.

For z ∈ Γ+, we have Im f(z) = 0 and Re[f(z) − f(t−)] < f(t+) − f(t−) < 0. It
then follows from (2.1) that w(z) is purely imaginary and |w(z) − u| � |w(z)|
for z ∈ Γ+ and u ∈ R. Now, we parameterize Γ+ as z = z+(θ) = r+(θ)eiθ with
θ ∈ (−π/2, π/2), where r+(θ) is given in (2.3). Since dz/dθ = [r′+(θ) + ir+(θ)]eiθ

and |w(z+(θ))|2 = |f(z+(θ)) − f(t−)| = f(t−) − f(z+(θ)), we deduce

|Ic| �
∫ π/2

−π/2

r+(θ)−1/2
√

[r′+(θ)]2 + [r+(θ)]2

|w(z+(θ))|2p+1
dθ

=
∫ π/2

0

2r+(θ)−1/2
√

[r′+(θ)]2 + [r+(θ)]2

[f(t−) − f(z+(θ))]p+1/2
dθ.

As both θ/ tan θ and cos θ are decreasing functions for θ ∈ (0, π/2), it follows from
(2.3) that r+(θ) is an increasing function for θ ∈ (0, π/2); namely, r′+(θ) � 0. To
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estimate r′+(θ), we apply an implicit differentiation on (2.2) and obtain

r′+(θ) =
−2r+(θ)2 cos(2θ) + 2r+(θ) cosh β cos θ − 1/2

2r+(θ) sin(2θ) − 2 cosh β sin θ
.

A simple calculation together with (2.3) gives

2r+(θ) sin(2θ) − 2 cosh β sin θ = 2 sin θ[2r+(θ) cos θ − cosh β]

= 2 sin θ

√
cosh2 β − θ/ tan θ

and

2r+(θ) cosh β cos θ − 2r+(θ)2 cos2 θ

= cosh β(cosh β +
√

cosh2 β − θ/ tan θ) −
(cosh β +

√
cosh2 β − θ/ tan θ)2

2

=
θ

2 tan θ
. (2.14)

Consequently,

0 � r′+(θ) =
2r+(θ)2 sin2 θ + θ/(2 tan θ) − 1/2

2 sin θ
√

cosh2 β − θ/ tan θ

� r+(θ)2 sin θ√
cosh2 β − θ/ tan θ

� r+(θ) tan θ

tanhβ
,

and

|Ic| � 2
tanhβ

∫ π/2

0

r+(θ)1/2/ cos θ

[f(t−) − f(z+(θ))]p+1/2
dθ. (2.15)

Let θ0 = arccos(1/4). If θ ∈ (0, θ0), then cos θ > 1/4, f(t−) − f(z+(θ)) > f(t−) −
f(t+) = sinh(2β)/2 − β and r+(θ) < 4 cosh β. Hence,∫ θ0

0

r+(θ)1/2/ cos θ

[f(t−) − f(z+(θ))]p+1/2
dθ � 2π(4 cosh β)1/2

[sinh(2β)/2 − β]p+1/2
. (2.16)

If θ ∈ (θ0, π/2), then r+(θ) > 2eβ = 4t+ > 2 cosh β > 2. This together with (2.14)
implies that

−f(z+(θ)) = −r+(θ)2 cos(2θ) + 2r+(θ) cosh β cos θ − 1
2

ln r+(θ)

= r+(θ)2 +
θ

2 tan θ
− 1

2
ln r+(θ)

� 4
5
r+(θ)2 +

1
5
r+(θ)2 − 1

2
ln r+(θ) � 4

5
r+(θ)2,
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and

−f(t−) =
e−2β

4
+ β2 +

1 + ln 2
2

� e2β

4
+

19
20

� t2+ +
19
80

r+(θ)2 � 3
10

r+(θ)2.

Coupling the above two inequalities gives

f(t−) − f(z+(θ)) � 1
2
r+(θ)2.

Therefore,∫ π/2

θ0

r+(θ)1/2/ cos θ

[f(t−) − f(z+(θ))]p+1/2
dθ �

∫ π/2

θ0

r+(θ)1/2 · r+(θ)/t+
r+(θ)2p+1/2p+1/2

dθ

=
2p+1/2

t+

∫ π/2

θ0

r+(θ)−2p+1/2dθ � 2p+1/2

t+

∫ π/2

π/3

(4t+)−2p+1/2dθ =
2−3p+1/2π

3t
2p+1/2
+

,

(2.17)

where we have assumed p � 1. Substituting (2.16) and (2.17) into (2.15) yields

|Ic| � 2
tanh β

{
4π

√
cosh β

[sinh(2β)/2 − β]p+1/2
+

2−p+1π

3e(2p+1/2)β

}
, p � 1. (2.18)

A combination of (3.5), (2.13) and (2.18) gives

|cp(u)| � |I0| + |Ic| � 2p+7/2

πp+1/2
+

1
π(p − 1)2p−7/2(cosh β)p−1/2

+
2

tanhβ

{
4π

√
cosh β

[sinh(2β)/2 − β]p+1/2
+

2−p+1π

3e(2p+1/2)β

}
,

for p � 2. Let Cp be the number on the right-hand side of the above inequality. The
error bound (2.10) holds for p � 2. Note from (2.6) that

εp(N,β) =
Ap(coth β)

Np
+ εp+1(N,β).

Hence, we may improve the error bound (2.10) to

|εp(N,β)| � |Ap(coth β)|
Np

+
√

sinh β

2π3/2

Cp+1Γ(p + 3/2)
Np+1

=
C̃p

Np
,

for p � 1, where

C̃p = |Ap(coth β)| +
√

sinh β

2π3/2

Cp+1Γ(p + 3/2)
N

.

Using the explicit value

−f(t−) =
e−2β

4
+

β

2
+

1 + ln 2
2

in (2.6), we can summarize our results as follows.
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Theorem 2.1. Let β > 0 and N = 2n + 1 � 1. Then for any p � 1, we have

Hn(
√

N cosh β) =
2nn!eN(e−2β+2β+2)/4

√
2π sinhβN (n+1)/2

⎧⎨⎩
p−1∑
j=0

Aj(coth β)
N j

+ εp(N,β)

⎫⎬⎭ , (2.19)

where

|εp(N,β)| � C̃p

Np
, (2.20)

with

C̃p = |Ap(coth β)| +
√

sinh β

2π3/2

Cp+1Γ(p + 3/2)
N

,

and

Cp+1 =
2p+9/2

πp+3/2
+

1
πp2p−5/2(cosh β)p+1/2

+
2

tanh β

{
4π

√
cosh β

[sinh(2β)/2 − β]p+3/2
+

2−pπ

3e(2p+5/2)β

}
.

In particular, C̃p → |Ap(coth β)| as N → +∞; namely, the error bound is close
to the absolute value of the first neglected term when N is large. The coefficients
Aj(coth β) are polynomials in coth β of degree 3j with rational coefficients, and
these polynomials can be calculated using a recursive formula given in appendix A.1.

3. Case II: x = cos α ∈ [0, 1) with α ∈ (0, π/2]

The saddle points are t± = e±iα/2, and we have

f ′′(t±) = 2 − 2e∓2iα = 4 sin αe±i(π/2−α).

Now, we define an analytic function w(z) via

w(z) = [f(z) − f(t+)]1/2, (3.1)

where the branch of the square root function is chosen so that

w(z) =
√

2 sin αei(π/4−α/2)(z − t+) + O((z − t+)2)

for z in a small complex neighbourhood of t+. The steepest descent contour passing
through t+ is described via the equation Im [f(z) − f(t+)] = 0. By using polar
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coordinates z = reiθ, this equation becomes

r2 sin(2θ) − 2r cos α sin θ +
θ − θ0

2
= 0,

with

θ0 = α − sin(2α)/2 ∈ (0, α).

We are only interested in solutions in the upper half-plane; namely, θ ∈ (0, π). By
the quadratic formula, there are exactly two solutions:

rd+(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(θ − θ0)/(2 sin θ)

cos α +
√

cos2 α − (θ − θ0)/ tan θ
, θ ∈ [α, π),

cos α +
√

cos2 α − (θ − θ0)/ tan θ

2 cos θ
, θ ∈ (0, α],

and

ra+(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cos α +

√
cos2 α − (θ − θ0)/ tan θ

2 cos θ
, θ ∈ [α, π/2),

cos α −√cos2 α − (θ − θ0)/ tan θ

2 cos θ
, θ ∈ (θ0, α],

where rd+(θ) and ra+(θ) are defined as piecewise functions so that they are dif-
ferentiable at θ = α. This is because the function

√
cos2 α − (θ − θ0)/ tan θ is

not differentiable at θ = α. For any θ in a small real neighbourhood of α, we
have, by Taylor expansion, cos2 α − (θ − θ0)/ tan θ = (θ − α)2 + O((θ − α)3) and√

cos2 α − (θ − θ0)/ tan θ = |θ − α| + O((θ − α)2). Hence,

rd+(θ) =
cos α − (θ − α)

2[cos α − (θ − α) sin α]
+ O((θ − α)2)

=
1
2
− 1 − sinα

2 cos α
(θ − α) + O((θ − α)2),

ra+(θ) =
cos α + (θ − α)

2[cos α − (θ − α) sin α]
+ O((θ − α)2)

=
1
2

+
1 + sinα

2 cos α
(θ − α) + O((θ − α)2).

In particular, we have

rd+(α) = ra+(α) =
1
2
, r′d+(α) = −1

2
tan

(π

4
− α

2

)
, r′a+(α) =

1
2

cot
(π

4
− α

2

)
.

Now, we define two contours

Γd+ = {rd+(θ)eiθ : θ ∈ (0, π)}, Γa+ = {ra+(θ)eiθ : θ ∈ (θ0, π/2)}.
Recall that −Nf(t) is the phase function in the integral representation of
Hn(

√
N cos α). It is readily seen from the asymptotic behaviours f(z) ∼ z2 as
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Figure 3. The contours Γd± and Γa±. The arrows indicate the increasing direction of the
phase function f .

z → ∞ and 2f(z) ∼ ln z as z → 0 that Γd+ is a steepest descent contour and Γa+ is
a steepest ascent contour passing through the saddle point t+ = eiα/2. Moreover,
the only zero of f(z) − f(t+) in the upper half-plane is t+. Hence, w(z) defined in
(3.1) is analytic for all Im z > 0 and positive z > 0. For z = seiπ with s > 0, we
define

w(seiπ) = lim
θ→π−

w(seiθ).

We can define in a similar manner the contours Γd− and Γa− which, together with
Γd+ and Γa+, are illustrated in figure 3.

Now, we return to the integral representation of Hn(
√

N cos α) in (1.1) and
deform the contour of integration to the steepest descent contours Γd+ ∪ Γd−
oriented with increasing parameter θ (i.e., counter-clockwise direction):

Hn(
√

N cos α) =
n!

2πiNn/2

∫
Γd+

e−Nf(t)t−1/2dt

+
n!

2πiNn/2

∫
Γd−

e−Nf(t)t−1/2dt =: I+ + I−,

where the last equality defines the two integrals I+ and I−, respectively. Since the
contours Γd+ and Γd− are symmetric with respect to the real axis, have opposite
orientations, and f(t) = f(t̄), the integrals I+ and I− are complex conjugates of
each other. Therefore, it suffices to study the integral I+. First, we introduce the
change of variable u = w(t):

I+ = −n!e−Nf(t+)

2πiNn/2

∫
R

e−Nu2 [w−1(u)]−1/2

w′(w−1(u))
du.

https://doi.org/10.1017/prm.2021.90 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.90


Error bounds for the asymptotic expansions of the Hermite polynomials 429

Since w(z) is analytic in the upper half-plane and |w(z)|/|z| → 1 as z → ∞, we can
infer from the Cauchy integral formula that

[w−1(u)]−1/2

w′(w−1(u))
=

1
2πi

∫
Γ+

0 ∪R+

z−1/2

w(z) − u
dz,

where R
+ is the positive real line and Γ+

0 is the negative real line with argument π:

Γ+
0 = lim

δ→0+
{λ + iδ : λ < 0} = {seiπ : s > 0}.

Both R
+ and Γ+

0 are oriented from left to right. Now, we have the following double
integral representation:

I+ = − n!e−Nf(t+)

(2πi)2Nn/2

∫
R

e−Nu2
∫

Γ+
0 ∪R+

z−1/2

w(z) − u
dzdu.

For any p � 0, we use the identities (2.5) and

1
w(z) − u

=
2p∑

k=1

uk−1

w(z)k
+

u2p

w(z)2p[w(z) − u]

to derive

I+ =
n!e−Nf(t+)

2
√

π sinαN (n+1)/2

⎧⎨⎩
p−1∑
j=0

Aj(i cot α)
N j

eπi/4 + ε̃p(N,α)

⎫⎬⎭ , (3.2)

where

Aj(i cot α) = e−πi/4

√
sin α Γ(j + 1/2)

2π3/2

∫
Γ+

0 ∪R+

z−1/2

w(z)2j+1
dz, (3.3)

ε̃p(N,α) =
√

N sinα

2π3/2

∫
R

e−Nu2
u2p

∫
Γ+

0 ∪R+

z−1/2

w(z)2p[w(z) − u]
dzdu. (3.4)

The coefficients Aj(i cot α) are polynomials in i cot α and these polynomials are
identical to those appearing in the expansion (2.19) (see appendix A.1 for details).

To find an upper bound for the remainder ε̃p(N, α), we need to estimate the
integral

cp(u) =
∫

Γ+
0 ∪R+

z−1/2

w(z)2p[w(z) − u]
dz, u ∈ R. (3.5)

By expressing w(z) in polar coordinates, one can easily show that

|w(z) − u| � |Im w(z)| � |Im w(z)2|
2|w(z)| .

Note from (3.1) that

|Im w(z)2| = |Im f(z) − θ0/2| =

{
θ0/2, z ∈ R

+,

(π − θ0)/2, z ∈ Γ+
0 .
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Assume that p � 1. Substituting the above two formulas into (2.9) yields

|cp(u)| � 4
θ0

∫ +∞

0

s−1/2

|w(s)|2p−1
ds +

4
π − θ0

∫ +∞

0

s−1/2

|w(seiπ)|2p−1
ds.

For s ∈ (0, 2), we have

|w(s)| �
√
|Im w(s)2| =

√
θ0/2,

|w(seiπ)| �
√
|Im w(seiπ)2| =

√
(π − θ0)/2,

and for s > 2, we have

|w(s)|2 � |Re w(s)2| = s2 − 2s cos α +
ln s

2
+

cos2 α + ln 2 + 1/2
2

� (s − 1)2,

|w(seiπ)|2 � |Re w(seiπ)2| = s2 + 2s cos α +
ln s

2
+

cos2 α + ln 2 + 1/2
2

� s2.

Accordingly,

|cp(u)| � 4
θ0

{∫ 2

0

s−1/2

(θ0/2)p−1/2
ds +

∫ +∞

2

s−1/2

(s − 1)2p−1
ds

}
+

4
π − θ0

{∫ 2

0

s−1/2

[(π − θ0)/2]p−1/2
ds +

∫ +∞

2

s−1/2

s2p−1
ds

}
� 4

θ0

{
23/2

(θ0/2)p−1/2
+

1
2p − 3/2

}
+

4
π − θ0

{
23/2

[(π − θ0)/2]p−1/2
+

23/2−2p

2p − 3/2

}
.

Denote the right-hand side of the above inequality by Cp. It then follows from (2.5),
(3.4) and (2.9) that

|ε̃p(N,α)| �
√

sinα

2π3/2

CpΓ(p + 1/2)
Np

,

provided p � 1. We define

εp(N,α) := Re(ε̃p(N,α)e−iNθ0/2),

and observe that

|εp(N,α)| �
∣∣∣Re

(
Ap(i cot α)e−i(θ0N−π/2)/2

)∣∣∣ 1
Np

+ |Reε̃p+1(N,α)|

�
∣∣∣Re

(
Ap(i cot α)e−i(θ0N−π/2)/2

)∣∣∣ 1
Np

+ |ε̃p+1(N,α)|
for any p � 0. Using the explicit value

−f(t+) =
cos(2α)

4
+

1 + ln 2
2

− i
θ0

2

in (3.2), and the fact that Hn(
√

N cos α) = I+ + I− = I+ + I+ = 2Re I+, we can
summarize our results as follows.
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Theorem 3.1. Let α ∈ (0, π/2], N = 2n + 1 � 1 and θ0 = α − sin(2α)/2. Then for
any p � 0, we have

Hn(
√

N cos α) =
2n+1n!eN(cos(2α)+2)/4

√
2π sinαN (n+1)/2

×
⎧⎨⎩

p−1∑
j=0

Re
(
Aj(i cot α)e−i(θ0N−π/2)/2

)
N j

+ εp(N,α)

⎫⎬⎭
=

2n+1n!eN(cos(2α)+2)/4

√
2π sinαN (n+1)/2

⎧⎨⎩cos
(

θ0N

2
− π

4

) p−1∑
j=0

Re(Aj(i cot α))
N j

+ sin
(

θ0N

2
− π

4

) p−1∑
j=1

Im(Aj(i cot α))
N j

+ εp(N,α)

⎫⎬⎭ ,

where

|εp(N,α)| � C̃p

Np
, (3.6)

with

C̃p =
∣∣∣Re

(
Ap(i cot α)e−i(θ0N−π/2)/2

)∣∣∣+ √
sin α

2π3/2

Cp+1Γ(p + 3/2)
N

,

and

Cp+1 =
4
θ0

{
23/2

(θ0/2)p+1/2
+

1
2p + 1/2

}
+

4
π − θ0

{
23/2

[(π − θ0)/2]p+1/2
+

2−1/2−2p

2p + 1/2

}
.

In particular, C̃p → |Re(Ap(i cot α)e−i(θ0N−π/2)/2)| as N → +∞; namely, the error
bound is close to the absolute value of the first omitted term for large N . The
coefficients Aj(i cot α) are polynomials in i cot α of degree 3j with rational coeffi-
cients, and these polynomials can be calculated using a recursive formula given in
appendix A.1.

4. Case III: x = 1

The saddle points coincide ts = t± = 1/2. We have f(ts) = −3/4 − (ln 2)/2,
f ′(ts) = f ′′(ts) = 0 and f ′′′(ts) = 8. We introduce the analytic function

w(z) = [f(z) − f(ts)]1/3, (4.1)

with the branch of the cube root being chosen so that

w(z) = (4/3)1/3(z − ts)e−2iπ/3 + O((z − ts)2) (4.2)

for z in a small complex neighbourhood of ts. We shall extend the definition of
w(z) by analytic continuation to C \ (−∞, 0]. First, we investigate the equation
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Im[f(z) − f(ts)] = Im f(z) = 0, which in polar coordinates z = reiθ is

r2 sin(2θ) − 2r sin θ + θ/2 = 0. (4.3)

This equation is clearly satisfied by all z > 0. There are two further solutions:

r+(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ/(2 sin θ)
1 +

√
1 − θ cot θ

, θ ∈ (0, π),

1
2
, θ = 0,

1 +
√

1 − θ cot θ

2 cos θ
, θ ∈ (−π/2, 0),

and

r−(θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 +
√

1 − θ cot θ

2 cos θ
, θ ∈ (0, π/2),

1
2
, θ = 0,

θ/(2 sin θ)
1 +

√
1 − θ cot θ

, θ ∈ (−π, 0),

where we have defined r±(θ) as piecewise functions so that they are differentiable
at θ = 0. Note that since 1 − θ cot θ = θ2/3 + O(θ3) for small |θ| > 0, we have

√
1 − θ cot θ =

|θ|√
3

+ O(θ2)

and

r±(θ) =
1
2
∓ θ

2
√

3
+ O(θ2)

for small values of θ. Especially,

r±(0) =
1
2
, r′±(0) = ∓ 1

2
√

3
. (4.4)

Now, we introduce two contours

Γ1 = {r+(θ)eiθ : θ ∈ (−π/2, π)}, Γ2 = {r−(θ)eiθ : θ ∈ (−π, π/2)},

which we illustrate in figure 4.
We have the following lemma.

Lemma 4.1. Let z+(θ) = r+(θ)eiθ for θ ∈ (−π/2, π); the function f(z+(θ)) − f(ts)
increases from −∞ to +∞ as θ increases from −π/2 to π. Let z−(θ) = r−(θ)eiθ

for θ ∈ (−π, π/2); the function f(z−(θ)) − f(ts) decreases from +∞ to −∞ as θ
increases from −π to π/2.
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Figure 4. The contours Γ1 and Γ2. The arrows indicate the increasing direction of the
phase function f .

Proof. For small θ, we have from f ′(ts) = f ′′(ts) = 0, f ′′′(ts) = 8 and (4.4) that

z+(θ) − ts = [r′+(0) + ir+(0)]θ + O(θ2) =
e2iπ/3

√
3

θ + O(θ2),

and

f(z+(θ)) − f(ts) =
4
3
(z+(θ) − ts)3 + O((z+(θ) − ts)4) =

4
9
√

3
θ3 + O(θ4).

Hence, the function f(z+(θ)) − f(ts) is increasing for small θ. We claim that
f(z+(θ)) − f(ts) is increasing for all θ ∈ (−π/2, π). Assume to the contrary that

0 =
d

dθ
f(z+(θ)) = f ′(z+(θ))[r′+(θ) + ir+(θ)]eiθ

for some θ ∈ (−π/2, 0) ∪ (0, π). Since f ′(z) 	= 0 for any z 	= ts, we have r′+(θ) =
r+(θ) = 0. This contradicts to the equation (4.3). Hence, the function f(z+(θ)) −
f(ts) is increasing for all θ ∈ (−π/2, π). Note that r+(θ) → ∞ as θ tends to
−π/2 from the right or π from the left. It is readily seen that f(z+(θ)) − f(ts) =
r+(θ)2 cos(2θ) − 2r+(θ) cos θ + (1/2) ln r+(θ) − f(ts) increases from −∞ to +∞ as
θ increases from −π/2 to π.

The second statement of the lemma follows in a similar manner. �

Since the solutions of Im f(z) = 0 are the union Γ1 ∪ Γ2 ∪ R
+, the equation

f(z) − f(ts) = 0 has a unique solution z = ts in C \ (−∞, 0]. This implies that
w(z) defined in (4.1) can be analytically continued to C \ (−∞, 0]. Moreover, it
follows from (4.2) that w(z+(θ)) increases from −∞ to ∞ as θ increases from −π/2
to π.
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Next, we let Γ1+ be the portion of Γ1 in the upper half-plane and Γ2− be the
portion of Γ2 in the lower half-plane; namely,

Γ1+ = {r+(θ)eiθ : θ ∈ [0, π)}, Γ2− = {r−(θ)eiθ : θ ∈ (−π, 0]}.
Both Γ1+ and Γ2− are oriented with increasing θ (counter clockwise direction). We
now deform the contour of integration for Hn(

√
N) in (1.1) from Γ to Γ1+ ∪ Γ2−:

Hn(
√

N) =
n!

2πiNn/2

∫
Γ1+

e−Nf(t)t−1/2dt

+
n!

2πiNn/2

∫
Γ2−

e−Nf(t)t−1/2dt =: I+ + I−,

where the last equality defines the two integrals I+ and I−, respectively. Since the
contours Γ1+ and Γ2− are symmetric with respect to the real axis, have opposite
orientations, and f(t) = f(t̄), the integrals I+ and I− are complex conjugates of
one another. Thus, it is sufficient to study the integral I+. First, we introduce the
change of variable u = w(t):

I+ =
n!e−Nf(ts)

2πiNn/2

∫ +∞

0

e−Nu3 [w−1(u)]−1/2

w′(w−1(u))
du. (4.5)

We denote by Γ±
0 the negative real lines with arguments ±π and orientation from left

to right. For convenience, we denote by Γ∗ the union of Γ+
0 oriented to the right and

Γ−
0 oriented to the left. Since w(z) is analytic in C \ (−∞, 0] and |w(z)|/|z|2/3 → 1

as z → ∞, we can assert from the Cauchy integral formula that

[w−1(u)]−1/2

w′(w−1(u))
=

1
2πi

∫
Γ∗

z−1/2

w(z) − u
dz.

Substituting this into (4.5) gives

I+ =
n!e−Nf(ts)

(2πi)2Nn/2

∫ +∞

0

e−Nu3
∫

Γ∗

z−1/2

w(z) − u
dzdu.

For any p � 1, we use the identities

1
w(z) − u

=
p−1∑
j=1

uj−1

w(z)j
+

up−1

w(z)p−1[w(z) − u]

and ∫ +∞

0

e−Nu3
uj−1du =

Γ(j/3)
3N j/3

(4.6)

to find

I+ =
21/2n!e−Nf(ts)

6πNn/2

⎧⎨⎩
p−1∑
j=1

(
3
4

)j/3

Dje
2πij/3−πi/2 Γ(j/3)

N j/3
+ ε̃p(N)

⎫⎬⎭ , (4.7)
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where

Dj =
(

4
3

)j/3
e−2πij/3

23/2πi

∫
Γ∗

z−1/2

w(z)j
dz, (4.8)

ε̃p(N) = − 3
23/2π

∫
R

e−Nu3
up−1

∫
Γ∗

z−1/2

w(z)p−1[w(z) − u]
dzdu. (4.9)

It is shown in appendix A.2 that the coefficients Dj are rational numbers which
can be calculated via a recurrence relation.

To find an upper bound for the remainder ε̃p(N), we need to estimate the integral

cp(u) =
∫

Γ∗

z−1/2

w(z)p−1[w(z) − u]
dz, u ∈ R. (4.10)

By expressing w(z) in polar coordinates, one can easily show that

|w(z) − u| � |Im w(z)| � |Im w(z)3|
3|w(z)|2 .

We also note from (4.1) that

|Im w(z)3| = |Im f(z)| = π/2,

for z = se±iπ ∈ Γ∗. Assume that p � 4. Substituting the above two formulas into
(4.10) yields

|cp(u)| � 6
π

∫ +∞

0

s−1/2

|w(seiπ)|p−3
ds +

6
π

∫ +∞

0

s−1/2

|w(se−iπ)|p−3
ds.

For z = se±iπ ∈ Γ∗ with s = |z| ∈ (0, 1), we have

|w(z)| � |Im w(z)3|1/3 = (π/2)1/3.

For z = se±iπ ∈ Γ∗ with s = |z| > 1, we have

|w(z)|3 � |Re w(z)3| = s2 + 2s +
ln s

2
+

ln 2 + 3/2
2

� s2.

Consequently,

|cp(u)| � 12
π

{∫ 1

0

s−1/2(π/2)p/3−1ds +
∫ +∞

1

s−1/2

s2p/3−2
ds

}
� 12

π

{
2

(π/2)p/3−1
+

6
4p − 15

}
.
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Denote the right-hand side of the above inequality by Cp. It then follows from (4.6),
(4.9) and (4.10) that

|ε̃p(N)| � 1
23/2π

CpΓ(p/3)
Np/3

,

provided p � 4. We define

εp(N) := Re ε̃p(N),

and observe that

|εp(N)| �
∣∣∣∣∣
(

3
4

)p/3

Dp sin
(

2πp

3

)∣∣∣∣∣ Γ(p/3)
Np/3

+ |Reε̃p+1(N)|

�
∣∣∣∣∣
(

3
4

)p/3

Dp sin
(

2πp

3

)∣∣∣∣∣ Γ(p/3)
Np/3

+ |ε̃p+1(N)|

for any p � 3. Using the explicit value −f(ts) = 3/4 + (ln 2)/2 in (4.7), and the
fact that Hn(

√
N) = I+ + I− = I+ + I+ = 2Re I+, we can summarize our results

as follows.

Theorem 4.2. Denote N = 2n + 1 � 1. Then for any p � 3, we have

Hn(
√

N) =
2n+1n!e3N/4

3πNn/2

⎧⎨⎩
p−1∑
j=1

(
3
4

)j/3

Dj sin
(

2πj

3

)
Γ(j/3)
N j/3

+ εp(N)

⎫⎬⎭ ,

where

|εp(N)| � C̃p

Np/3
, (4.11)

with

C̃p =

∣∣∣∣∣
(

3
4

)p/3

Dp sin
(

2πp

3

)∣∣∣∣∣Γ(p/3) +
1

23/2π

Cp+1Γ((p + 1)/3)
N1/3

,

and

Cp+1 =
12
π

{
2

(π/2)(p−2)/3
+

6
4p − 11

}
.

In particular, if p is not divisible by 3, C̃p → ∣∣(3/4)p/3Dp sin(2πp/3)
∣∣Γ(p/3) as

N → +∞; namely, the error bound is close to the absolute value of the first neglected
term when N is large. The coefficients Dj are rational numbers and can be calculated
using a recurrence relation given in appendix A.2.

5. Numerical examples

In tables 1, 2 and 3, we present some numerical results that demonstrate the accu-
racy of our error bounds given in theorems 2.1, 3.1 and 4.2, respectively. We can
infer from the tables that the bounds are rather realistic, that is, they do not
seriously overestimate the actual error.
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Table 1. Bounds for |εp(N, β)| with various N = 2n + 1, β and p, using (2.20)

Values of n, β and p n = 50, β = 1, p = 1 n = 50, β = 1, p = 3

Numerical value of |εp(N, β)| 0.0985 × 10−2 0.0543 × 10−5

The bound (2.20) for |εp(N, β)| 0.1917 × 10−2 0.1704 × 10−5

Values of n, β and p n = 50, β = 4, p = 1 n = 50, β = 4, p = 3

Numerical value of |εp(N, β)| 0.8229 × 10−3 0.1879 × 10−7

The bound (2.20) for |εp(N, β)| 0.9811 × 10−3 0.7375 × 10−7

Values of n, β and p n = 100, β = 1, p = 1 n = 100, β = 1, p = 3

Numerical value of |εp(N, β)| 0.5004 × 10−3 0.0701 × 10−6

The bound (2.20) for |εp(N, β)| 0.7357 × 10−3 0.1441 × 10−6

Values of n, β and p n = 100, β = 4, p = 1 n = 100, β = 4, p = 3

Numerical value of |εp(N, β)| 0.4134 × 10−3 0.2383 × 10−8

The bound (2.20) for |εp(N, β)| 0.4533 × 10−3 0.5887 × 10−8

Table 2. Bounds for |εp(N, α)| with various N = 2n + 1, α and p, using (3.6)

Values of n, α and p n = 50, α = π/4, p = 1 n = 50, α = π/4, p = 3

Numerical value of |εp(N, α)| 0.0406 × 10−1 0.0103 × 10−3

The bound (3.6) for |εp(N, α)| 0.1147 × 10−1 0.3159 × 10−3

Values of n, α and p n = 50, α = π/3, p = 1 n = 50, α = π/3, p = 3

Numerical value of |εp(N, α)| 0.1551 × 10−2 0.0119 × 10−4

The bound (3.6) for |εp(N, α)| 0.2779 × 10−2 0.1192 × 10−4

Values of n, α and p n = 100, α = π/4, p = 1 n = 100, α = π/4, p = 3

Numerical value of |εp(N, α)| 0.0689 × 10−2 0.0066 × 10−4

The bound (3.6) for |εp(N, α)| 0.2494 × 10−2 0.2001 × 10−4

Values of n, α and p n = 100, α = π/3, p = 1 n = 100, α = π/3, p = 3

Numerical value of |εp(N, α)| 0.0932 × 10−2 0.1532 × 10−6

The bound (3.6) for |εp(N, α)| 0.1249 × 10−2 0.8399 × 10−6

Table 3. Bounds for |εp(N)| with various N = 2n + 1 and p, using (4.11)

Values of n and p n = 50, p = 4 n = 50, p = 7 n = 50, p = 10

Numerical value of |εp(N)| 0.2148 × 10−3 0.0300 × 10−5 0.0538 × 10−7

The bound (4.11) for |εp(N)| 0.6615 × 10−3 0.4092 × 10−5 0.6667 × 10−7

Values of n and p n = 100, p = 4 n = 100, p = 7 n = 100, p = 10

Numerical value of |εp(N)| 0.0835 × 10−3 0.0601 × 10−6 0.0523 × 10−8

The bound (4.11) for |εp(N)| 0.2253 × 10−3 0.6658 × 10−6 0.5438 × 10−8
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Appendix A. The computation of the coefficients

Appendix A.1. The coefficients Aj

Our starting point is the integral representation (2.7). We first reverse the ori-
entation of the path Γ0 ∪ Γ+ and thereby remove the minus sign in front of the
integral. Next, by an appeal to Cauchy’s theorem, the contour of integration can
be shrunk into a small, positively oriented circle around t−. After performing the
change of variable u = zeβ , we arrive at

Aj(coth β) =

√
e−2β − 1

π

Γ(j + 1/2)
2πi

∮
(1/2+)

(2u)−1/2

(w(ue−β)2)j+1/2
du. (A.1)

The contour of integration is a small loop surrounding 1/2 in the positive sense.
We would like to obtain a recursive scheme for the evaluation of the integrals in
(A.1). To this end, we employ a method of Lauwerier [6]. The method requires the
power series expansions about 1/2 of the functions appearing in the integrand of
(A.1), namely

w(ue−β)2 =
(
u − 1

2

)2((e−2β − 1) +
∞∑

k=1

(−2)k+1

k + 2
(
u − 1

2

)k)

and

(2u)−1/2 =
∞∑

k=0

(−1)k

2k

(
2k

k

)(
u − 1

2

)k
,

respectively. An application of Lauwerier’s method [6, eqs. (8) and (9)] (with the
slightly different notation Pj(t) := (−1)jqj(−t/2)) then yields

Aj(coth β) =
(−1)j

√
π

(
1 + coth β

2

)j ∫ +∞

0

e−ssj−1/2P2j((1 + coth β)s)ds, (A.2)

where P0(t) = 1 and

Pj(t) =
1
2j

(
2j

j

)
−

j∑
k=1

2k

k + 2

∫ t

0

Pj−k(s)ds (A.3)

for j � 1. It is readily seen from (A.3) that Pj(t) is a polynomial in t of degree
j with rational coefficients. With the substitution t = coth β, (A.2) reduces to the
more compact form

Aj(t) =
(−1)j

√
π

(
1 + t

2

)j ∫ +∞

0

e−ssj−1/2P2j((1 + t)s)ds.
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The Aj(t) is the product of (1 + t)j and a polynomial in t of degree 2j, and has
rational coefficients. In particular, A0(t) = 1 and

A1(t) =
(1 + t)(1 + 5t − 5t2)

24
,

A2(t) =
(1 + t)2(−143 + 298t + 231t2 − 770t3 + 385t4)

1152
,

A3(t) =
(1 + t)3(−6187 − 240549t + 750468t2 − 334565t3 − 1021020t4 + 1276275t5 − 425425t6)

414720
.

Consider now the right-hand side of (3.3). We deform the contour of integration
into a small, positively oriented circle around t+, employ the identity

√
2 sin α =

e−πi/4e−iα/2
√

e2iα − 1, and perform the change of variable u = ze−iα, to obtain the
equivalent form √

e2iα − 1
π

Γ(j + 1/2)
2πi

∮
(1/2+)

(2u)−1/2

(w(ueiα)2)j+1/2
du. (A.4)

Since cos α = cosh(−iα), we see that (A.1) is identical to (A.4) when β is replaced
by −iα. This confirms that the right-hand side of (3.3) is indeed Aj(coth(−iα)) =
Aj(i cot α).

Appendix A.2. The coefficients Dj

We proceed similarly as in the case of the coefficients Aj . By Cauchy’s theorem,
we can deform the contour of integration in (4.8) into a small, positively oriented
loop contour around the saddle point ts = 1/2, to obtain

Dj =
(

4
3

)j/3
e−2πij/3

23/2πi

∮
(1/2+)

z−1/2

w(z)j
dz =

(
4
3

)j/3 1
2πi

∮
(1/2+)

(2z)−1/2

(w3(z))j/3
dz.

(A.5)
The square and cube roots in the second integral are defined to be positive for pos-
itive real z and are defined by continuity elsewhere. To apply Lauwerier’s method,
we expand the functions in the rightmost integral in (A.5) into Taylor series about
1/2:

w3(z) =
(
z − 1

2

)3 ∞∑
k=0

(−2)k+2

k + 3
(
z − 1

2

)k
, (2z)−1/2 =

∞∑
k=0

(−1)k

2k

(
2k

k

)(
z − 1

2

)k
.

Lauwerier’s method [6, eqs. (8) and (9)] (with the notation Qj(t) :=
(−1)j−1qj−1(3t/4)) then gives

Dj =
(−1)j−1

Γ(j/3)

∫ +∞

0

e−ssj/3−1Qj(s)ds, (A.6)

where Q1(t) = 1 and

Qj+1(t) =
1
2j

(
2j

j

)
− 3

j−1∑
k=0

2k+1

k + 4

∫ t

0

Qj−k(s)ds
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for j � 1. It is easy to verify that Qj(t) is a polynomial in t of degree j − 1 with ratio-
nal coefficients. When integrating Qj(s) term-by-term in (A.6), the factor Γ(j/3) in
the denominator cancels, showing that Dj is always a rational number. In particular,

D1 = 1, D2 = 0, D3 = − 3
20

, D4 =
1
6
, D5 = − 9

70
,

D6 =
3
40

, D7 = − 199
7200

, D8 = − 3
700

.
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